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Preface
Introduction

This book describes and presents the source code for the common reference implementation of 
TCP/IP: the implementation from the Computer Systems Research Group (CSRG) at the University of 
California at Berkeley. Historically this has been distributed with the 4.x BSD system (Berkeley 
Software Distribution). This implementation was first released in 1982 and has survived many 
significant changes, much fine tuning, and numerous ports to other Unix and non-Unix systems. This 
is not a toy implementation, but the foundation for TCP/IP implementations that are run daily on 
hundreds of thousands of systems worldwide. This implementation also provides router functionality, 
letting us show the differences between a host implementation of TCP/IP and a router. 

We describe the implementation and present the entire source code for the kernel implementation of 
TCP/IP, approximately 15,000 lines of C code. The version of the Berkeley code described in this text 
is the 4.4BSD-Lite release. This code was made publicly available in April 1994, and it contains 
numerous networking enhancements that were added to the 4.3BSD Tahoe release in 1988, the 
4.3BSD Reno release in 1990, and the 4.4BSD release in 1993. (Appendix B describes how to obtain 
this source code.) The 4.4BSD release provides the latest TCP/IP features, such as multicasting and 
long fat pipe support (for high-bandwidth, long-delay paths). Figure 1.1 (p. 4) provides additional 
details of the various releases of the Berkeley networking code. 

This book is intended for anyone wishing to understand how the TCP/IP protocols are implemented: 
programmers writing network applications, system administrators responsible for maintaining 
computer systems and networks utilizing TCP/IP, and any programmer interested in understanding 
how a large body of nontrivial code fits into a real operating system. 
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Organization of the Book 

The following figure shows the various protocols and subsystems that are covered. The italic numbers 
by each box indicate the chapters in which that topic is described. 

We take a bottom-up approach to the TCP/IP protocol suite, starting at the data-link layer, then the 
network layer (IP, ICMP, IGMP, IP routing, and multicast routing), followed by the socket layer, and 
finishing with the transport layer (UDP, TCP, and raw IP). 
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Intended Audience 

This book assumes a basic understanding of how the TCP/IP protocols work. Readers unfamiliar with 
TCP/IP should consult the first volume in this series, [Stevens 1994], for a thorough description of the 
TCP/IP protocol suite. This earlier volume is referred to throughout the current text as Volume 1. The 
current text also assumes a basic understanding of operating system principles. 

We describe the implementation of the protocols using a data-structures approach. That is, in addition 
to the source code presentation, each chapter contains pictures and descriptions of the data structures 
used and maintained by the source code. We show how these data structures fit into the other data 
structures used by TCP/IP and the kernel. Heavy use is made of diagrams throughout the text—there 
are over 250 diagrams. 

This data-structures approach allows readers to use the book in various ways. Those interested in all 
the implementation details can read the entire text from start to finish, following through all the source 
code. Others might want to understand how the protocols are implemented by understanding all the 
data structures and reading all the text, but not following through all the source code. 

We anticipate that many readers are interested in specific portions of the book and will want to go 
directly to those chapters. Therefore many forward and backward references are provided throughout 
the text, along with a thorough index, to allow individual chapters to be studied by themselves. The 
inside back covers contain an alphabetical cross-reference of all the functions and macros described in 
the book and the starting page number of the description. Exercises are provided at the end of the 
chapters; most solutions are in Appendix A to maximize the usefulness of the text as a self-study 
reference.



ptg11539634

xvii

Source Code Copyright 

All of the source code presented in this book, other than Figures 1.2 and 8.27, is from the 4.4BSD-Lite 
distribution. This software is publicly available through many sources (Appendix B).

All of this source code contains the following copyright notice. 

/*
 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994 
 *      The Regents of the University of California.  All 
rights reserved. 
 * 
 * Redistribution and use in source and binary forms, with 
or without 
 * modification, are permitted provided that the following 
conditions
 * are met: 
 * 1. Redistributions of source code must retain the above 
copyright
 *    notice, this list of conditions and the following 
disclaimer.
 * 2. Redistributions in binary form must reproduce the 
above copyright 
 *    notice, this list of conditions and the following 
disclaimer in the 
 *    documentation and/or other materials provided with 
the distribution. 
 * 3. All advertising materials mentioning features or use 
of this software 
 *    must display the following acknowledgement: 
 *      This product includes software developed by the 
University of 
 *      California, Berkeley and its contributors. 
 * 4. Neither the name of the University nor the names of 
its contributors 
 *    may be used to endorse or promote products derived 
from this software 
 *    without specific prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND 
CONTRIBUTORS ``AS IS'' AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 
LIMITED TO, THE 
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE 
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR 
CONTRIBUTORS BE LIABLE 
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
EXEMPLARY, OR CONSEQUENTIAL 
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 
SUBSTITUTE GOODS 
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 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 
INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 
IN CONTRACT, STRICT 
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 
ARISING IN ANY WAY 
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF 
 * SUCH DAMAGE. 
 */ 
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Chapter 1. Introduction 

1.1. Introduction 

This chapter provides an introduction to the Berkeley networking code. We start with a description of 
the source code presentation and the various typographical conventions used throughout the text. A 
quick history of the various releases of the code then lets us see where the source code shown in this 
book fits in. This is followed by a description of the two predominant programming interfaces used 
under both Unix and non-Unix systems to write programs that use the TCP/IP protocols. 

We then show a simple user program that sends a UDP datagram to the daytime server on another host 
on the local area network, causing the server to return a UDP datagram with the current time and date 
on the server as a string of ASCII text. We follow the datagram sent by the process all the way down 
the protocol stack to the device driver, and then follow the reply received from server all the way up 
the protocol stack to the process. This trivial example lets us introduce many of the kernel data 
structures and concepts that are described in detail in later chapters. 

The chapter finishes with a look at the organization of the source code that is presented in the book 
and a review of where the networking code fits in the overall organization. 

1.2. Source Code Presentation 

Presenting 15,000 lines of source code, regardless of the topic, is a challenge in itself. The following 
format is used for all the source code in the text: 

__________________________________________________________tcp_subr.c
381 void 
382 tcp_quench(inp, errno) 
383 struct inpcb *inp; 
384 int     errno; 
385 { 
386     struct tcpcb *tp = intotcpcb(inp); 

387     if (tp) 
388         tp->snd_cwnd = tp->t_maxseg; 
389 } 
__________________________________________________________

Set congestion window to one segment

387-388

This is the tcp_quench function from the file tcp_subr.c. These source filenames refer to files 
in the 4.4BSD-Lite distribution, which we describe in Section 1.13. Each nonblank line is numbered. 
The text describing portions of the code begins with the starting and ending line numbers in the left 
margin, as shown with this paragraph. Sometimes the paragraph is preceded by a short descriptive 
heading, providing a summary statement of the code being described. 

The source code has been left as is from the 4.4BSD-Lite distribution, including occasional bugs, 
which we note and discuss when encountered, and occasional editorial comments from the original 
authors. The code has been run through the GNU Indent program to provide consistency in 
appearance. The tab stops have been set to four-column boundaries to allow the lines to fit on a page. 
Some #ifdef statements and their corresponding #endif have been removed when the constant is 
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always defined (e.g., GATEWAY and MROUTING, since we assume the system is operating as a router 
and as a multicast router). All register specifiers have been removed. Sometimes a comment has 
been added and typographical errors in the comments have been fixed, but otherwise the code has 
been left alone. 

The functions vary in size from a few lines tcp_quench (shown earlier) to tcp_input, which is 
the biggest at 1100 lines. Functions that exceed about 40 lines are normally broken into pieces, which 
are shown one after the other. Every attempt is made to place the code and its accompanying 
description on the same page or on facing pages, but this isn't always possible without wasting a large 
amount of paper. 

Many cross-references are provided to other functions that are described in the text. To avoid 
appending both a figure number and a page number to each reference, the inside back covers contain 
an alphabetical cross-reference of all the functions and macros described in the book, and the starting 
page number of the description. Since the source code in the book is taken from the publicly available 
4.4BSD-Lite release, you can easily obtain a copy: Appendix B details various ways. Sometimes it 
helps to have an on-line copy to search through [e.g., with the Unix grep(1) program] as you follow 
the text. 

Each chapter that describes a source code module normally begins with a listing of the source files 
being described, followed by the global variables, the relevant statistics maintained by the code, some 
sample statistics from an actual system, and finally the SNMP variables related to the protocol being 
described. The global variables are often defined across various source files and headers, so we collect 
them in one table for easy reference. Showing all the statistics at this point simplifies the later 
discussion of the code when the statistics are updated. Chapter 25 of Volume 1 provides all the details 
on SNMP. Our interest in this text is in the information maintained by the TCP/IP routines in the 
kernel to support an SNMP agent running on the system. 

Typographical Conventions

In the figures throughout the text we use a constant-width font for variable names and the names of 
structure members (m_next), a slanted constant-width font for names that are defined constants 
(NULL) or constant values (512), and a bold constant-width font with braces for structure names 
(mbuf{}). Here is an example: 

In tables we use a constant-width font for variable names and the names of structure members, and the 
slanted constant-width font for the names of defined constants. Here is an example: 

m_flags Description 

M_BCAST sent/received as link-level broadcast 

We normally show all #define symbols this way. We show the value of the symbol if necessary (the 
value of M_BCAST is irrelevant) and sort the symbols alphabetically, unless some other ordering 
makes sense. 

Throughout the text we'll use indented, parenthetical notes such as this to describe 
historical points or implementation minutae. 
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We refer to Unix commands using the name of the command followed by a number in parentheses, as 
in grep(1). The number in parentheses is the section number in the 4.4BSD manual of the "manual 
page" for the command, where additional information can be located. 

1.3. History 

This book describes the common reference implementation of TCP/IP from the Computer Systems 
Research Group at the University of California at Berkeley. Historically this has been distributed with 
the 4.x BSD system (Berkeley Software Distribution) and with the "BSD Networking Releases." This 
source code has been the starting point for many other implementations, both for Unix and non-Unix 
operating systems. 

Figure 1.1 shows a chronology of the various BSD releases, indicating the important TCP/IP features. 
The releases shown on the left side are publicly available source code releases containing all of the 
networking code: the protocols themselves, the kernel routines for the networking interface, and many 
of the applications and utilities (such as Telnet and FTP). 

Figure 1.1. Various BSD releases with important TCP/IP features.
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Although the official name of the software described in this text is the 4.4BSD-Lite distribution, we'll 
refer to it simply as Net/3.

While the source code is distributed by U. C. Berkeley and is called the Berkeley Software 
Distribution, the TCP/IP code is really the merger and consolidation of the works of various 
researchers, both at Berkeley and at other locations. 

Throughout the text we'll use the term Berkeley-derived implementation to refer to vendor 
implementations such as SunOS 4.x, System V Release 4 (SVR4), and AIX 3.2, whose TCP/IP code 
was originally developed from the Berkeley sources. These implementations have much in common, 
often including the same bugs! 

Not shown in Figure 1.1 is that the first release with the Berkeley networking code 
was actually 4.1cBSD in 1982. 4.2BSD, however, was the widely released version in 
1983. 

BSD releases prior to 4.1cBSD used a TCP/IP implementation developed at Bolt 
Beranek and Newman (BBN) by Rob Gurwitz and Jack Haverty. Chapter 18 of 
[Salus 1994] provides additional details on the incorporation of the BBN code into 
4.2BSD. Another influence on the Berkeley TCP/IP code was the TCP/IP 
implementation done by Mike Muuss at the Ballistics Research Lab for the PDP-11. 

Limited documentation exists on the changes in the networking code from one 
release to the next. [Karels and McKusick 1986] describe the changes from 4.2BSD 
to 4.3BSD, and [Jacobson 1990d] describes the changes from 4.3BSD Tahoe to 
4.3BSD Reno. 

1.4. Application Programming Interfaces 

Two popular application programming interfaces (APIs) for writing programs to use the Internet 
protocols are sockets and TLI (Transport Layer Interface). The former is sometimes called Berkeley
sockets, since it was widely released with the 4.2BSD system (Figure 1.1). It has, however, been 
ported to many non-BSD Unix systems and many non-Unix systems. The latter, originally developed 
by AT&T, is sometimes called XTI (X/Open Transport Interface) in recognition of the work done by 
X/Open, an international group of computer vendors who produce their own set of standards. XTI is 
effectively a superset of TLI. 

This is not a programming text, but we describe the sockets interface since sockets are used by 
applications to access TCP/IP in Net/3 (and in all other BSD releases). The sockets interface has also 
been implemented on a wide variety of non-Unix systems. The programming details for both sockets 
and TLI are available in [Stevens 1990].

System V Release 4 (SVR4) also provides a sockets API for applications to use, although the 
implementation differs from what we present in this text. Sockets in SVR4 are based on the "streams" 
subsystem that is described in [Rago 1993]. 

1.5. Example Program 

We'll use the simple C program shown in Figure 1.2 to introduce many features of the BSD 
networking implementation in this chapter. 
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Figure 1.2. Example program: send a datagram to the UDP daytime server and read a 
response.

Create a datagram socket

19-20

socket creates a UDP socket and returns a descriptor to the process, which is stored in the variable 
sockfd. The error-handling function err_sys is shown in Appendix B.2 of [Stevens 1992]. It 
accepts any number of arguments, formats them using vsprintf, prints the Unix error message 
corresponding to the errno value from the system call, and then terminates the process. 

We've now used the term socket in three different ways. (1) The API developed for 
4.2BSD to allow programs to access the networking protocols is normally called the 
sockets API or just the sockets interface. (2) socket is the name of a function in the 
sockets API. (3) We refer to the end point created by the call to socket as a socket, 
as in the comment "create a datagram socket."

Unfortunately, there are still more uses of the term socket. (4) The return value from 
the socket function is called a socket descriptor or just a socket. (5) The Berkeley 
implementation of the networking protocols within the kernel is called the sockets 
implementation, compared to the System V streams implementation, for example. (6)  
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The combination of an IP address and a port number is often called a socket, and a 
pair of IP addresses and port numbers is called a socket pair. Fortunately, it is usually 
obvious from the discussion what  the term socket refers to. 

Fill in sockaddr_in structure with server's address

21-24

An Internet socket address structure (sockaddr_in) is filled in with the IP address (140.252.1.32) 
and port number (13) of the daytime server. Port number 13 is the standard Internet daytime server, 
provided by most TCP/IP implementations [Stevens 1994, Fig. 1.9]. Our choice of the server host is 
arbitrary—we just picked a local host (Figure 1.17) that provides the service. 

The function inet_addr takes an ASCII character string representing a dotted-decimal IP address 
and converts it into a 32-bit binary integer in the network byte order. (The network byte order for the 
Internet protocol suite is big endian. [Stevens 1990, Chap. 4] discusses host and network byte order, 
and little versus big endian.) The function htons takes a short integer in the host byte order (which 
could be little endian or big endian) and converts it into the network byte order (big endian). On a 
system such as a Sparc, which uses big endian format for integers, htons is typically a macro that 
does nothing. In BSD/386, however, on the little endian 80386, htons can be either a macro or a 
function that swaps the 2 bytes in a 16-bit integer. 

Send datagram to server

25-27

The program then calls sendto, which sends a 150-byte datagram to the server. The contents of the 
150-byte buffer are indeterminate since it is an uninitialized array allocated on the run-time stack, but 
that's OK for this example because the server never looks at the contents of the datagram that it 
receives. When the server receives a datagram it sends a reply to the client. The reply contains the 
current time and date on the server in a human-readable format. 

Our choice of 150 bytes for the client's datagram is arbitrary. We purposely pick a value greater than 
100 and less than 208 to show the use of an mbuf chain later in this chapter. We also want a value less 
than 1472 to avoid fragmentation on an Ethernet. 

Read datagram returned by server

28-32

The program reads the datagram that the server sends back by calling recvfrom. Unix servers 
typically send back a 26-byte string of the form 

   Sat Dec 11 11:28:05 1993\er\n 

where \er is an ASCII carriage return and \en is an ASCII linefeed. Our program overwrites the 
carriage return with a null byte and calls printf to output the result. 

We go into lots of detail about various parts of this example in this and later chapters as we examine 
the implementation of the functions socket, sendto, and recvfrom.
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1.6. System Calls and Library Functions 

All operating systems provide service points through which programs request services from the 
kernel. All variants of Unix provide a well-defined, limited number of kernel entry points known as 
system calls. We cannot change the system calls unless we have the kernel source code. Unix Version 
7 provided about 50 system calls, 4.4BSD provides about 135, and SVR4 has around 120. 

The system call interface is documented in Section 2 of the Unix Programmer's Manual. Its definition 
is in the C language, regardless of how system calls are invoked on any given system. 

The Unix technique is for each system call to have a function of the same name in the standard C 
library. An application calls this function, using the standard C calling sequence. This function then 
invokes the appropriate kernel service, using whatever technique is required on the system. For 
example, the function may put one or more of the C arguments into general registers and then execute 
some machine instruction that generates a software interrupt into the kernel. For our purposes, we can 
consider the system calls to be C functions. 

Section 3 of the Unix Programmer's Manual defines the general purpose functions available to 
programmers. These functions are not entry points into the kernel, although they may invoke one or 
more of the kernel's system calls. For example, the printf function may invoke the write system 
call to perform the output, but the functions strcpy (copy a string) and atoi (convert ASCII to 
integer) don't involve the operating system at all. 

From an implementor's point of view, the distinction between a system call and a library function is 
fundamental. From a user's perspective, however, the difference is not as critical. For example, if we 
run Figure 1.2 under 4.4BSD, when the program calls the three functions socket, sendto, and 
recvfrom, each ends up calling a function of the same name within the kernel. We show the BSD 
kernel implementation of these three system calls later in the text. 

If we run the program under SVR4, where the socket functions are in a user library that calls the 
"streams" subsystem, the interaction of these three functions with the kernel is completely different. 
Under SVR4 the call to socket ends up invoking the kernel's open system call for the file 
/dev/udp and then pushes the streams module sockmod onto the resulting stream. The call to 
sendto results in a putmsg system call, and the call to recvfrom results in a getmsg system call. 
These SVR4 details are not critical in this text. We want to point out only that the implementation can 
be totally different while providing the same API to the application. 

This difference in implementation technique also accounts for the manual page for the socket
function appearing in Section 2 of the 4.4BSD manual but in Section 3n (the letter n stands for the 
networking subsection of Section 3) of the SVR4 manuals. 

Finally, the implementation technique can change from one release to the next. For example, in Net/1 
send and sendto were implemented as separate system calls within the kernel. In Net/3, however, 
send is a library function that calls sendto, which is a system call: 

    send(int s, char *msg, int len, int flags) 
    { 
        return(sendto(s, msg, len, flags, (struct sockaddr *) NULL, 
0));
    } 

The advantage in implementing send as a library function that just calls sendto is a reduction in the 
number of system calls and in the amount of code within the kernel. The disadvantage is the additional 
overhead of one more function call for the process that calls send.
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Since this text describes the Berkeley implementation of TCP/IP, most of the functions called by the 
process socket, ( bind, connect, etc.) are implemented directly in the kernel as system calls. 

1.7. Network Implementation Overview 

Net/3 provides a general purpose infrastructure capable of simultaneously supporting multiple 
communication protocols. Indeed, 4.4BSD supports four distinct communication protocol families: 

1. TCP/IP (the Internet protocol suite), the topic of this book. 
2. XNS (Xerox Network Systems), a protocol suite that is similar to TCP/IP; it was popular in 

the mid-1980s for connecting Xerox hardware (such as printers and file servers), often using 
an Ethernet. Although the code is still distributed with Net/3, few people use this protocol 
suite today, and many vendors who use the Berkeley TCP/IP code remove the XNS code (so 
they don't have to support it). 

3. The OSI protocols [Rose 1990; Piscitello and Chapin 1993]. These protocols were designed 
during the 1980s as the ultimate in open-systems technology, to replace all other 
communication protocols. Their appeal waned during the early 1990s, and as of this writing 
their use in real networks is minimal. Their place in history is still to be determined. 

4. The Unix domain protocols. These do not form a true protocol suite in the sense of 
communication protocols used to exchange information between different systems, but are 
provided as a form of interprocess communication (IPC). 

The advantage in using the Unix domain protocols for IPC between two processes on the 
same host, versus other forms of IPC such as System V message queues [Stevens 1990], is 
that the Unix domain protocols are accessed using the same API (sockets) as are the other 
three communication protocols. Message queues, on the other hand, and most other forms of 
IPC, have an API that is completely different from both sockets and TLI. Having IPC 
between two processes on the same host use the networking API makes it easy to migrate a 
client-server application from one host to many hosts. Two different protocols are provided in 
the Unix domain—a reliable, connection-oriented, byte-stream protocol that looks like TCP, 
and an unreliable, connectionless, datagram protocol that looks like UDP. 

Although the Unix domain protocols can be used as a form of IPC between 
two processes on the same host, these processes could also use TCP/IP to 
communicate with each other. There is no requirement that processes 
communicating using the Internet protocols reside on different hosts. 

The networking code in the kernel is organized into three layers, as shown in Figure 1.3. On the right 
side of this figure we note where the seven layers of the OSI reference model [Piscitello and Chapin 
1993] fit in the BSD organization. 
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Figure 1.3. The general organization of networking code in Net/3.

1. The socket layer is a protocol-independent interface to the protocol-dependent layer below. 
All system calls start at the protocol-independent socket layer. For example, the protocol-
independent code in the socket layer for the bind system call comprises a few dozen lines of 
code: these verify that the first argument is a valid socket descriptor and that the second 
argument is a valid pointer in the process. The protocol-dependent code in the layer below is 
then called, which might comprise hundreds of lines of code. 

2. The protocol layer contains the implementation of the four protocol families that we 
mentioned earlier (TCP/IP, XNS, OSI, and Unix domain). Each protocol suite may have its 
own internal structure, which we don't show in Figure 1.3. For example, in the Internet 
protocol suite, IP is the lowest layer (the network layer) with the two transport layers (TCP 
and UDP) above IP. 

3. The interface layer contains the device drivers that communicate with the network devices. 

1.8. Descriptors 

Figure 1.2 begins with a call to socket, specifying the type of socket desired. The combination of 
the Internet protocol family (PF_INET) and a datagram socket (SOCK_DGRAM) gives a socket whose 
protocol is UDP. 

The return value from socket is a descriptor that shares all the properties of other Unix descriptors: 
read and write can be called for the descriptor, you can dup it, it is shared by the parent and child 
after a call to fork, its properties can be modified by calling fcntl, it can be closed by calling 
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close, and so on. We see in our example that the socket descriptor is the first argument to both the 
sendto and recvfrom functions. When our program terminates (by calling exit), all open 
descriptors including the socket descriptor are closed by the kernel. 

We now introduce the data structures that are created by the kernel when the process calls socket.
We describe these data structures in more detail in later chapters. 

Everything starts with the process table entry for the process. One of these exists for each process 
during its lifetime. 

A descriptor is an index into an array within the process table entry for the process. This array entry 
points to an open file table structure, which in turn points to an i-node or v-node structure that 
describes the file. Figure 1.4 summarizes this relationship. 

Figure 1.4. Fundamental relationship between kernel data structures starting with a 
descriptor.

In this figure we also show a descriptor that refers to a socket, which is the focus of this text. We place 
the notation proc{} above the process table entry, since its definition in C is 

   struct proc { 
       ... 
   } 

and we use this notation for structures in our figures throughout the text. 

[Stevens 1992, Sec. 3.10] shows how the relationships between the descriptor, file table structure, and 
i-node or v-node change as the process calls dup and fork. The relationships between these three 
data structures exists in all versions of Unix, although the details change with different 
implementations. Our interest in this text is with the socket structure and the Internet-specific data 
structures that it points to. But we need to understand how a descriptor leads to a socket structure, 
since the socket system calls start with a descriptor. 

Figure 1.5 shows more details of the Net/3 data structures for our example program, if the program is 
executed as 
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Figure 1.5. Kernel data structures after call to socket in example program.

   a.out 

without redirecting standard input (descriptor 0), standard output (descriptor 1), or standard error 
(descriptor 2). In this example, descriptors 0, 1, and 2 are connected to our terminal, and the lowest-
numbered unused descriptor is 3 when socket is called. 

When a process executes a system call such as socket, the kernel has access to the process table 
structure. The entry p_fd in this structure points to the filedesc structure for the process. There are 
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two members of this structure that interest us now: fd_ofileflags is a pointer to an array of 
characters (the per-descriptor flags for each descriptor), and fd_ofiles is a pointer to an array of 
pointers to file table structures. The per-descriptor flags are 8 bits wide since only 2 bits can be set for 
any descriptor: the close-on-exec flag and the mapped-from-device flag. We show all these flags as 0. 

We purposely call this section "Descriptors" and not "File Descriptors" since Unix 
descriptors can refer to lots of things other than files: sockets, pipes, directories, 
devices, and so on. Nevertheless, much of Unix literature uses the adjective file when 
talking about descriptors, which is an unnecessary qualification. Here the kernel data 
structure is called filedesc{} even though we're about to describe socket 
descriptors. We'll use the unqualified term descriptor whenever possible. 

The data structure pointed to by the fd_ofiles entry is shown as *file{}[] since it is an array of 
pointers to file structures. The index into this array and the array of descriptor flags is the 
nonnegative descriptor itself: 0, 1, 2, and so on. In Figure 1.5 we show the entries for descriptors 0, 1, 
and 2 pointing to the same file structure at the bottom of the figure (since all three descriptors refer 
to our terminal). The entry for descriptor 3 points to a different file structure for our socket 
descriptor. 

The f_type member of the file structure specifies the descriptor type as either DTYPE_SOCKET or 
DTYPE_VNODE. V-nodes are a general mechanism that allows the kernel to support different types of 
filesystems—a disk filesystem, a network filesystem (such as NFS), a filesystem on a CD-ROM, a 
memory-based filesystem, and so on. Our interest in this text is not with v-nodes, since TCP/IP 
sockets always have a type of DTYPE_SOCKET.

The f_data member of the file structure points to either a socket structure or a vnode structure, 
depending on the type of descriptor. The f_ops member points to a vector of five function pointers. 
These function pointers are used by the read, readv, write, writev, ioctl, select,
and close system calls, since these system calls work with either a socket descriptor or a nonsocket 
descriptor. Rather than look at the f_type value each time one of these system calls is invoked and 
then jump accordingly, the implementors chose always to jump indirectly through the corresponding 
entry in the fileops structure instead. 

Notationally we use a fixed-width font (fo_read) to show the name of a structure member and a 
slanted fixed-width font (soo_read) to show the contents of a structure member. Also note that 
sometimes we show the pointer to a structure arriving at the top left corner (e.g., the filedesc
structure) and sometimes at the top right corner (e.g., both file structures and both fileops
structures). This is to simplify the figures. 

Next we come to the socket structure that is pointed to by the file structure when the descriptor 
type is DTYPE_SOCKET. In our example, the socket type (SOCK_DGRAM for a datagram socket) is 
stored in the so_type member. An Internet protocol control block (PCB) is also allocated: an inpcb
structure. The so_pcb member of the socket structure points to the inpcb, and the inp_socket
member of the inpcb structure points to the socket structure. Each points to the other because the 
activity for a given socket can occur from two directions: "above" or "below." 

1. When the process executes a system call, such as sendto, the kernel starts with the 
descriptor value and uses fd_ofiles to index into the vector of file structure pointers, 
ending up with the file structure for the descriptor. The file structure points to the 
socket structure, which points to the inpcb structure. 

2. When a UDP datagram arrives on a network interface, the kernel searches through all the 
UDP protocol control blocks to find the appropriate one, minimally based on the destination 
UDP port number and perhaps the destination IP address, source IP address, and source port 
numbers too. Once the inpcb structure is located, the kernel finds the corresponding 
socket structure through the inp_socket pointer. 
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The members inp_faddr and inp_laddr contain the foreign and local IP addresses, and the 
members inp_fport and inp_lport contain the foreign and local port numbers. The combination 
of the local IP address and the local port number is often called a socket, as is the combination of the 
foreign IP address and the foreign port number. 

We show another inpcb structure with the name udb on the left in Figure 1.5. This is a global 
structure that is the head of a linked list of all UDP PCBs. We show the two members inp_next and 
inp_prev that form a doubly linked circular list of all UDP PCBs. For notational simplicity in the 
figure, we show two parallel horizontal arrows for the two links instead of trying to have the heads of 
the arrows going to the top corners of the PCBs. The inp_prev member of the inpcb structure on 
the right points to the udb structure, not the inp_prev member of that structure. The dotted arrows 
from udb.inp_prev and the inp_next member of the other PCB indicate that there may be other 
PCBs on the doubly linked list that we don't show. 

We've looked at many kernel data structures in this section, most of which are described further in 
later chapters. The key points to understand now are: 

1. The call to socket by our process ends up allocating the lowest unused descriptor (3 in our 
example). This descriptor is used by the process in all subsequent system calls that refer to 
this socket. 

2. The following kernel structures are allocated and linked together: a file structure of type 
DTYPE_SOCKET, a socket structure, and an inpcb structure. Lots of initialization is 
performed on these structures that we don't show: the file structure is marked for read and 
write (since the call to socket always returns a descriptor that can be read or written), the 
default sizes of the input and output buffers are set in the socket structure, and so on. 

3. We showed nonsocket descriptors for our standard input, output, and error to show that all 
descriptors end up at a file structure, and it is from that point on that differences appear 
between socket descriptors and other descriptors. 

1.9. Mbufs (Memory Buffers) and Output Processing 

A fundamental concept in the design of the Berkeley networking code is the memory buffer, called an 
mbuf, used throughout the networking code to hold various pieces of information. Our simple example 
(Figure 1.2) lets us examine some typical uses of mbufs. In Chapter 2 we describe mbufs in more 
detail. 

Mbuf Containing Socket Address Structure

In the call to sendto, the fifth argument points to an Internet socket address structure (named serv)
and the sixth argument specifies its length (which we'll see later is 16 bytes). One of the first things 
done by the socket layer for this system call is to verify that these arguments are valid (i.e., the pointer 
points to a piece of memory in the address space of the process) and then copy the socket address 
structure into an mbuf. Figure 1.6 shows the resulting mbuf. 
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Figure 1.6. Mbuf containing destination address for sendto.

The first 20 bytes of the mbuf is a header containing information about the mbuf. This 20-byte header 
contains four 4-byte fields and two 2-byte fields. The total size of the mbuf is 128 bytes. 

Mbufs can be linked together using the m_next and m_nextpkt members, as we'll see shortly. Both 
are null pointers in this example, which is a stand-alone mbuf. 

The m_data member points to the data in the mbuf and the m_len member specifies its length. For 
this example, m_data points to the first byte of data in the mbuf (the byte immediately following the 
mbuf header). The final 92 bytes of the mbuf data area (108-16) are unused (the shaded portion of 
Figure 1.6).

The m_type member specifies the type of data contained in the mbuf, which for this example is 
MT_SONAME (socket name). The final member in the header, m_flags, is zero in this example. 

Mbuf Containing Data

Continuing our example, the socket layer copies the data buffer specified in the call to sendto into 
one or more mbufs. The second argument to sendto specifies the start of the data buffer (buff), and 
the third argument is its size in bytes (150). Figure 1.7 shows how two mbufs hold the 150 bytes of 
data. 
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Figure 1.7. Two mbufs holding 150 bytes of data.

This arrangement is called an mbuf chain. The m_next member in each mbuf links together all the 
mbufs in a chain. 

The next change we see is the addition of two members, m_pkthdr.len and m_pkthdr.rcvif, to 
the mbuf header in the first mbuf of the chain. These two members comprise the packet header and 
are used only in the first mbuf of a chain. The m_flags member contains the value M_PKTHDR to 
indicate that this mbuf contains a packet header. The len member of the packet header structure 
contains the total length of the mbuf chain (150 in this example), and the next member, rcvif, we'll 
see later contains a pointer to the received interface structure for received packets. 

Since mbufs are always 128 bytes, providing 100 bytes of data storage in the first mbuf on the chain 
and 108 bytes of storage in all subsequent mbufs on the chain, two mbufs are needed to store 150 
bytes of data. We'll see later that when the amount of data exceeds 208 bytes, instead of using three or 
more mbufs, a different technique is used—a larger buffer, typically 1024 or 2048 bytes, called a 
cluster is used. 

One reason for maintaining a packet header with the total length in the first mbuf on the chain is to 
avoid having to go through all the mbufs on the chain to sum their m_len members when the total 
length is needed. 

Prepending IP and UDP Headers

After the socket layer copies the destination socket address structure into an mbuf (Figure 1.6) and the 
data into an mbuf chain (Figure 1.7), the protocol layer corresponding to the socket descriptor (a UDP 
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socket) is called. Specifically, the UDP output routine is called and pointers to the mbufs that we've 
examined are passed as arguments. This routine needs to prepend an IP header and a UDP header in 
front of the 150 bytes of data, fill in the headers, and pass the mbufs to the IP output routine. 

The way that data is prepended to the mbuf chain in Figure 1.7 is to allocate another mbuf, make it the 
front of the chain, and copy the packet header from the mbuf with 100 bytes of data into the new 
mbuf. This gives us the three mbufs shown in Figure 1.8.

Figure 1.8. Mbuf chain from Figure 1.7 with another mbuf for IP and UDP headers 
prepended.

The IP header and UDP header are stored at the end of the new mbuf that becomes the head of the 
chain. This allows for any lower-layer protocols (e.g., the interface layer) to prepend its headers in 
front of the IP header if necessary, without having to copy the IP and UDP headers. The m_data
pointer in the first mbuf points to the start of these two headers, and m_len is 28. Future headers that 
fit in the 72 bytes of unused space between the packet header and the IP header can be prepended 
before the IP header by adjusting the m_data pointer and the m_len accordingly. Shortly we'll see 
that the Ethernet header is built here in this fashion. 

Notice that the packet header has been moved from the mbuf with 100 bytes of data into the new 
mbuf. The packet header must always be in the first mbuf on the chain. To accommodate this 
movement of the packet header, the M_PKTHDR flag is set in the first mbuf and cleared in the second 
mbuf. The space previously occupied by the packet header in the second mbuf is now unused. Finally, 
the length member in the packet header is incremented by 28 bytes to become 178. 

The UDP output routine then fills in the UDP header and as much of the IP header as it can. For 
example, the destination address in the IP header can be set, but the IP checksum will be left for the IP 
output routine to calculate and store. 

The UDP checksum is calculated and stored in the UDP header. Notice that this requires a complete 
pass of the 150 bytes of data stored in the mbuf chain. So far the kernel has made two complete passes 
of the 150 bytes of user data: once to copy the data from the user's buffer into the kernel's mbufs, and 
now to calculate the UDP checksum. Extra passes over the data can degrade the protocol's 
performance, and in later chapters we describe alternative implementation techniques that avoid 
unnecessary passes. 
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At this point the UDP output routine calls the IP output routine, passing a pointer to the mbuf chain 
for IP to output. 

IP Output

The IP output routine fills in the remaining fields in the IP header including the IP checksum, 
determines the outgoing interface to which the datagram should be given (this is the IP routing 
function), fragments the IP datagram if necessary, and calls the interface output function. 

Assuming the outgoing interface is an Ethernet, a general-purpose Ethernet output function is called, 
again with a pointer to the mbuf chain as an argument. 

Ethernet Output

The first function of the Ethernet output function is to convert the 32-bit IP address into its 
corresponding 48-bit Ethernet address. This is done using ARP (Address Resolution Protocol) and 
may involve sending an ARP request on the Ethernet and waiting for an ARP reply. While this takes 
place, the mbuf chain to be output is held, waiting for the reply. 

The Ethernet output routine then prepends a 14-byte Ethernet header to the first mbuf in the chain, 
immediately before the IP header (Figure 1.8). This contains the 6-byte Ethernet destination address, 
6-byte Ethernet source address, and 2-byte Ethernet frame type. 

The mbuf chain is then added to the end of the output queue for the interface. If the interface is not 
currently busy, the interface's "start output" routine is called directly. If the interface is busy, its output 
routine will process the new mbuf on its queue when it is finished with the buffers already on its 
output queue. 

When the interface processes an mbuf that's on its output queue, it copies the data to its transmit buffer 
and initiates the output. In our example, 192 bytes are copied to the transmit buffer: the 14-byte 
Ethernet header, 20-byte IP header, 8-byte UDP header, and 150 bytes of user data. This is the third 
complete pass of the data by the kernel. Once the data is copied from the mbuf chain into the device's 
transmit buffer, the mbuf chain is released by the Ethernet device driver. The three mbufs are put back 
into the kernel's pool of free mbufs. 

Summary of UDP Output

In Figure 1.9 we give an overview of the processing that takes place when a process calls sendto to 
transmit a single UDP datagram. The relationship of the processing that we've described to the three 
layers of kernel code (Figure 1.3) is also shown. 
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Figure 1.9. Processing performed by the three layers for simple UDP output.

Function calls pass control from the socket layer to the UDP output routine, to the IP output routine, 
and then to the Ethernet output routine. Each function call passes a pointer to the mbuf chain to be 
output. At the lowest layer, the device driver, the mbuf chain is placed on the device's output queue 
and the device is started, if necessary. The function calls return in reverse order of their call, and 
eventually the system call returns to the process. Notice that there is no queueing of the UDP data 
until it arrives at the device driver. The higher layers just prepend their header and pass the mbuf to 
the next lower layer. 

At this point our program calls recvfrom to read the server's reply. Since the input queue for the 
specified socket is empty (assuming the reply has not been received yet), the process is put to sleep. 

1.10. Input Processing 

Input processing is different from the output processing just described because the input is 
asynchronous. That is, the reception of an input packet is triggered by a receive-complete interrupt to 
the Ethernet device driver, not by a system call issued by the process. The kernel handles this device 
interrupt and schedules the device driver to run. 

Ethernet Input

The Ethernet device driver processes the interrupt and, assuming it signifies a normal receive-
complete condition, the data bytes are read from the device into an mbuf chain. In our example, 54 
bytes of data are received and copied into a single mbuf: the 20-byte IP header, 8-byte UDP header, 
and 26 bytes of data (the time and date on the server). Figure 1.10 shows the format of this mbuf. 
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Figure 1.10. Single mbuf to hold input Ethernet data.

This mbuf is a packet header (the M_PKTHDR flag is set in m_flags) since it is the first mbuf of a 
data record. The len member in the packet header contains the total length of data and the rcvif.
member contains a pointer to the interface structure corresponding to the received interface (Chapter 
3). We see that the rcvif member is used for received packets but not for output packets (Figures 1.7
and 1.8).

The first 16 bytes of the data portion of the mbuf are allocated for an interface layer header, but are 
not used. Since the amount of data (54 bytes) fits in the remaining 84 bytes of the mbuf, the data is 
stored in the mbuf itself. 

The device driver passes the mbuf to a general Ethernet input routine which looks at the type field in 
the Ethernet frame to determine which protocol layer should receive the packet. In this example, the 
type field will specify an IP datagram, causing the mbuf to be added to the IP input queue. 
Additionally, a software interrupt is scheduled to cause the IP input process routine to be executed. 
The device's interrupt handling is then complete. 

IP Input

IP input is asynchronous and is scheduled to run by a software interrupt. The software interrupt is set 
by the interface layer when it receives an IP datagram on one of the system's interfaces. When the IP 
input routine executes it loops, processing each IP datagram on its input queue and returning when the 
entire queue has been processed. 
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The IP input routine processes each IP datagram that it receives. It verifies the IP header checksum, 
processes any IP options, verifies that the datagram was delivered to the right host (by comparing the 
destination IP address of the datagram with the host's IP addresses), and forwards the datagram if the 
system was configured as a router and the datagram is destined for some other IP address. If the IP 
datagram has reached its final destination, the protocol field in the IP header specifies which protocol's 
input routine is called: ICMP, IGMP, TCP, or UDP. In our example, the UDP input routine is called to 
process the UDP datagram. 

UDP Input

The UDP input routine verifies the fields in the UDP header (the length and optional checksum) and 
then determines whether or not a process should receive the datagram. In Chapter 23 we discuss 
exactly how this test is made. A process can receive all datagrams destined to a specified UDP port, or 
the process can tell the kernel to restrict the datagrams it receives based on the source and destination 
IP addresses and source and destination port numbers. 

In our example, the UDP input routine starts at the global variable udb (Figure 1.5) and goes through 
the linked list of UDP protocol control blocks, looking for one with a local port number (inp_lport)
that matches the destination port number of the received UDP datagram. This will be the PCB created 
by our call to socket, and the inp_socket member of this PCB points to the corresponding 
socket structure, allowing the received data to be queued for the correct socket. 

In our example program we never specify the local port number for our application. 
We'll see in Exercise 23.3 that a side effect of writing the first UDP datagram to a 
socket that has not yet bound a local port number is the automatic assignment by the 
kernel of a local port number (termed an ephemeral port) to that socket. That's how 
the inp_lport member of the PCB for our socket gets set to some nonzero value. 

Since this UDP datagram is to be delivered to our process, the sender's IP address and UDP port 
number are placed into an mbuf, and this mbuf and the data (26 bytes in our example) are appended to 
the receive queue for the socket. Figure 1.11 shows the two mbufs that are appended to the socket's 
receive queue. 

Figure 1.11. Sender's address and data.
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Comparing the second mbuf on this chain (the one of type MT_DATA) with the mbuf in Figure 1.10,
the m_len and m_pkthdr.len members have both been decremented by 28 (20 bytes for the IP 
header and 8 for the UDP header) and the m_data pointer has been incremented by 28. This 
effectively removes the IP and UDP headers, leaving only the 26 bytes of data to be appended to the 
socket's receive queue. 

The first mbuf in the chain contains a 16-byte Internet socket address structure with the sender's IP 
address and UDP port number. Its type is MT_SONAME, similar to the mbuf in Figure 1.6. This mbuf 
is created by the socket layer to return this information to the calling process through the recvfrom
or recvmsg system calls. Even though there is room (16 bytes) in the second mbuf on this chain for 
this socket address structure, it must be stored in its own mbuf since it has a different type 
(MT_SONAME versus MT_DATA).

The receiving process is then awakened. If the process is asleep waiting for data to arrive (which is the 
scenario in our example), the process is marked as run-able for the kernel to schedule. A process can 
also be notified of the arrival of data on a socket by the select system call or with the SIGIO signal. 

Process Input

Our process has been asleep in the kernel, blocked in its call to recvfrom, and the process now 
wakes up. The 26 bytes of data appended to the socket's receive queue by the UDP layer (the received 
datagram) are copied by the kernel from the mbuf into our program's buffer. 

Notice that our program sets the fifth and sixth arguments to recvfrom to null pointers, telling the 
system call that we're not interested in receiving the sender's IP address and UDP port number. This 
causes the recvfrom system call to skip the first mbuf in the chain (Figure 1.11), returning only the 
26 bytes of data in the second mbuf. The kernel's recvfrom code then releases the two mbufs in 
Figure 1.11 and returns them to its pool of free mbufs. 

1.11. Network Implementation Overview Revisited 

Figure 1.12 summarizes the communication that takes place between the layers for both network 
output and network input. It repeats Figure 1.3 considering only the Internet protocols and 
emphasizing the communications between the layers. 
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Figure 1.12. Communication between the layers for network input and output.

The notations splnet and splimp are discussed in the next section. 

We use the plural terms socket queues and interface queues since there is one queue per socket and 
one queue per interface (Ethernet, loopback, SLIP, PPP, etc.), but we use the singular term protocol 
queue because there is a single IP input queue. If we considered other protocol layers, we would have 
one input queue for the XNS protocols and one for the OSI protocols. 

1.12. Interrupt Levels and Concurrency 

We saw in Section 1.10 that the processing of input packets by the networking code is asynchronous 
and interrupt driven. First, a device interrupt causes the interface layer code to execute, which posts a 
software interrupt that later causes the protocol layer code to execute. When the kernel is finished with 
these interrupt levels the socket code will execute. 

There is a priority level assigned to each hardware and software interrupt. Figure 1.13 shows the 
normal ordering of the eight priority levels, from the lowest (no interrupts blocked) to the highest (all 
interrupts blocked). 

Figure 1.13. Kernel functions that block selected interrupts.
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Table 4.5 of [Leffler et al. 1989] shows the priority levels used in the VAX 
implementation. The Net/3 implementation for the 386 uses the eight functions 
shown in Figure 1.13, but splsoftclock and splnet are at the same level, and 
splclock and splhigh are also at the same level. 

The name imp that is used for the network interface level comes from the acronym 
IMP (Interface Message Processor), which was the original type of router used on the 
ARPANET.

The ordering of the different priority levels means that a higher-priority interrupt can preempt a lower-
priority interrupt. Consider the sequence of events depicted in Figure 1.14.

Figure 1.14. Example of priority levels and kernel processing.

1. While the socket layer is executing at spl0, an Ethernet device driver interrupt occurs, 
causing the interface layer to execute at splimp. This interrupt preempts the socket layer 
code. This is the asynchronous execution of the interface input routine. 

2. While the Ethernet device driver is running, it places a received packet onto the IP input 
queue and schedules a software interrupt to occur at splnet. The software interrupt won't 
take effect immediately since the kernel is currently running at a higher priority level 
(splimp).

3. When the Ethernet device driver completes, the protocol layer executes at splnet. This is 
the asynchronous execution of the IP input routine. 

4. A terminal device interrupt occurs (say the completion of a SLIP packet) and it is handled 
immediately, preempting the protocol layer, since terminal I/O (spltty) is a higher priority 
than the protocol layer (splnet) in Figure 1.13. This is the asynchronous execution of the 
interface input routine. 

5. The SLIP driver places the received packet onto the IP input queue and schedules another 
software interrupt for the protocol layer. 

6. When the SLIP driver completes, the preempted protocol layer continues at splnet,
finishes processing the packet received from the Ethernet device driver, and then processes 
the packet received from the SLIP driver. Only when there are no more input packets to 
process will it return control to whatever it preempted (the socket layer in this example). 

7. The socket layer continues from where it was preempted. 

One concern with these different priority levels is how to handle data structures shared between the 
different levels. Examples of shared data structures are the three we show between the different levels 
in Figure 1.12—the socket, interface, and protocol queues. For example, while the IP input routine is 
taking a received packet off its input queue, a device interrupt can occur, preempting the protocol 
layer, and that device driver can add another packet to the IP input queue. These shared data structures 
(the IP input queue in this example, which is shared between the protocol layer and the interface layer) 
can be corrupted if nothing is done to coordinate the shared access. 
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The Net/3 code is sprinkled with calls to the functions splimp and splnet. These two calls are 
always paired with a call to splx to return the processor to the previous level. For example, here is 
the code executed by the IP input function at the protocol layer to check if there is another packet on 
its input queue to process: 

    struct mbuf *m; 
    int  s; 

    s = splimp(); 
    IF_DEQUEUE(&ipintrq, m); 
    splx(s); 

    if (m == 0) 
        return; 

The call to splimp raises the CPU priority to the level used by the network device drivers, preventing 
any network device driver interrupt from occurring. The previous priority level is returned as the value 
of the function and stored in the variable s. Then the macro IF_DEQUEUE is executed to remove the 
next packet at the head of the IP input queue (ipintrq), placing the pointer to this mbuf chain in the 
variable m. Finally the CPU priority is returned to whatever it was when splimp was called, by 
calling splx with an argument of s (the saved value from the earlier call to splimp).

Since all network device driver interrupts are disabled between the calls to splimp and splx, the 
amount of code between these calls should be minimal. If interrupts are disabled for an extended 
period of time, additional device interrupts could be ignored, and data might be lost. For this reason 
the test of the variable m (to see if there is another packet to process) is performed after the call to 
splx, and not before the call. 

The Ethernet output routine needs these spl calls when it places an outgoing packet onto an 
interface's queue, tests whether the interface is currently busy, and starts the interface if it was not 
busy. 

    struct mbuf  *m; 
    int  s; 

    s = splimp(); 
    /* 
     * Queue message on interface, and start output if interface not 
active.
     */ 
    if (IF_QFULL(&ifp->if_snd)) { 
        IF_DROP(&ifp->if_snd);    /* queue is full, drop packet */ 
        splx(s); 
        error = ENOBUFS; 
        goto bad; 
    } 

    IF_ENQUEUE(&ifp->if_snd, m);  /* add the packet to interface queue 
*/
    if ((ifp->if_flags & IFF_OACTIVE) == 0) 
        (*ifp->if_start)(ifp);    /* start interface */ 

     splx(s); 
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The reason device interrupts are disabled in this example is to prevent the device driver from taking 
the next packet off its send queue while the protocol layer is adding a packet to that queue. The 
driver's send queue is a data structure shared between the protocol layer and the interface layer. 

We'll see calls to the spl functions throughout the source code. 

1.13. Source Code Organization 

Figure 1.15 shows the organization of the Net/3 networking source tree, assuming it is located in the 
/usr/src/sys directory. 

Figure 1.15. Net/3 source code organization.

This text focuses on the netinet directory, which contains all the TCP/IP source code. We also look 
at some files in the kern and net directories. The former contains the protocol-independent socket 
code, and the latter contains some general networking functions used by the TCP/IP routines, such as 
the routing code. 

Briefly, the files contained in each directory are as follows: 

i386: the Intel 80x86-specific directories. For example, the directory i386/isa contains 
the device drivers specific to the ISA bus. The directory i386/stand contains the stand-
alone bootstrap code. 

kern: general kernel files that don't belong in one of the other directories. For example, the 
kernel files to handle the fork and exec system calls are in this directory. We look at only a 
few files in this directory—the ones for the socket system calls (the socket layer in Figure 
1.3).
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net: general networking files, for example, general network interface functions, the BPF 
(BSD Packet Filter) code, the SLIP driver, the loopback driver, and the routing code. We look 
at some of the files in this directory. 
netccitt: interface code for the OSI protocols, including the HDLC (high-level data-link 
control) and X.25 drivers. 
netinet: the code for the Internet protocols: IP, ICMP, IGMP, TCP, and UDP. This text 
focuses on the files in this directory. 
netiso: the OSI protocols. 
netns: the Xerox XNS protocols. 
nfs: code for Sun's Network File System. 
sys: system headers. We look at several headers in this directory. The files in this directory 
also appear in the directory /usr/include/sys.
ufs: code for the Unix filesystem, sometimes called the Berkeley fast filesystem. This is the 
normal disk-based filesystem. 
vm: code for the virtual memory system. 

Figure 1.16 gives another view of the source code organization, this time mapped to our three kernel 
layers. We ignore directories such as netimp and nfs that we don't consider in this text. 

Figure 1.16. Net/3 source code organization mapped to three kernel layers.

The numbers below each box are the approximate number of lines of C code for that feature, which 
includes all comments in the source files. 

We don't look at all the source code shown in this figure. The netns and netiso directories are 
shown for comparison against the Internet protocols. We only consider the shaded boxes. 

1.14. Test Network 

Figure 1.17 shows the test network that is used for all the examples in the text. Other than the host 
vangogh at the top of the figure, all the IP addresses belong to the class B network ID 140.252, and 
all the hostnames belong to the .tuc.noao.edu domain. (noao stands for "National Optical 
Astronomy Observatories" and tuc stands for Tucson.) For example, the system in the lower right has 
a complete hostname of svr4.tuc.noao.edu and an IP address of 140.252.13.34. The notation at 
the top of each box is the operating system running on that system. 
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Figure 1.17. Test network used for all the examples in the text.

The host at the top has a complete name of vangogh.cs.berkeley.edu and is reachable from the 
other hosts across the Internet. 

This figure is nearly identical to the test network used in Volume 1, although some of the operating 
systems have been upgraded and the dialup link between sun and netb now uses PPP instead of 
SLIP. Additionally, we have replaced the Net/2 networking code provided with BSD/386 V1.1 with 
the Net/3 networking code. 

1.15. Summary 

This chapter provided an overview of the Net/3 networking code. Using a simple program (Figure 1.2)
that sends a UDP datagram to a daytime server and receives a reply, we've followed the resulting 
output and input through the kernel. Mbufs hold the information being output and the received IP 
datagrams. The next chapter examines mbufs in more detail. 

UDP output occurs when the process executes the sendto system call, while IP input is 
asynchronous. When an IP datagram is received by a device driver, the datagram is placed onto IP's 
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input queue and a software interrupt is scheduled to cause the IP input function to execute. We 
reviewed the different interrupt levels used by the networking code within the kernel. Since many of 
the networking data structures are shared by different layers that can execute at different interrupt 
priorities, the code must be careful when accessing or modifying these shared structures. We'll 
encounter calls to the spl functions in almost every function that we look at. 

The chapter finishes with a look at the overall organization of the source code in Net/3, focusing on 
the code that this text examines. 

Exercises

1.1 Type in the example program (Figure 1.2) and run it on your system. If your system has a 
system call tracing capability, such as trace (SunOS 4.x), truss (SVR4), or ktrace
(4.4BSD), use it to determine the system calls invoked by this example. 

1.2 In our example that calls IF_DEQUEUE in Section 1.12, we noted that the call to splimp
blocks network device drivers from interrupting. While Ethernet drivers execute at this 
level, what happens to SLIP drivers? 
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Chapter 2. Mbufs: Memory Buffers 

2.1. Introduction 

Networking protocols place many demands on the memory management facilities of the kernel. These 
demands include easily manipulating buffers of varying sizes, prepending and appending data to the 
buffers as the lower layers encapsulate data from higher layers, removing data from buffers (as 
headers are removed as data packets are passed up the protocol stack), and minimizing the amount of 
data copied for all these operations. The performance of the networking protocols is directly related to 
the memory management scheme used within the kernel. 

In Chapter 1 we introduced the memory buffer used throughout the Net/3 kernel: the mbuf, which is 
an abbreviation for "memory buffer." In this chapter we look in more detail at mbufs and at the 
functions within the kernel that are used to manipulate them, as we will encounter mbufs on almost 
every page of the text. Understanding mbufs is essential for understanding the rest of the text. 

The main use of mbufs is to hold the user data that travels from the process to the network interface, 
and vice versa. But mbufs are also used to contain a variety of other miscellaneous data: source and 
destination addresses, socket options, and so on. 

Figure 2.1 shows the four different kinds of mbufs that we'll encounter, depending on the 
M_PKTHDR and M_EXT flags in the m_flags member. The differences between the four mbufs 
in Figure 2.1, from left to right, are as follows: 

Figure 2.1. Four different types of mbufs, depending on the m_flags value. 
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1. If m_flags equals 0, the mbuf contains only data. There is room in the mbuf for up to 108 
bytes of data (the m_dat array). The m_data pointer points somewhere in this 108-byte 
buffer. We show it pointing to the start of the buffer, but it can point anywhere in the buffer. 
The m_len member specifies the number of bytes of data, starting at m_data. Figure 1.6
was an example of this type of mbuf. 

In Figure 2.1 there are six members in the m_hdr structure, and its total size is 20 bytes. 
When we look at the C definition of this structure (Figure 2.8) we'll see that the first four 
members occupy 4 bytes each and the last two occupy 2 bytes each. We don't try to 
differentiate between the 4-byte members and the 2-byte members in Figure 2.1.

2. The second type of mbuf has an m_flags value of M_PKTHDR, specifying a packet 
header, that is, the first mbuf describing a packet of data. The data is still contained within the 
mbuf itself, but because of the 8 bytes taken by the packet header, only 100 bytes of data fit 
within this mbuf (in the m_pktdat array). Figure 1.10 was an example of this type of 
mbuf. 

The m_pkthdr.len value is the total length of all the data in the chain  mbuf for this 
packet: the sum of the m_len values for all the mbufs linked through the m_next pointer, 
as shown in Figure 1.8. The m_pkthdr.rcvif member is not used for output packets, 
but for received packets contains a pointer to the received interface's ifnet structure 
(Figure 3.6).

3. The next type of mbuf does not contain a packet header (M_PKTHDR is not set) but contains 
more than 208 bytes of data, so an external buffer called a cluster is used (M_EXT is set). 
Room is still allocated in the mbuf itself for the packet header structure, but it is unused—we 
show it shaded in Figure 2.1. Instead of using multiple mbufs to contain the data (the first 
with 100 bytes of data, and all the rest with 108 bytes of data each), Net/3 allocates a cluster 
of size 1024 or 2048 bytes. The m_data pointer in the mbuf points somewhere inside this 
cluster. 

The Net/3 release supports seven different architectures. Four define the size of a cluster as 
1024 bytes (the traditional value) and three define it as 2048. The reason 1024 has been used 
historically is to save memory: if the cluster size is 2048, about one-quarter of each cluster is 
unused for Ethernet packets (1500 bytes maximum). We'll see in Section 27.5 that the Net/3 
TCP never sends more than the cluster size per TCP segment, so with a cluster size of 1024, 
almost one-third of each 1500-byte Ethernet frame is unused. But [Mogul 1993, Figure 15.15]
shows that a sizable performance improvement occurs on an Ethernet when maximum-sized 
frames are sent instead of 1024-byte frames. This is a performance-versus-memory tradeoff. 
Older systems used 1024-byte clusters to save memory while newer systems with cheaper 
memory use 2048 to increase performance. Throughout this text we assume a cluster size of 
2048. 

Unfortunately different names have been used for what we call clusters. The 
constant MCLBYTES is the size of these buffers (1024 or 2048) and the 
names of the macros to manipulate these buffers are MCLGET,
MCLALLOC, and MCLFREE. This is why we call them clusters. But we 
also see that the mbuf flag is M_EXT, which stands for "external" buffer. 
Finally, [Leffler et al. 1989] calls them mapped pages. This latter name 
refers to their implementation, and we'll see in Section 2.9 that clusters can 
be shared when a copy is required. 
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We would expect the minimum value of m_len to be 209 for this type of 
mbuf, not 208 as we indicate in the figure. That is, a record with 208 bytes 
of data can be stored in two mbufs, with 100 bytes in the first and 108 in the 
second. The source code, however, has a bug and allocates a cluster if the 
size is greater than or equal to 208. 

4. The final type of mbuf contains a packet header and contains more than 208 bytes of data. 
Both M_PKTHDR and M_EXT are set. 

There are numerous additional points we need to make about Figure 2.1:

The size of the mbuf structure is always 128 bytes. This means the amount of unused space 
following the m_ext structure in the two mbufs on the right in Figure 2.1 is 88 bytes (128 – 
20 – 8 –12). 
A data buffer with an m_len of 0 bytes is OK since some protocols (e.g., UDP) allow 0-
length records. 
In each of the mbufs we show the m_data member pointing to the beginning of the 
corresponding buffer (either the mbuf buffer itself or a cluster). This pointer can point 
anywhere in the corresponding buffer, not necessarily the front. 
Mbufs with a cluster always contain the starting address of the buffer (m_ext.ext_buf)
and its size (m_ext.ext_size). We assume a size of 2048 throughout this text. The 
m_data and m_ext. ext_buf members are not the same (as we show) unless 
m_data also points to the first byte of the buffer. The third member of the m_ext
structure, ext_free, is not currently used by Net/3. 
The m_next pointer links together the mbufs forming a single packet (record) into an mbuf 
chain, as in Figure 1.8.
The m_nextpkt pointer links multiple packets (records) together to form a queue of 
mbufs. Each packet on the queue can be a single mbuf or an mbuf chain. The first mbuf of 
each packet contains a packet header. If multiple mbufs define a packet, the m_nextpkt
member of the first mbuf is the only one used—the m_nextpkt member of the remaining 
mbufs on the chain are all null pointers. 

Figure 2.2 shows an example of two packets on a queue. It is a modification of Figure 1.8. We have 
placed the UDP datagram onto the interface output queue (showing that the 14-byte Ethernet header 
has been prepended to the IP header in the first mbuf on the chain) and have added a second packet to 
the queue: a TCP segment containing 1460 bytes of user data. The TCP data is contained in a cluster 
and an mbuf has been prepended to contain its Ethernet, IP, and TCP headers. With the cluster we 
show that the data pointer into the cluster (m_data) need not point to the front of the cluster. We 
show that the queue has a head pointer and a tail pointer. This is how the interface output queues are 
handled in Net/3. We have also added the m_ext structure to the mbuf with the M_EXT flag set and 
have shaded in the unused pkthdr structure of this mbuf. 



ptg11539634

32

Figure 2.2. Two packets on a queue: first with 192 bytes of data and second with 1514 bytes of 
data.

The first mbuf with the packet header for the UDP datagram has a type of 
MT_DATA, but the first mbuf with the packet header for the TCP segment has a 
type of MT_HEADER. This is a side effect of the different way UDP and TCP 
prepend the headers to their data, and makes no difference. Mbufs of these two types 
are essentially the same. It is the m_flags value of M_PKTHDR in the first mbuf 
on the chain that indicates a packet header. 

Careful readers may note a difference between our picture of an mbuf (the Net/3 
mbuf, Figure 2.1) and the picture in [Leffler et al. 1989, p. 290], a Net/1 mbuf. The 
changes were made in Net/2: adding the m_flags member, renaming the m_act
pointer to be m_nextpkt, and moving this pointer to the front of the mbuf. 

The difference in the placement of the protocol headers in the first mbuf for the UDP 
and TCP examples is caused by UDP calling M_PREPEND (Figure 23.15 and 
Exercise 23.1) while TCP calls MGETHDR (Figure 26.25).
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2.2. Code Introduction 

The mbuf functions are in a single C file and the mbuf macros and various mbuf definitions are in a 
single header, as shown in Figure 2.3.

Figure 2.3. Files discussed in this chapter. 

Global Variables

One global variable is introduced in this chapter, shown in Figure 2.4.

Figure 2.4. Global variables introduced in this chapter. 

Statistics

Various statistics are maintained in the global structure mbstat, described in Figure 2.5.

Figure 2.5. Mbuf statistics maintained in the mbstat structure. 

This structure can be examined with the netstat -m command; Figure 2.6 shows some sample 
output. The two values printed for the number of mapped pages in use are m_clusters (34) 
minus m_clfree (32), giving the number of clusters currently in use (2), and m_clusters
(34).
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Figure 2.6. Sample mbuf statistics. 

The number of Kbytes of memory allocated to the network is the mbuf memory (99 x 128 bytes) plus 
the cluster memory (34 x 2048 bytes) divided by 1024. The percentage in use is the mbuf memory (99 
x 128 bytes) plus the cluster memory in use (2 x 2048 bytes) divided by the total network memory (80 
Kbytes), times 100. 

Kernel Statistics

The mbuf statistics show a common technique that we see throughout the Net/3 sources. The kernel 
keeps track of certain statistics in a global variable (the mbstat structure in this example). A 
process (in this case the netstat program) examines the statistics while the kernel is running. 

Rather than provide system calls to fetch the statistics maintained by the kernel, the process obtains 
the address within the kernel of the data structure in which it is interested by reading the information 
saved by the link editor when the kernel was built. The process then calls the kvm(3) functions to 
read the corresponding location in the kernel's memory by using the special file /dev/mem. If the 
kernel's data structure changes from one release to the next, any program that reads that structure must 
also change. 

2.3. Mbuf Definitions 

There are a few constants that we encounter repeatedly when dealing with mbufs. Their values are 
shown in Figure 2.7. All are defined in mbuf.h except MCLBYTES, which is defined in 
/usr/include/machine/param.h.

Figure 2.7. Mbuf constants from mbuf.h.
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2.4. mbuf Structure 

Figure 2.8 shows the definition of the mbuf structure. 

Figure 2.8. Mbuf structures. 

The mbuf structure is defined as an m_hdr structure, followed by a union. As the comments 
indicate, the contents of the union depend on the flags M_PKTHDR and M_EXT.

93-103

These 11 #define statements simplify access to the members of the structures and unions within 
the mbuf structure. We will see this technique used throughout the Net/3 sources whenever we 
encounter a structure containing other structures or unions. 
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We previously described the purpose of the first two members in the mbuf structure: the m_next
pointer links mbufs together into an mbuf chain and the m_nextpkt pointer links mbuf chains 
together into a queue of mbufs.

Figure 1.8 differentiated between the m_len member of each mbuf and the m_pkthdr.len
member in the packet header. The latter is the sum of all the m_len members of all the mbufs on the 
chain. 

There are five independent values for the m_flags member, shown in Figure 2.9.

Figure 2.9. m_flags values. 

We have already described the M_EXT and M_PKTHDR flags. M_EOR is set in an mbuf containing 
the end of a record. The Internet protocols (e.g., TCP) never set this flag, since TCP provides a byte-
stream service without any record boundaries. The OSI and XNS transport layers, however, do use 
this flag. We will encounter this flag in the socket layer, since this layer is protocol independent and 
handles data to and from all the transport layers. 

The next two flags, M_BCAST and M_MCAST, are set in an mbuf when the packet will be sent to 
or was received from a link-layer broadcast address or multicast address. These two constants are 
flags between the protocol layer and the interface layer (Figure 1.3).

The final value, M_COPYFLAGS, specifies the flags that are copied when an mbuf containing a 
packet header is copied. 

Figure 2.10 shows the MT_xxx constants used in the m_type member to identify the type of data 
stored in the mbuf. Although we tend to think of an mbuf as containing user data that is sent or 
received, mbufs can contain a variety of different data structures. Recall in Figure 1.6 that an mbuf 
was used to hold a socket address structure with the destination address for the sendto system call. 
Its m_type member was set to MT_SONAME.



ptg11539634

37

Figure 2.10. Values for m_type member. 

Not all of the mbuf type values in Figure 2.10 are used in Net/3. Some are historical (MT_HTABLE),
and others are not used in the TCP/IP code but are used elsewhere in the kernel. For example, 
MT_OOBDATA is used by the OSI and XNS protocols, but TCP handles out-of-band data differently 
(as we describe in Section 29.7). We describe the use of other mbuf types when we encounter them 
later in the text. 

The final column of this figure shows the M_xxx values associated with the piece of memory allocated 
by the kernel for the different types of mbufs. There are about 60 possible M_xxx values assigned to 
the different types of memory allocated by the kernel's malloc function and MALLOC macro. 
Figure 2.6 showed the mbuf allocation statistics from the netstat -m command including the 
counters for each MT_xxx type. The vmstat -m command shows the kernel's memory allocation 
statistics including the counters for each M_xxx type. 

Since mbufs have a fixed size (128 bytes) there is a limit for what an mbuf can be 
used for—the data contents cannot exceed 108 bytes. Net/2 used an mbuf to hold a 
TCP protocol control block (which we cover in Chapter 24), using the mbuf type of 
MT_PCB. But 4.4BSD increased the size of this structure from 108 bytes to 140 
bytes, forcing the use of a different type of kernel memory allocation for the 
structure. 

Observant readers may have noticed that in Figure 2.10 we say that mbufs of type 
MT_PCB are not used, yet Figure 2.6 shows a nonzero counter for this type. The 
Unix domain protocols use this type of mbuf, and it is important to remember that the 
statistics are for mbuf usage across all protocol suites, not just the Internet protocols. 

2.5. Simple Mbuf Macros and Functions 

There are more than two dozen macros and functions that deal with mbufs (allocate an mbuf, free an 
mbuf, etc.). We look at the source code for only a few of the macros and functions, to show how 
they're implemented. 

Some operations are provided as both a macro and function. The macro version has an uppercase 
name that begins with M, and the function has a lowercase name that begins with m_. The 
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difference in the two is the standard time-versus-space tradeoff. The macro version is expanded inline 
by the C preprocessor each time it is used (requiring more code space), but it executes faster since it 
doesn't require a function call (which can be expensive on some architectures). The function version, 
on the other hand, becomes a few instructions each time it is invoked (push the arguments onto the 
stack, call the function, etc.), taking less code space but more execution time. 

m_get Function

We'll look first at the function that allocates an mbuf: m_get, shown in Figure 2.11. This function 
merely expands the macro MGET.

Figure 2.11. m_get function: allocate an mbuf. 

Notice that the Net/3 code does not use ANSI C argument declarations. All the Net/3 
system headers, however, do provide ANSI C function prototypes for all kernel 
functions, if an ANSI C compiler is being used. For example, the 
<sys/mbuf.h> header includes the line 

    struct  mbuf *m_get (int, int); 

These function prototypes provide compile-time checking of the arguments and 
return values whenever a kernel function is called. 

The caller specifies the nowait argument as either M_WAIT or M_DONTWAIT, depending 
whether it wants to wait if the memory is not available. As an example of the difference, when the 
socket layer asks for an mbuf to store the destination address of the sendto system call (Figure 1.6)
it specifies M_WAIT, since blocking at this point is OK. But when the Ethernet device driver asks 
for an mbuf to store a received frame (Figure 1.10) it specifies M_DONTWAIT, since it is executing 
as a device interrupt handler and cannot be put to sleep waiting for an mbuf. In this case it is better for 
the device driver to discard the Ethernet frame if the memory is not available. 

MGET Macro

Figure 2.12 shows the MGET macro. A call to MGET to allocate the mbuf to hold the destination 
address for the sendto system call (Figure 1.6) might look like 
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Figure 2.12. MGET macro. 

   MGET(m, M__WAIT, MT_SONAME); 
   if (m == NULL) 
       return(ENOBUFS); 

Even though the caller specifies M_WAIT, the return value must still be checked, since, as we'll see 
in Figure 2.13, waiting for an mbuf does not guarantee that one will be available. 

Figure 2.13. m_retry function. 

154-157

MGET first calls the kernel's MALLOC macro, which is the general-purpose kernel memory allocator. 
The array mbtypes converts the mbuf MT_xxx value into the corresponding M_xxx value (Figure 
2.10). If the memory can be allocated, the m_type member is set to the argument's value. 

158

The kernel structure that keeps mbuf statistics for each type of mbuf is incremented (mbstat). The 
macro MBUFLOCK changes the processor priority (Figure 1.13) while executing the statement 
specified as its argument, and then resets the priority to its previous value. This prevents network 
device interrupts from occurring while the statement mbstat.m_mtypes [type]++; is 
executing, because mbufs can be allocated at various layers within the kernel. Consider a system that 
implements the ++ operator in C using three steps: (1) load the current value into a register, (2) 
increment the register, and (3) store the register into memory. Assume the counter's value is 77 and 
MGET is executing at the socket layer. Assume steps 1 and 2 are executed (the register's value is 78) 
and a device interrupt occurs. If the device driver also executes MGET for the same type of mbuf, the 
value in memory is fetched (77), incremented (78), and stored back into memory. When step 3 of the 
interrupted execution of MGET resumes, it stores its register (78) into memory. But the counter should 
be 79, not 78, so the counter has been corrupted. 
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159-160

The two mbuf pointers, m_next and m_nextpkt, are set to null pointers. It is the caller's 
responsibility to add the mbuf to a chain or queue, if necessary. 

161-162

Finally the data pointer is set to point to the beginning of the 108-byte mbuf buffer and the flags are 
set to 0. 

163-164

If the call to the kernel's memory allocator fails, m_retry is called (Figure 2.13). The first 
argument is either M_WAIT or M_DONTWAIT.

m_retry Function

Figure 2.13 shows the m_retry function. 

92-97

The first function called by m_retry is m_reclaim. We'll see in Section 7.4 that each protocol 
can define a "drain" function to be called by m_reclaim when the system gets low on available 
memory. We'll also see in Figure 10.32 that when IP's drain function is called, all IP fragments 
waiting to be reassembled into IP datagrams are discarded. TCP's drain function does nothing and 
UDP doesn't even define a drain function. 

98-102

Since there's a chance that more memory might be available after the call to m_reclaim, the 
MGET macro is called again, to try to obtain the mbuf. Before expanding the MGET macro (Figure 
2.12), m_retry is defined to be a null pointer. This prevents an infinite loop if the memory still 
isn't available: the expansion of MGET will set m to this null pointer instead of calling the m_retry
function. After the expansion of MGET, this temporary definition of m_retry is undefined, in 
case there is another reference to MGET later in the source file. 

Mbuf Locking

In the functions and macros that we've looked at in this section, other than the call to MBUFLOCK in 
Figure 2.12, there are no calls to the spl functions to protect these functions and macros from being 
interrupted. What we haven't shown, however, is that the macro MALLOC contains an splimp at 
the beginning and an splx at the end. The macro MFREE contains the same protection. Mbufs are 
allocated and released at all layers within the kernel, so the kernel must protect the data structures that 
it uses for memory allocation. 

Additionally, the macros MCLALLOC and MCLFREE, which allocate and release an mbuf cluster, 
are surrounded by an splimp and an splx, since they modify a linked list of available clusters. 

Since the memory allocation and release macros along with the cluster allocation and release macros 
are protected from interrupts, we normally do not encounter calls to the spl functions around macros 
and functions such as MGET and m_get.
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2.6. m_devget and m_pullup Functions 

We encounter the m_pullup function when we show the code for IP, ICMP, IGMP, UDP, and 
TCP. It is called to guarantee that the specified number of bytes (the size of the corresponding 
protocol header) are contiguous in the first mbuf of a chain; otherwise the specified number of bytes 
are copied to a new mbuf and made contiguous. To understand the usage of m_pullup we must 
describe its implementation and its interaction with both the m_devget function and the mtod
and dtom macros. This description also provides additional insight into the usage of mbufs in Net/3. 

m_devget Function

When an Ethernet frame is received, the device driver calls the function m_devget to create an 
mbuf chain and copy the frame from the device into the chain. Depending on the length of the 
received frame (excluding the Ethernet header), there are four different possibilities for the resulting 
mbuf chain. The first two possibilities are shown in Figure 2.14.

Figure 2.14. First two types of mbufs created by m_devget.

1. The left mbuf in Figure 2.14 is used when the amount of data is between 0 and 84 bytes. In 
this figure we assume there are 52 bytes of data: a 20-byte IP header and a 32-byte TCP 
header (the standard 20-byte TCP header plus 12 bytes of TCP options) but no TCP data. 
Since the data in the mbuf returned by m_devget starts with the IP header, the realistic 
minimum value for m_len is 28: 20 bytes for an IP header, 8 bytes for a UDP header, and a 
0-length UDP datagram. 

m_devget leaves 16 bytes unused at the beginning of the mbuf. Although the 14-byte 
Ethernet header is not stored here, room is allocated for a 14-byte Ethernet header on output, 
should the same mbuf be used for output. We'll encounter two functions that generate a 
response by using the received mbuf as the outgoing mbuf: icmp_reflect and 
tcp_respond. In both cases the size of the received datagram is normally less than 84 
bytes, so it costs nothing to leave room for 16 bytes at the front, which saves time when 
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building the outgoing datagram. The reason 16 bytes are allocated, and not 14, is to have the 
IP header longword aligned in the mbuf. 

2. If the amount of data is between 85 and 100 bytes, the data still fits in a packet header mbuf, 
but there is no room for the 16 bytes at the beginning. The data starts at the beginning of the 
m_pktdat array and any unused space is at the end of this array. The mbuf on the right in 
Figure 2.14 shows this example, assuming 85 bytes of data. 

3. Figure 2.15 shows the third type of mbuf created by m_devget. Two mbufs are required 
when the amount of data is between 101 and 207 bytes. The first 100 bytes are stored in the 
first mbuf (the one with the packet header), and the remainder are stored in the second mbuf. 
In this example we show a 104-byte datagram. No attempt is made to leave 16 bytes at the 
beginning of the first mbuf. 

Figure 2.15. Third type of mbuf created by m_devget.

4. Figure 2.16 shows the fourth type of mbuf created by m_devget. If the amount of data is 
greater than or equal to 208 (MINCLBYTES), one or more clusters are used. The example in 
the figure assumes a 1500-byte Ethernet frame with 2048-byte clusters. If 1024-byte clusters 
are in use, this example would require two mbufs, each with the M_EXT flag set, and each 
pointing to a cluster. 
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Figure 2.16. Fourth type of mbuf created by m_devget.

mtod and dtom Macros

The two macros mtod and dtom are also defined in mbuf.h. They simplify complex mbuf 
structure expressions. 

   #define mtod(m,t)   ((t)((m)->m_data)) 
   #define dtom(x)     ((struct mbuf *)((int)(x) & ~(MSIZE-
1)))

mtod ("mbuf-to-data") returns a pointer to the data associated with an mbuf, and casts the pointer to 
a specified type. For example, the code 

    struct mbuf *m; 
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    struct ip *ip; 

    ip = mtod(m, struct ip *); 
    ip->ip_v = IPVERSION; 

stores in ip the data pointer of the mbuf (m_data). The type cast is required by the C compiler and 
the code then references the IP header using the pointer ip. We see this macro used when a C 
structure (often a protocol header) is stored in an mbuf. This macro works if the data is stored in the 
mbuf itself (Figures 2.14 and 2.15) or if the data is stored in a cluster (Figure 2.16).

The macro dtom ("data-to-mbuf") takes a pointer to data anywhere within the data portion of the 
mbuf and returns a pointer to the mbuf structure itself. For example, if we know that ip points 
within the data area of an mbuf, the sequence 

    struct mbuf *m; 
    struct ip *ip; 

    m = dtom(ip); 

stores the pointer to the beginning of the mbuf in m. By knowing that MSIZE (128) is a power of 2, 
and that mbufs are always aligned by the kernel's memory allocator on MSIZE byte blocks of 
memory, dtom just clears the appropriate low-order bits in its argument pointer to find the beginning 
of the mbuf. 

There is a problem with dtom: it doesn't work if its argument points to a cluster, or within a cluster, 
as in Figure 2.16. Since there is no pointer from the cluster back to the mbuf structure, dtom cannot 
be used. This leads to the next function, m_pullup.

m_pullup Function and Contiguous Protocol Headers

The m_pullup function has two purposes. The first is when one of the protocols (IP, ICMP, 
IGMP, UDP, or TCP) finds that the amount of data in the first mbuf (m_len) is less than the size of 
the minimum protocol header (e.g., 20 for IP, 8 for UDP, 20 for TCP). m_pullup is called on the 
assumption that the remaining part of the header is in the next mbuf on the chain. m_pullup
rearranges the mbuf chain so that the first N bytes of data are contiguous in the first mbuf on the chain. 
N is an argument to the function that must be less than or equal to 100 (MHLEN). If the first N bytes 
are contiguous in the first mbuf, then both of the macros mtod and dtom will work. 

For example, we'll encounter the following code in the IP input routine: 

     if (m->m_len < sizeof(struct ip) && 
         (m = m_pullup(m, sizeof(struct ip))) == 0)  { 
             ipstat.ips_toosmall++; 
             goto next; 
     } 
     ip = mtod(m, struct ip *); 

If the amount of data in the first mbuf is less than 20 (the size of the standard IP header), 
m__pullup is called. m_pullup can fail for two reasons: (1) if it needs another mbuf and its 
call to MGET fails, or (2) if the total amount of data in the mbuf chain is less than the requested 
number of contiguous bytes (what we called N, which in this case is 20). The second reason is the 
most common cause of failure. In this example, if m__pullup fails, an IP counter is incremented 
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and the IP datagram is discarded. Notice that this code assumes the reason for failure is that the 
amount of data in the mbuf chain is less than 20 bytes. 

In actuality, m_pullup is rarely called in this scenario (notice that C's && operator only calls it 
when the mbuf length is smaller than expected) and when it is called, it normally fails. The reason can 
be seen by looking at Figure 2.14 through Figure 2.16: there is room in the first mbuf, or in the cluster, 
for at least 100 contiguous bytes, starting with the IP header. This allows for the maximum IP header 
of 60 bytes followed by 40 bytes of TCP header. (The other protocols—ICMP, IGMP, and UDP—
have headers smaller than 40 bytes.) If the data bytes are available in the mbuf chain (the packet is not 
smaller than the minimum required by the protocol), then the required number of bytes should always 
be contiguous in the first mbuf. But if the received packet is too short (m_len is less than the 
expected minimum), then m_pullup is called and it returns an error, since the required amount of 
data is not available in the mbuf chain. 

Berkeley-derived kernels maintain a variable named MPFail that is incremented 
each time m_pullup fails. On a Net/3 system that had received over 27 million IP 
datagrams, MPFail was 9. The counter ipstat.ips_toosmall was also 9 
and all the other protocol counters (i.e., ICMP, IGMP, UDP, and TCP) following a 
failure of m_pullup were 0. This confirms our statement that most failures of 
m_pullup are because the received IP datagram was too small. 

m_pullup and IP Fragmentation and Reassembly

The second use of m_pullup concerns IP reassembly and TCP reassembly. Assume IP receives a 
packet of length 296, which is a fragment of a larger IP datagram. The mbuf passed from the device 
driver to IP input looks like the one we showed in Figure 2.16: the 296 bytes of data are stored in a 
cluster. We show this in Figure 2.17.
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Figure 2.17. An IP fragment of length 296. 

The problem is that the IP fragmentation algorithm keeps the individual fragments on a doubly linked 
list, using the source and destination IP address fields in the IP header to hold the forward and 
backward list pointers. (These two IP addresses are saved, of course, in the head of the list, since they 
must be put back into the reassembled datagram. We describe this in Chapter 10.) But if the IP header 
is in a cluster, as shown in Figure 2.17, these linked list pointers would be in the cluster, and when the 
list is traversed at some later time, the pointer to the IP header (i.e., the pointer to the beginning of the 
cluster) could not be converted into the pointer to the mbuf. This is the problem we mentioned earlier 
in this section: the dtom macro cannot be used if m_data points into a cluster, because there is no 
back pointer from the cluster to the mbuf. IP fragmentation cannot store the links in the cluster as 
shown in Figure 2.17.
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To solve this problem the IP fragmentation routine always calls m__pullup when a fragment is 
received, if the fragment is contained in a cluster. This forces the 20-byte IP header into its own mbuf. 
The code looks like 

    if (m->m_flags & M_EXT) { 
        if ((m = m_pullup (m, sizeof (struct ip))) == 0)  { 
            ipstat.ips_toosmall++; 
            goto next; 
        } 
        ip = mtod(m, struct ip *); 
    } 

Figure 2.18 shows the resulting mbuf chain, after m__pullup is called. m_pullup allocates a 
new mbuf, prepends it to the chain, and moves the first 40 bytes of data from the cluster into the new 
mbuf. The reason it moves 40 bytes, and not just the requested 20, is to try to save an additional call at 
a later time when IP passes the datagram to a higher-layer protocol (e.g., ICMP, IGMP, UDP, or 
TCP). The magic number 40 (max_protohdr in Figure 7.17) is because the largest protocol 
header normally encountered is the combination of a 20-byte IP header and a 20-byte TCP header. 
(This assumes that other protocol suites, such as the OSI protocols, are not compiled into the kernel.) 

Figure 2.18. An IP fragment of length 296, after calling m_pullup.

In Figure 2.18 the IP fragmentation algorithm can save a pointer to the IP header contained in the 
mbuf on the left, and this pointer can be converted into a pointer to the mbuf itself using dtom at a 
later time. 
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Avoidance of m_pullup by TCP Reassembly

The reassembly of TCP segments uses a different technique to avoid calling m_pullup. This is 
because m_pullup is expensive: memory is allocated and data is copied from a cluster to an 
mbuf.TCP tries to avoid data copying whenever possible. 

Chapter 19 of Volume 1 mentions that about one-half of TCP data is bulk data (often 512 or more 
bytes of data per segment) and the other half is interactive data (of which about 90% of the segments 
contain less than 10 bytes of data). Hence, when TCP receives segments from IP they are usually in 
the format shown on the left of Figure 2.14 (a small amount of interactive data, stored in the mbuf 
itself) or in the format shown in Figure 2.16 (bulk data, stored in a cluster). When TCP segments 
arrive out of order, they are stored on a doubly linked list by TCP. As with IP fragmentation, fields in 
the IP header are used to hold the list pointers, which is OK since these fields are no longer needed 
once the IP datagram is accepted by TCP. But the same problem arises with the conversion of a list 
pointer into the corresponding mbuf pointer, when the IP header is stored in a cluster (Figure 2.17).

To solve the problem, we'll see in Section 27.9 that TCP stores the mbuf pointer in some unused fields 
in the TCP header, providing a back pointer of its own from the cluster to the mbuf, just to avoid 
calling m_pullup for every out-of-order segment. If the IP header is contained in the data portion 
of the mbuf (Figure 2.18), then this back pointer is superfluous, since the dtom macro would work 
on the list pointer. But if the IP header is contained in a cluster, this back pointer is required. We'll 
examine the source code that implements this technique when we describe tcp_reass in Section
27.9.

Summary of m_pullup Usage

We've described three main points about m_pullup.

Most device drivers do not split the first portion of an IP datagram between mbufs. Therefore 
the possible calls to m_pullup that we'll encounter in every protocol (IP, ICMP, IGMP, 
UDP, and TCP), just to assure that the protocol header is stored contiguously, rarely take 
place. When these calls to m_pullup do occur, it is normally because the IP datagram is 
too small, in which case m_pullup returns an error, the datagram is discarded, and an 
error counter is incremented. 
m_pullup is called for every received IP fragment, when the IP fragment is stored in a 
cluster. This means that m_pullup is called for almost every received fragment, since the 
length of most fragments is greater than 208 bytes. 
As long as TCP segments are not fragmented by IP, the receipt of a TCP segment, whether it 
be in order or out of order, should not invoke m_pullup. This is one reason to avoid IP 
fragmentation with TCP. 

2.7. Summary of Mbuf Macros and Functions 

Figure 2.19 lists the macros and Figure 2.20 lists the functions that we'll encounter in the code that 
operates on mbufs. The macros in Figure 2.19 are shown as function prototypes, not as #define
statements, to show the data types of the arguments. We will not go through the source code 
implementation of these routines since they are concerned primarily with manipulating the mbuf data 
structures and involve no networking issues. Also, there are additional mbuf macros and functions 
used elsewhere in the Net/3 sources that we don't show in these two figures since we won't encounter 
them in the text. 
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Figure 2.19. Mbuf macros that we'll encounter in the text. 
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Figure 2.20. Mbuf functions that we'll encounter in the text. 

In all the prototypes the argument nowait is either M_WAIT or M_DONTWAIT, and the argument 
type is one of the MT_xxx constants shown in Figure 2.10.

As an example of M_PREPEND, this macro was called when the IP and UDP headers were 
prepended to the user's data in the transition from Figure 1.7 to Figure 1.8, causing another mbuf to be 
allocated. But when this macro was called again (in the transition from Figure 1.8 to Figure 2.2) to 
prepend the Ethernet header, room already existed in the mbuf for the headers. 

The data type of the last argument for m_copydata is caddr_t, which stands 
for "core address." This data type is normally defined in <sys/types.h> to be 
a char *. It was originally used internally by the kernel, but got externalized 
when used by certain system calls. For example, the mmap system call, in both 
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4.4BSD and SVR4, uses caddr_t as the type of the first argument and as the 
return value type. 

2.8. Summary of Net/3 Networking Data Structures 

This section summarizes the types of data structures we'll encounter in the Net/3 networking code. 
Other data structures are used in the Net/3 kernel (interested readers should examine the 
<sys/queue.h> header), but the following are the ones we'll encounter in this text. 

1. An mbuf chain: a list of mbufs, linked through the m_next pointer. We've seen numerous 
examples of these already. 

2. A linked list of mbuf chains with a head pointer only. The mbuf chains are linked using the 
m_nextpkt pointer in the first mbuf of each chain. 

Figure 2.21 shows this type of list. Examples of this data structure are a socket's send buffer 
and receive buffer. 

Figure 2.21. Linked list of mbuf chains with head pointer only. 

The top two mbufs form the first record on the queue, and the three mbufs on the bottom form 
the second record on the queue. For a record-based protocol, such as UDP, we can encounter 
multiple records per queue, but for a protocol such as TCP that has no record boundaries, 
we'll find only a single record (one mbuf chain possibly consisting of multiple mbufs) per 
queue. 

To append an mbuf to the first record on the queue requires going through all the mbufs 
comprising the first record, until the one with a null m_next pointer is encountered. To 
append an mbuf chain comprising a new record to the queue requires going through all the 
records until the one with a null m_nextpkt pointer is encountered. 

3. A linked list of mbuf chains with head and tail pointers. 

Figure 2.22 shows this type of list. We encounter this with the interface queues (Figure 3.13),
and showed an earlier example in Figure 2.2.
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Figure 2.22. Linked list with head and tail pointers. 

The only change in this figure from Figure 2.21 is the addition of a tail pointer, to simplify 
the addition of new records. 

4. A doubly linked, circular list. 

Figure 2.23 shows this type of list, which we encounter with IP fragmentation and reassembly 
(Chapter 10), protocol control blocks (Chapter 22), and TCP's out-of-order segment queue 
(Section 27.9). 

Figure 2.23. Doubly linked, circular list. 

The elements in the list are not mbufs—they are structures of some type that are defined with 
two consecutive pointers: a next pointer followed by a previous pointer. Both pointers must 
appear at the beginning of the structure. If the list is empty, both the next and previous 
pointers of the head entry point to the head entry. 

For simplicity in the figure we show the back pointers pointing at another back pointer. 
Obviously all the pointers contain the address of the structure pointed to, that is the address of 
a forward pointer (since the forward and backward pointer are always at the beginning of the 
structure). 

This type of data structure allows easy traversal either forward or backward, and allows easy 
insertion or deletion at any point in the list. 

The functions insque and remque (Figure 10.20) are called to insert and delete 
elements in the list. 
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2.9. m_copy and Cluster Reference Counts 

One obvious advantage with clusters is being able to reduce the number of mbufs required to contain 
large amounts of data. For example, if clusters were not used, it would require 10 mbufs to contain 
1024 bytes of data: the first one with 100 bytes of data, the next eight with 108 bytes of data each, and 
the final one with 60 bytes of data. There is more overhead involved in allocating and linking 10 
mbufs, than there is in allocating a single mbuf containing the 1024 bytes in a cluster. A disadvantage 
with clusters is the potential for wasted space. In our example it takes 2176 bytes using a cluster (2048 
+128), versus 1280 bytes without a cluster (10 x 128). 

An additional advantage with clusters is being able to share a cluster between multiple mbufs. We 
encounter this with TCP output and the m_copy function, but describe it in more detail now. 

As an example, assume the application performs a write of 4096 bytes to a TCP socket. Assuming 
the socket's send buffer was previously empty, and that the receiver's window is at least 4096, the 
following operations take place. One cluster is filled with the first 2048 bytes by the socket layer and 
the protocol's send routine is called. The TCP send routine appends the mbuf to its send buffer, as 
shown in Figure 2.24, and calls tcp_output.

Figure 2.24. TCP socket send buffer containing 2048 bytes of data. 

The socket structure contains the sockbuf structure, which holds the head of the list of mbufs 
on the send buffer: so_snd.sb_mb.
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Assuming a TCP maximum segment size (MSS) of 1460 for this connection (typical for an Ethernet), 
tcp_output builds a segment to send containing the first 1460 bytes of data. It also builds an 
mbuf containing the IP and TCP headers, leaves room for a link-layer header (16 bytes), and passes 
this mbuf chain to IP output. The mbuf chain ends up on the interface's output queue, which we show 
in Figure 2.25.

Figure 2.25. TCP socket send buffer and resulting segment on interface's output queue. 

In our UDP example in Section 1.9, UDP took the mbuf chain containing the datagram, prepended an 
mbuf for the protocol headers, and passed the chain to IP output. UDP did not keep the mbuf in its 
send buffer. TCP cannot do this since TCP is a reliable protocol and it must maintain a copy of the 
data that it sends, until the data is acknowledged by the other end. 

In this example tcp_output calls the function m_copy, requesting a copy be made of 1460 
bytes, starting at offset 0 from the start of its send buffer. But since the data is in a cluster, m_copy
creates an mbuf (the one on the lower right of Figure 2.25) and initializes it to point to the correct 
place in the existing cluster (the beginning of the cluster in this example). The length of this mbuf is 
1460, even though an additional 588 bytes of data are in the cluster. We show the length of the mbuf 
chain as 1514, accounting for the Ethernet, IP, and TCP headers. 
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We also show this mbuf on the lower right of Figure 2.25 containing a packet header, 
yet this isn't the first mbuf in the chain. When m_copy makes a copy of an mbuf 
that contains a packet header and the copy starts from offset 0 in the original mbuf, 
the packet header is also copied verbatim. Since this mbuf is not the first mbuf in the 
chain, this extraneous packet header is just ignored. The m_pkthdr.len value 
of 2048 in this extraneous packet header is also ignored. 

This sharing of clusters prevents the kernel from copying the data from one mbuf into another—a big 
savings. It is implemented by providing a reference count for each cluster that is incremented each 
time another mbuf points to the cluster, and decremented each time a cluster is released. Only when 
the reference count reaches 0 is the memory used by the cluster available for some other use. (See 
Exercise 2.4.) 

For example, when the bottom mbuf chain in Figure 2.25 reaches the Ethernet device driver and its 
contents have been copied to the device, the driver calls m_freem. This function releases the first 
mbuf with the protocol headers and then notices that the second mbuf in the chain points to a cluster. 
The cluster reference count is decremented, but since its value becomes 1, it is left alone. It cannot be 
released since it is still in the TCP send buffer. 

Continuing our example, tcp_output returns after passing the 1460-byte segment to IP, since the 
remaining 588 bytes in the send buffer don't comprise a full-sized segment. (In Chapter 26 we 
describe in detail the conditions under which tcp_output sends data.) The socket layer continues 
processing the data from the application: the remaining 2048 bytes are placed into an mbuf with a 
cluster, TCP's send routine is called again, and this new mbuf is appended to the socket's send buffer. 
Since a full-sized segment can be sent, tcp_output builds another mbuf chain with the protocol 
headers and the next 1460 bytes of data. The arguments to m_copy specify a starting offset of 1460 
bytes from the start of the send buffer and a length of 1460 bytes. This is shown in Figure 2.26,
assuming the mbuf chain is again on the interface output queue (so the length of the first mbuf in the 
chain reflects the Ethernet, IP, and TCP headers). 
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Figure 2.26. Mbuf chain to send next 1460-byte TCP segment. 

This time the 1460 bytes of data come from two clusters: the first 588 bytes are from the first cluster 
in the send buffer and the next 872 bytes are from the second cluster in the send buffer. It takes two 
mbufs to describe these 1460 bytes, but again m_copy does not copy the 1460 bytes of data—it 
references the existing clusters. 

This time we do not show a packet header with either of the mbufs on the bottom 
right of Figure 2.26. The reason is that the starting offset in the call to m_copy is 
nonzero. Also, we show the second mbuf in the socket send buffer containing a 
packet header, even though it is not the first mbuf in the chain. This is a property of 
the sosend function, and this extraneous packet header is just ignored. 

We encounter the m_copy function about a dozen times throughout the text. Although the name 
implies that a physical copy is made of the data, if the data is contained in a cluster, an additional 
reference is made to the cluster instead. 
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2.10. Alternatives 

Mbufs are far from perfect and they are berated regularly. Nevertheless, they form the basis for all the 
Berkeley-derived networking code in use today. 

A research implementation of the Internet protocols by Van Jacobson [Partridge 1993] has done away 
with the complex mbuf data structures in favor of large contiguous buffers. [Jacobson 1993] claims a 
speed improvement of one to two orders of magnitude, although many other changes were made 
besides getting rid of mbufs. 

The complexity of mbufs is a tradeoff that avoids allocating large fixed buffers that are rarely filled to 
capacity. At the time mbufs were being designed, a VAX-11/780 with 4 megabytes of memory was a 
big system, and memory was an expensive resource that needed to be carefully allocated. Today 
memory is inexpensive, and the focus has shifted toward higher performance and simplicity of code. 

The performance of mbufs is also dependent on the amount of data stored in the mbuf. [Hutchinson 
and Peterson 1991] show that the amount of time required for mbuf processing is nonlinear with 
respect to the amount of data. 

2.11. Summary 

We'll encounter mbufs in almost every function in the text. Their main purpose is to hold the user data 
that travels from the process to the network interface, and vice versa, but mbufs are also used to 
contain a variety of other miscellaneous data: source and destination addresses, socket options, and so 
on.

There are four types of mbufs, depending whether the M_PKTHDR and M_EXT flags are on or off: 

no packet header, with 0 to 108 bytes of data in mbuf itself, 
packet header, with 0 to 100 bytes of data in mbuf itself, 
no packet header, with data in cluster (external buffer), and 
packet header, with data in cluster (external buffer). 

We looked at the source code for a few of the mbuf macros and functions, but did not present the 
source code for all the mbuf routines. Figures 2.19 and 2.20 provide the function prototypes and 
descriptions of all the mbuf routines that we encounter in the text. 

We looked at the operation of two functions that we'll encounter: m_devget, which is called by 
many network device drivers to store a received frame; and m_pullup, which is called by all the 
input routines to place the required protocol headers into contiguous storage in an mbuf. 

The clusters (external buffers) pointed to by an mbuf can be shared by m_copy. This is used, for 
example, by TCP output, because a copy of the data being transmitted must be maintained by the 
sender until that data is acknowledged by the other end. Sharing clusters through reference counts is a 
performance improvement over making a physical copy of the data. 

Exercises

2.1 In Figure 2.9 the M_COPYFLAGS value was defined. Why was the M_EXT flag not 
copied? 

2.2 In Section 2.6 we listed two reasons that m_pullup can fail. There are really three 
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reasons. Obtain the source code for this function (Appendix B) and discover the additional 
reason.

2.3 To avoid the problems we described in Section 2.6 with the dtom macro when the data is 
in a cluster, why not just add a back pointer to the mbuf for each cluster? 

2.4 Since the size of an mbuf cluster is a power of 2 (typically 1024 or 2048), space cannot be 
taken within the cluster for the reference count. Obtain the Net/3 sources (Appendix B) 
and determine where these reference counts are stored. 

2.5 In Figure 2.5 we noted that the two counters m_drops and m_wait are not currently 
implemented. Modify the mbuf routines to increment these counters when appropriate. 
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Chapter 3. Interface Layer 

3.1. Introduction 

This chapter starts our discussion of Net/3 at the bottom of the protocol stack with the interface layer, 
which includes the hardware and software that sends and receives packets on locally attached 
networks. 

We use the term device driver to refer to the software that communicates with the hardware and 
network interface (or just interface) for the hardware and device driver for a particular network. 

The Net/3 interface layer attempts to provide a hardware-independent programming interface between 
the network protocols and the drivers for the network devices connected to a system. The interface 
layer supports provides for all devices: 

a well-defined set of interface functions, 
a standard set of statistics and control flags, 
a device-independent method of storing protocol addresses, and 
a standard queueing method for outgoing packets. 

There is no requirement that the interface layer provide reliable delivery of packets, only a best-effort 
service is required. Higher protocol layers must compensate for this lack of reliability. This chapter 
describes the generic data structures maintained for all network interfaces. To illustrate the relevant 
data structures and algorithms, we refer to three particular network interfaces from Net/3: 

1. An AMD 7990 LANCE Ethernet interface: an example of a broadcast-capable local area 
network. 

2. A Serial Line IP (SLIP) interface: an example of a point-to-point network running over 
asynchronous serial lines. 

3. A loopback interface: a logical network that returns all outgoing packets as input packets. 

3.2. Code Introduction 

The generic interface structures and initialization code are found in three headers and two C files. The 
device-specific initialization code described in this chapter is found in three different C files. All eight 
files are listed in Figure 3.1.

Figure 3.1. Files discussed in this chapter.
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Global Variables

The global variables introduced in this chapter are described in Figure 3.2.

Figure 3.2. Global variables introduced in this chapter.

SNMP Variables

The Net/3 kernel collects a wide variety of networking statistics. In most chapters we summarize the 
statistics and show how they relate to the standard TCP/IP information and statistics defined in the 
Simple Network Management Protocol Management Information Base (SNMP MIB-II). RFC 1213 
[McCloghrie and Rose 1991] describe SNMP MIB-II, which is organized into 10 distinct information 
groups shown in Figure 3.3.

Figure 3.3. SNMP groups in MIB-II.

Net/3 does not include an SNMP agent. Instead, an SNMP agent for Net/3 is implemented as a process 
that accesses the kernel statistics in response to SNMP queries through the mechanism described in 
Section 2.2.

While most of the MIB-II variables are collected by Net/3 and may be accessed directly by an SNMP 
agent, others must be derived indirectly. MIB-II variables fall into three categories: (1) simple 
variables such  an integer value, a timestamp, or a byte string; (2) lists of simple variables such as an 
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individual routing entry or an interface description entry; and (3) lists of lists such as the entire routing 
table and the list of all interface entries. 

The ISODE package includes a sample SNMP agent for Net/3. See Appendix B for 
information about ISODE. 

Figure 3.4 shows the one simple variable maintained for the SNMP interface group. We describe the 
SNMP interface table later in Figure 4.7.

Figure 3.4. Simple SNMP variable in the interface group.

3.3. ifnet Structure 

The ifnet structure contains information common to all interfaces. During system initialization, a 
separate ifnet structure is allocated for each network device. Every ifnet structure has a list of 
one or more protocol addresses associated with it. Figure 3.5 illustrates the relationship between an 
interface and its addresses. 

Figure 3.5. Each ifnet structure has a list of associated ifaddr structures.

The interface in Figure 3.5 is shown with three protocol addresses stored in ifaddr structures. 
Although some network interfaces, such as SLIP, support only a single protocol, others, such as 
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Ethernet, support multiple protocols and need multiple addresses. For example, a system may use a 
single Ethernet interface for both Internet and OSI protocols. A type field identifies the contents of 
each Ethernet frame, and since the Internet and OSI protocols employ different addressing schemes, 
the Ethernet interface must have an Internet address and an OSI address. All the addresses are 
connected by a linked list (the arrows on the right of Figure 3.5), and each contains a back pointer to 
the related ifnet structure (the arrows on the left of Figure 3.5).

It is also possible for a single network interface to support multiple addresses within a single protocol. 
For example, two Internet addresses may be assigned to a single Ethernet interface in Net/3. 

This feature first appeared in Net/2. Having two IP addresses for an interface is 
useful when renumbering a network. During a transition period, the interface can 
accept packets addressed to the old and new addresses. 

The ifnet structure is large so we describe it in five sections: 

implementation information, 
hardware information, 
interface statistics, 
function pointers, and 
the output queue. 

Figure 3.6 shows the implementation information contained in the ifnet structure. 

Figure 3.6. ifnet structure: implementation information.

80-82

if_next joins the ifnet structures for all the interfaces into a linked list. The if_attach
function constructs the list during system initialization. if_addrlist points to the list of 
ifaddr structures for the interface (Figure 3.16). Each ifaddr structure holds addressing 
information for a protocol that expects to communicate through the interface. 

Common interface information

83-86

if_name is a short string that identifies the interface type, and if_unit identifies multiple 
instances of the same type. For example, if a system had two SLIP interfaces, both would have an 
if_name consisting of the 2 bytes "s1" and an if_unit of 0 for the first interface and 1 for 
the second. if_index uniquely identifies the interface within the kernel and is used by the 
sysctl system call (Section 19.14) as well as in the routing domain. 
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Sometimes an interface is not uniquely identified by a protocol address. For example, 
several SLIP connections can have the same local IP address. In these cases, 
if_index specifies the interface explicitly. 

if_flags specifies the operational state and properties of the interface. A process can examine all 
the flags but cannot change the flags marked in the "Kernel only" column in Figure 3.7. The flags are 
accessed with the SIOCGIFFLAGS and SIOCSIFFLAGS commands described in Section 4.4.

Figure 3.7. if_flags values.

The IFF_BROADCAST and IFF_POINTOPOINT flags are mutually 
exclusive. 

The macro IFF_CANTCHANGE is a bitwise OR of all the flags in the "Kernel 
only" column. 

The device-specific flags (IFF_LINKx) may or may not be modifiable by a 
process depending on the device. For example, Figure 3.29 shows how these flags 
are defined by the SLIP driver. 

Interface timer

87

if_timer is the time in seconds until the kernel calls the if_watchdog function for the 
interface. This function may be used by the device driver to collect interface statistics at regular 
intervals or to reset hardware that isn't operating correctly. 
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BSD Packet Filter

88-89

The next two members, if_pcount and if_bpf, support the BSD Packet Filter (BPF). 
Through BPF, a process can receive copies of packets transmitted or received by an interface. As we 
discuss the device drivers, we also describe how packets are passed to BPF. BPF itself is described in 
Chapter 31.

The next section of the ifnet structure, shown in Figure 3.8, describes the hardware characteristics 
of the interface. 

Figure 3.8. ifnet structure: interface characteristics.

Net/3 and this text use the short names provided by the #define statements on 
lines 138 through 143 to specify the ifnet members. 

Interface characteristics

90-92

if_type specifies the hardware address type supported by the interface. Figure 3.9 lists several 
common values from net/if_types.h.
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Figure 3.9. if_type: data-link types.

93-94

if_addrlen is the length of the datalink address and if_hdrlen is the length of the header 
attached to any outgoing packet by the hardware. An Ethernet network, for example, has an address 
length of 6 bytes and a header length of 14 bytes (Figure 4.8).

95

if_mtu is the maximum transmission unit of the interface: the size in bytes of the largest unit of 
data that the interface can transmit in a single output operation. This is an important parameter that 
controls the size of packets created by the network and transport protocols. For Ethernet, the value is 
1500. 

96-97

if_metric is usually 0; a higher value makes routes through the interface less favorable. 
if_baudrate specifies the transmission speed of the interface. It is set only by the SLIP 
interface. 

Interface statistics are collected by the next group of members in the ifnet structure shown in 
Figure 3.10.
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Figure 3.10. ifnet structure: interface statistics.

Once again, Net/3 and this text use the short names provided by the #define
statements on lines 144 through 155 to specify the ifnet members. 

Interface statistics

98-111

Most of these statistics are self-explanatory. if_collisions is incremented when packet 
transmission is interrupted by another transmission on shared media such as Ethernet. 
if_noproto counts the number of packets that can't be processed because the protocol is not 
supported by the system or the interface (e.g., an OSI packet that arrives at a system that supports only 
IP). The SLIP interface increments if_noproto if a non-IP packet is placed on its output queue. 

These statistics were not part of the ifnet structure in Net/1. They were added to 
support the standard SNMP MIB-II variables for interfaces. 

if_iqdrops is accessed only by the SLIP device driver. SLIP and the other 
network drivers increment if_snd.ifq_drops (Figure 3.13) when 
IF_DROP is called. ifq_drops was already in the BSD software when the 
SNMP statistics were added. The ISODE SNMP agent ignores if_iqdrops and 
uses ifsnd.ifq_drops.
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Change timestamp

112-113

if_lastchange records the last time any of the statistics were changed. 

The next section of the ifnet structure, shown in Figure 3.11, contains pointers to the standard 
interface-layer functions, which isolate device-specific details from the network layer. Each network 
interface implements these functions as appropriate for the particular device. 

Figure 3.11. ifnet structure: interface procedures.

Interface functions

114-129

Each device driver initializes its own ifnet structure, including the seven function pointers, at 
system initialization time. Figure 3.12 describes the generic functions. 

Figure 3.12. ifnet structure: function pointers.
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We will see the comment /* XXX */ throughout Net/3. It is a warning to the 
reader that the code is obscure, contains nonobvious side effects, or is quick solution 
to a more difficult problem. In this case, it indicates that if_done is not used in 
Net/3.

In Chapter 4 we look at the device-specific functions for the Ethernet, SLIP, and loopback interfaces, 
which the kernel calls indirectly through the pointers in the ifnet structure. For example, if ifp
points to an ifnet structure,  

    (*ifp->if_start)(ifp) 

calls the if_start function of the device driver associated with the interface. 

The remaining member of the ifnet structure is the output queue for the interface and is shown in 
Figure 3.13.

Figure 3.13. ifnet structure: the output queue.

130-137

if_snd is the queue of outgoing packets for the interface. Each interface has its own ifnet
structure and therefore its own output queue. ifq_head points to the first packet on the queue (the 
next one to be output), ifq_tail points to the last packet on the queue, if_len is the number 
of packets currently on the queue, and ifq_maxlen is the maximum number of buffers allowed 
on the queue. This maximum is set to 50 (from the global integer ifqmaxlen, which is initialized 
at compile time from IFQ_MAXLEN) unless the driver changes it. The queue is implemented as a 
linked list of mbuf chains. ifq_drops counts the number of packets discarded because the queue 
was full. Figure 3.14 lists the macros and functions that access a queue. 
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Figure 3.14. ifqueue routines.

The first five routines are macros defined in net/if.h and the last routine, if_qflush, is a 
function defined in net/if.c. The macros often appear in sequences such as: 

   s = splimp(); 
   if (IF_QFULL(inq))  { 
       IF_DROP(inq);        /* queue is full, drop new 
packet */ 
       m_freem(m); 
   } else 
       IF_ENQUEUE(inq, m);  /* there is room, add to end of 
queue */ 
   splx(s); 

This code fragment attempts to add a packet to the queue. If the queue is full, IF_DROP increments 
ifq_drops and the packet is discarded. Reliable protocols such as TCP will retransmit discarded 
packets. Applications using an unreliable protocol such as UDP must detect and handle the 
retransmission on their own. 

Access to the queue is bracketed by splimp and splx to block network interrupts and to prevent 
the network interrupt service routines from accessing the queue while it is in an indeterminate state. 

m_freem is called before splx because the mbuf code has a critical section that 
runs at splimp. It would be wasted effort to call splx before m_freem only 
to enter another critical section during m_freem (Section 2.5).
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3.4. ifaddr Structure 

The next structure we look at is the interface address structure, ifaddr, shown in Figure 3.15.
Each interface maintains a linked list of ifaddr structures because some data links, such as 
Ethernet, support more than one protocol. A separate ifaddr structure describes each address 
assigned to the interface, usually one address per protocol. Another reason to support multiple 
addresses is that many protocols, including TCP/IP, support multiple addresses assigned to a single 
physical interface. Although Net/3 supports this feature, many implementations of TCP/IP do not. 

Figure 3.15. ifaddr structure.

217-219

The ifaddr structure links all addresses assigned to an interface together by ifa_next and 
contains a pointer, ifa_ifp, back to the interface's ifnet structure. Figure 3.16 shows the 
relationship between the ifnet structures and the ifaddr structures. 
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Figure 3.16. ifnet and ifaddr structures.

220

ifa_addr points to a protocol address for the interface and ifa_netmask points to a bit mask 
that selects the network portion of ifa_addr. Bits that represent the network portion of the 
address are set to 1 in the mask, and the host portion of the address is set to all 0 bits. Both addresses 
are stored as sockaddr structures (Section 3.5). Figure 3.38 shows an address and its related mask 
structure. For IP addresses, the mask selects the network and subnet portions of the IP address. 

221-223

ifa_dstaddr (or its alias ifa_broadaddr) points to the protocol address of the interface at 
the other end of a point-to-point link or to the broadcast address assigned to the interface on a 
broadcast network such as Ethernet. The mutually exclusive flags IFF_BROADCAST and 
IFF_POINTOPOINT (Figure 3.7) in the interface's ifnet structure specify the applicable 
name. 

224-228

ifa_rtrequest, ifa_flags, and ifa_metric support routing lookups for the 
interface. 

ifa_refcnt counts references to the ifaddr structure. The macro IFAFREE only releases 
the structure when the reference count drops to 0, such as when addresses are deleted with the 



ptg11539634

72

SIOCDIFADDR ioctl command. The ifaddr structures are reference-counted because they 
are shared by the interface and routing data structures. 

IFAFREE decrements the counter and returns if there are other references. This is 
the common case and avoids a function call overhead for all but the last reference. If 
this is the last reference, IFAFREE calls the function ifafree, which releases 
the structure. 

3.5. sockaddr Structure 

Addressing information for an interface consists of more than a single host address. Net/3 maintains 
host, broadcast, and network masks in structures derived from a generic sockaddr structure. By 
using a generic structure, hardware and protocol-specific addressing details are hidden from the 
interface layer. 

Figure 3.17 shows the current definition of the structure as well as the definition from earlier BSD 
releases—an osockaddr structure. 

Figure 3.17. sockaddr and osockaddr structures.

Figure 3.18 illustrates the organization of these structures. 

Figure 3.18. sockaddr and osockaddr structures (sa_ prefix dropped).

In many figures, we omit the common prefix in member names. In this case, we've 
dropped the sa_ prefix. 

sockaddr structure

120-124
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Every protocol has its own address format. Net/3 handles generic addresses in a sockaddr
structure. sa_len specifies the length of the address (OSI and Unix domain protocols have 
variable-length addresses) and sa_family specifies the type of address. Figure 3.19 lists the 
address family constants that we encounter. 

Figure 3.19. sa_family constants.

The contents of a sockaddr when AF_UNSPEC is specified depends on the 
context. In most cases, it contains an Ethernet hardware address. 

The sa_len and sa_family members allow protocol-independent code to manipulate variable-
length sockaddr structures from multiple protocol families. The remaining member, sa_data,
contains the address in a protocol-dependent format. sa_data is defined to be an array of 14 bytes, 
but when the sockaddr structure overlays a larger area of memory sa_data may be up to 253 
bytes long. sa_len is only a single byte, so the size of the entire address including sa_len and 
sa_family must be less than 256 bytes. 

This is a common C technique that allows the programmer to consider the last 
member in a structure to have a variable length. 

Each protocol defines a specialized sockaddr structure that duplicates the sa_len and 
sa_family members but defines the sa_data member as required for that protocol. The 
address stored in sa_data is a transport address; it contains enough information to identify 
multiple communication end points on the same host. In Chapter 6 we look at the Internet address 
structure sockaddr_in, which consists of an IP address and a port number. 

osockaddr structure

271-274

The osockaddr structure is the definition of a sockaddr before the 4.3BSD Reno release. 
Since the length of an address was not explicitly available in this definition, it was not possible to 
write protocol-independent code to handle variable-length addresses. The desire to include the OSI 
protocols, which utilize variable-length addresses, motivated the change in the sockaddr
definition seen in Net/3. The osockaddr structure is supported for binary compatibility with 
previously compiled programs. 

We have omitted the binary compatibility code from this text. 

3.6. ifnet and ifaddr Specialization 
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The ifnet and ifaddr structures contain general information applicable to all network interfaces 
and protocol addresses. To accommodate additional device and protocol-specific information, each 
driver defines and each protocol allocates a specialized version of the ifnet and ifaddr
structures. These specialized structures always contain an ifnet or ifaddr structure as their first 
member so that the common information can be accessed without consideration for the additional 
specialized information. 

Most device drivers handle multiple interfaces of the same type by allocating an array of its 
specialized ifnet structures, but others (such as the loopback driver) handle only one interface. 
Figure 3.20 shows the arrangement of specialized ifnet structures for our sample interfaces. 

Figure 3.20. Arrangement of ifnet structures within device-dependent 
structures.

Notice that each device's structure begins with an ifnet structure, followed by all the device-
dependent data. The loopback interface declares only an ifnet structure, since it doesn't require any 
device-dependent data. We show the Ethernet and SLIP driver's softc structures with the array 
index of 0 in Figure 3.20 since both drivers support multiple interfaces. The maximum number of 
interfaces of any given type is limited by a configuration parameter when the kernel is built. 

The arpcom structure (Figure 3.26) is common to all Ethernet drivers and contains information for 
the Address Resolution Protocol (ARP) and Ethernet multicasting. The le_softc structure (Figure
3.25) contains additional information unique to the LANCE Ethernet device driver. 

Each protocol stores addressing information for each interface in a list of specialized ifaddr
structures. The Internet protocols use an in_ifaddr structure (Section 6.5) and the OSI protocols 
an iso_ifaddr structure. In addition to protocol addresses, the kernel assigns each interface a 
link-level address when the interface is initialized, which identifies the interface within the kernel. 



ptg11539634

75

The kernel constructs the link-level address by allocating memory for an ifaddr structure and two 
sockaddr_dl structures—one for the link-level address itself and one for the link-level address 
mask. The sockaddr_dl structures are accessed by OSI, ARP, and the routing algorithms. Figure
3.21 shows an Ethernet interface with a link-level address, an Internet address, and an OSI address. 
The construction and initialization of the link-level address (the ifaddr and the two 
sockaddr_dl structures) is described in Section 3.11.

Figure 3.21. An interface address list containing link-level, Internet, and OSI 
addresses.

3.7. Network Initialization Overview 

All the structures we have described are allocated and attached to each other during kernel 
initialization. In this section we give a broad overview of the initialization steps. In later sections we 
describe the specific device- and protocol-initialization steps. 

Some devices, such as the SLIP and loopback interfaces, are implemented entirely in software. These 
pseudo-devices are represented by a pdevinit structure (Figure 3.22) stored in the global 
pdevinit array. The array is constructed during kernel configuration. For example: 

Figure 3.22. pdevinit structure.
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120-123

In the pdevinit structures for the SLIP and the loopback interface, pdev_attach is set to 
slattach and loopattach respectively. When the attach function is called, pdev_count
is passed as the only argument and specifies the number of devices to create. Only one loopback 
device is created but multiple SLIP devices may be created if the administrator configures the SLIP 
entry accordingly. 

The network initialization functions from main are shown in Figure 3.23.

Figure 3.23. main function: network initialization.

70-96
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cpu_startup locates and initializes all the hardware devices connected to the system, including 
any network interfaces. 

97-174

After the kernel initializes the hardware devices, it calls each of the pdev_attach functions 
contained within the pdevinit array. 

175-234

ifinit and domaininit finish the initialization of the network interfaces and protocols and 
scheduler begins the kernel process scheduler. ifinit and domaininit are described in 
Chapter 7.

In the following sections we describe the initialization of the Ethernet, SLIP, and loopback interfaces. 

3.8. Ethernet Initialization 

As part of cpu_startup, the kernel locates any attached network devices. The details of this 
process are beyond the scope of this text. Once a device is identified, a device-specific initialization 
function is called. Figure 3.24 shows the initialization functions for our three sample interfaces. 

Figure 3.24. Network interface initialization functions.

Each device driver for a network interface initializes a specialized ifnet structure and calls 
if_attach to insert the structure into the linked list of interfaces. The le_softc structure 
shown in Figure 3.25 is the specialized ifnet structure for our sample Ethernet driver (Figure 3.20).

Figure 3.25. le_softc structure.
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le_softc structure

69-95

An array of le_softc structures (with NLE elements) is declared in if_le.c. Each structure 
starts with sc_ac, an arpcom structure common to all Ethernet interfaces, followed by device-
specific members. The sc_if and sc_addr macros simplify access to the ifnet structure and 
Ethernet address within the arpcom structure, sc_ac, shown in Figure 3.26.

Figure 3.26. arpcom structure.

arpcom structure

95-101

The first member of the arpcom structure, ac_if, is an ifnet structure as shown in Figure 3.20.
ac_enaddr is the Ethernet hardware address copied by the LANCE device driver from the 
hardware when the kernel locates the device during cpu_startup. For our sample driver, this 
occurs in the leattach function (Figure 3.27). ac_ipaddr is the last IP address assigned to 
the device. We discuss address assignment in Section 6.6, where we'll see that an interface can have 
several IP addresses. See also Exercise 6.3. ac_multiaddrs is a list of Ethernet multicast 
addresses represented by ether_multi structures. ac_multicnt counts the entries in the 
list. The multicast list is discussed in Chapter 12.
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Figure 3.27. leattach function.

106-115

Figure 3.27 shows the initialization code for the LANCE Ethernet driver. 

The kernel calls leattach once for each LANCE card it finds in the system. 

The single argument points to an hp_device structure, which contains HP-
specific information since this driver is written for an HP workstation. 

le points to the specialized ifnet structure for the card (Figure 3.20) and ifp points to the first 
member of that structure, sc_if, a generic ifnet structure. The device-specific initializations 
are not included in Figure 3.27 and are not discussed in this text. 
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Copy the hardware address from the device

126-137

For the LANCE device, the Ethernet address assigned by the manufacturer is copied from the device 
to sc_addr (which is sc_ac.ac_enaddr—see Figure 3.26) one nibble (4 bits) at a time in 
this for loop. 

lestd is a device-specific table of offsets to locate information relative to 
hp_addr, which points to LANCE-specific information. 

The complete address is output to the console by the printf statement to indicate that the device 
exists and is is operational. 

Initialize the ifnet structure

150-157

leattach copies the device unit number from the hp_device structure into if_unit to 
identify multiple interfaces of the same type. if_name is "le" for this device; if_mtu is 1500 
bytes (ETHERMTU), the maximum transmission unit for Ethernet; if_init, if_reset,
if_ioctl, if_output, and if_start all point to device-specific implementations of 
the generic functions that control the network interface. Section 4.1 describes these functions. 

158

All Ethernet devices support IFF_BROADCAST. The LANCE device does not receive its own 
transmissions, so IFF_SIMPLEX is set. The driver and hardware supports multicasting so 
IFF_MULTICAST is also set. 

159-162

bpfattach registers the interface with BPF and is described with Figure 31.8. The 
if_attach function inserts the initialized ifnet structure into the linked list of interfaces 
(Section 3.11). 

3.9. SLIP Initialization 

The SLIP interface relies on a standard asynchronous serial device initialized within the call to 
cpu_startup. The SLIP pseudo-device is initialized when main calls slattach indirectly 
through the pdev_attach pointer in SLIP's pdevinit structure. 

Each SLIP interface is described by an sl_softc structure shown in Figure 3.28.
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Figure 3.28. sl_softc structure.

43-54

As with all interface structures, sl_softc starts with an ifnet structure followed by device-
specific information. 

In addition to the output queue found in the ifnet structure, a SLIP device maintains a separate 
queue, sc_fastq, for packets requesting low-delay service—typically generated by interactive 
applications. 

sc_ttyp points to the associated terminal device. The two pointers sc_buf and sc_ep point 
to the first and last bytes of the buffer for an incoming SLIP packet. sc_mp points to the location for 
the next incoming byte and is advanced as additional bytes arrive. 

The four flags defined by the SLIP driver are shown in Figure 3.29.

Figure 3.29. SLIP if_flags and sc_flags values.

SLIP defines the three interface flags reserved for the device driver in the ifnet structure and one 
additional flag defined in the sl_softc structure. 

sc_escape is used by the IP encapsulation mechanism for serial lines (Section 5.3), while TCP 
header compression (Section 29.13) information is kept in sc_comp.

The BPF information for the SLIP device is pointed to by sc_bpf.

The sl_softc structure is initialized by slattach, shown in Figure 3.30.
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Figure 3.30. slattach function.

135-152

Unlike leattach, which initializes only one interface at a time, the kernel calls slattach
once and slattach initializes all the SLIP interfaces. Hardware devices are initialized as they are 
discovered by the kernel during cpu_startup, while pseudo-devices are initialized all at once 
when main calls the pdev_attach function for the device. if_mtu for a SLIP device is 296 
bytes (SLMTU). This accommodates the standard 20-byte IP header, the standard 20-byte TCP 
header, and 256 bytes of user data (Section 5.3).

A SLIP network consists of two interfaces at each end of a serial communication line. slattach
turns on IFF_POINTOPOINT, SC_AUTOCOMP, and IFF_MULTICAST in 
if_flags.

The SLIP interface limits the length of its output packet queue, if_snd, to 50 and its own internal 
queue, sc_fastq, to 32. Figure 3.42 shows that the length of the if_snd queue defaults to 50 
(ifqmaxlen) if the driver does not select a length, so the initialization here is redundant. 

The Ethernet driver doesn't set its output queue length explicitly and relies on 
ifinit (Figure 3.42) to set it to the system default. 

if_attach expects a pointer to an ifnet structure so slattach passes the address of 
sc_if, an ifnet structure and the first member of the sl_softc structure. 

A special program, slattach, is run (from the /etc/netstart initialization file) after the 
kernel has been initialized and joins the SLIP interface and an asynchronous serial device by opening 
the serial device and issuing ioctl commands (Section 5.3).

153-155

For each SLIP device, slattach calls bpfattach to register the interface with BPF. 
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3.10. Loopback Initialization 

Finally, we show the initialization for the single loopback interface. The loopback interface places any 
outgoing packets back on an appropriate input queue. There is no hardware device associated with the 
interface. The loopback pseudo-device is initialized when main calls loopattach indirectly 
through the pdev_attach pointer in the loopback's pdevinit structure. Figure 3.31 shows 
the loopattach function. 

Figure 3.31. Loopback interface initialization.

41-56

The loopback if_mtu is set to 1536 bytes (LOMTU). In if_flags, IFF_LOOPBACK and 
IFF_MULTICAST are set. A loopback interface has no link header or hardware address, so 
if_hdrlen and if_addrlen are set to 0. if_attach finishes the initialization of the 
ifnet structure and bpfattach registers the loopback interface with BPF. 

The loopback MTU should be at least 1576 (40 + 3 x 512) to leave room for a 
standard TCP/IP header. Solaris 2.3, for example, sets the loopback MTU to 8232 
(40 + 8 x 1024). These calculations are biased toward the Internet protocols; other 
protocols may have default headers larger than 40 bytes. 

3.11. if_attach Function 

The three interface initialization functions shown earlier each call if_attach to complete 
initialization of the interface's ifnet structure and to insert the structure on the list of previously 
configured interfaces. Also, in if_attach, the kernel initializes and assigns each interface a link-
level address. Figure 3.32 illustrates the data structures constructed by if_attach.
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Figure 3.32. ifnet list.

In Figure 3.32, if_attach has been called three times: from leattach with an le_softc
structure, from slattach with an sl_softc structure, and from loopattach with a 
generic ifnet structure. Each time it is called it adds another ifnet structure to the ifnet list, 
creates a link-level ifaddr structure for the interface (which contains two sockaddr_d1
structures, Figure 3.33), and initializes an entry in the ifnet_addrs array. 

Figure 3.33. sockaddr_dl structure.

The structures contained within le_softc[0] and sl_softc[0] are nested 
as shown in Figure 3.20.

After this initialization, the interfaces are configured only with link-level addresses. IP addresses, for 
example, are not configured until much later by the ifconfig program (Section 6.6).

The link-level address contains a logical address for the interface and a hardware address if supported 
by the network (e.g., a 48-bit Ethernet address for le0). The hardware address is used by ARP and 
the OSI protocols, while the logical address within a sockaddr_dl contains a name and numeric 
index for the interface within the kernel, which supports a table lookup for converting between an 
interface index and the associated ifaddr structure (ifa_ifwithnet, Figure 6.32).
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The sockaddr_dl structure is shown in Figure 3.33.

55-57

Recall from Figure 3.18 that sdl_len specifies the length of the entire address and 
sdl_family specifies the address family, in this case AF_LINK.

58

sdl_index identifies the interface within the kernel. In Figure 3.32 the Ethernet interface would 
have an index of 1, the SLIP interface an index of 2, and the loopback interface an index of 3. The 
global integer if_index contains the last index assigned by the kernel. 

60

sdl_type is initialized from the if_type member of the ifnet structure associated with this 
datalink address. 

61-68

In addition to a numeric index, each interface has a text name formed from the if_name and 
if_unit members of the ifnet structure. For example, the first SLIP interface is called "sl0"
and the second is called "sl1". The text name is stored at the front of the sdl_data array, and 
sdl_nlen is the length of this name in bytes (3 in our SLIP example). 

The datalink address is also stored in the structure. The macro LLADDR converts a pointer to a 
sockaddr_dl structure into a pointer to the first byte beyond the text name. sdl_alen is the 
length of the hardware address. For an Ethernet device, the 48-bit hardware address appears in the 
sockaddr_dl structure beyond the text name. Figure 3.38 shows an initialized 
sockaddr_dl structure. 

Net/3 does not use sdl_slen.

if_attach updates two global variables. The first, if_index, holds the index of the last 
interface in the system and the second, ifnet_addrs, points to an array of ifaddr pointers. 
Each entry in the array points to the link-level address of an interface. The array provides quick access 
to the link-level address for every interface in the system. 

The if_attach function is long and consists of several tricky assignment statements. We describe 
it in four parts, starting with Figure 3.34.
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Figure 3.34. if_attach function: assign interface index.

59-74

if_attach has a single argument, ifp, a pointer to the ifnet structure that has been 
initialized by a network device driver. Net/3 keeps all the ifnet structures on a linked list headed 
by the global pointer ifnet. The while loop locates the end of the list and saves the address of 
the null pointer at the end of the list in p. After the loop, the new ifnet structure is attached to the 
end of the ifnet list, if_index is incremented, and the new index is assigned to ifp-
>if_index.

C Language Note: Notice that the same name, ifnet, is used for the variable and 
the type (in this case a structure name) of the variable. This is legal C and we'll see it 
a lot in Net/3.

Resize ifnet_addrs array if necessary

75-85

The first time through if_attach, the ifnet_addrs array doesn't exist so space for 16 
entries (16 = 8 << 1) is allocated. When the array becomes full, a new array of twice the size is 
allocated and the entries from the old array are copied to the new array. 

if_indexlim is a static variable private to if_attach.
if_indexlim is updated by the <<= operator. 
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The malloc and free functions in Figure 3.34 are not the standard C library functions of the 
same name. The second argument in the kernel versions specifies a type, which is used by optional 
diagnostic code in the kernel to detect programming errors. If the third argument to malloc is 
M_WAITOK, the function blocks the calling process if it needs to wait for free memory to become 
available. If the third argument is M_DONTWAIT, the function does not block and returns a null 
pointer when no memory is available. 

The next section of if_attach, shown in Figure 3.35, prepares a text name for the interface and 
computes the size of the link-level address. 

Figure 3.35. if_attach function: compute size of link-level address.

Create link-level name and compute size of link-level address

86-99

if_attach constructs the name of the interface from if_unit and if_name. The function 
sprint_d converts the numeric value of if_unit to a string stored in workbuf.
masklen is the number of bytes occupied by the information before sdl_data in the 
sockaddr_dl array plus the size of the text name for the interface (namelen + 
unitlen). The function rounds socksize, which is masklen plus the hardware address 
length (if_addrlen), up to the boundary of a long integer (ROUNDUP). If this is less than the 
size of a sockaddr_dl structure, the standard sockaddr_dl structure is used, ifasize is 
the size of an ifaddr structure plus two times socksize, so it can hold the sockaddr_dl
structures. 

In the next section, if_attach allocates and links the structures together, as shown in Figure 3.36.
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Figure 3.36. The link-level address and mask assigned during if_attach.

In Figure 3.36 there is a gap between the ifaddr structure and the two 
sockaddr_dl structures to illustrate that they are allocated in a contiguous area 
of memory but that they are not defined by a single C structure. 

The organization shown in Figure 3.36 is repeated in the in_ifaddr structure; the pointers in the 
generic ifaddr portion of the structure point to specialized sockaddr structures allocated in the 
device-specific portion of the structure, in this case, sockaddr_dl structures. Figure 3.37 shows 
the initialization of these structures. 

Figure 3.37. if_attach function: allocate and initialize link-level address.
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The address

100-116

If enough memory is available, bzero fills the new structure with 0s and sdl points to the first 
sockaddr_dl just after the ifnet structure. If no memory is available, the code is skipped. 

sdl_len is set to the length of the sockaddr_dl structure, and sdl_family is set to 
AF_LINK. A text name is constructed within sdl_data from if_name and unitname,
and the length is saved in sdl_nlen. The interface's index is copied into sdl_index as well 
as the interface type into sdl_type. The allocated structure is inserted into the ifnet_addrs
array and linked to the ifnet structure by ifa_ifp and ifa_addrlist. Finally, the 
sockaddr_dl structure is connected to the ifnet structure with ifa_addr. Ethernet 
interfaces replace the default function, link_rtrequest with arp_rtrequest. The 
loopback interface installs loop_rtrequest. We describe ifa_rtrequest and 
arp_rtrequest in Chapters 19 and 21. link_rtrequest and loop_rtrequest are 
left for readers to investigate on their own and link_rtrequest in Chapter 18. This completes 
the initialization of the first sockaddr_dl structure. 

The mask

117-123

The second sockaddr_dl structure is a bit mask that selects the text name that appears in the first 
structure. ifa_netmask from the ifaddr structure points to the mask structure (which in this 
case selects the interface text name and not a network mask). The while loop turns on the bits in the 
bytes corresponding to the name. 

Figure 3.38 shows the two initialized sockaddr_dl structures for our example Ethernet interface, 
where if_name is "le", if_unit is 0, and if_index is 1. 

Figure 3.38. The initialized Ethernet sockaddr_dl structures (sdl_ prefix 
omitted).

In Figure 3.38, the address is shown after ether_ifattach has done additional initialization of 
the structure (Figure 3.41).
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Figure 3.39 shows the structures after the first interface has been attached by if_attach.

Figure 3.39. The ifnet and sockaddr_dl structures after if_attach is 
called for the first time.

At the end of if_attach, the ether_ifattach function is called for Ethernet devices, as 
shown in Figure 3.40.

Figure 3.40. if_attach function: Ethernet initialization.

124-127

ether_ifattach isn't called earlier (from leattach, for example) because it copies the 
Ethernet hardware address into the sockaddr_dl allocated by if_attach.

The XXX comment indicates that the author found it easier to insert the code here 
once than to modify all the Ethernet drivers. 

ether_ifattach function

The ether_ifattach function performs the ifnet structure initialization common to all 
Ethernet devices. 
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Figure 3.41. ether_ifattach function.

338-357

For an Ethernet device, if_type is IFT_ETHER, the hardware address is 6 bytes long, the 
entire Ethernet header is 14 bytes in length, and the Ethernet MTU is 1500 (ETHERMTU).

The MTU was already assigned by leattach, but other Ethernet device drivers 
may not have performed this initialization. 

Section 4.3 discusses the Ethernet frame organization in more detail. The for loop locates the link-
level address for the interface and then initializes the Ethernet hardware address information in the 
sockaddr_dl structure. The Ethernet address that was copied into the arpcom structure during 
system initialization is now copied into the link-level address. 

3.12. ifinit Function 

After the interface structures are initialized and linked together, main (Figure 3.23) calls ifinit,
shown in Figure 3.42.

Figure 3.42. ifinit function.
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43-51

The for loop traverses the interface list and sets the maximum size of each interface output queue to 
50 (ifqmaxlen) if it hasn't already been set by the interface's attach function. 

An important consideration for the size of the output queue is the number of packets 
required to send a maximum-sized datagram. For Ethernet, if a process calls 
sendto with 65,507 bytes of data, it is fragmented into 45 fragments and each 
fragment is put onto the interface output queue. If the queue were much smaller, the 
process could never send that large a datagram, as the queue wouldn't have room. 

if_slowtimo starts the interface watchdog timers. When an interface timer expires, the kernel 
calls the watchdog function for the interface. An interface can reset the timer periodically to prevent 
the watchdog function from being called, or set if_timer to 0 if the watchdog function is not 
needed. Figure 3.43 shows the if_slowtimo function. 

Figure 3.43. if_slowtimo function.

338-343

The single argument, arg, is not used but is required by the prototype for the slow timeout functions 
(Section 7.4).

344-352

if_slowtimo ignores interfaces with if_timer equal to 0; if if_timer does not equal 0, 
if_slowtimo decrements if_timer and calls the if_watchdog function associated with 
the interface when the timer reaches 0. Packet processing is blocked by splimp during 
if_slowtimo. Before returning, ip_slowtimo calls timeout to schedule a call to itself 
in hz/IFNET_SLOWHZ clock ticks, hz is the number of clock ticks that occur in 1 second (often 
100). It is set at system initialization and remains constant thereafter. Since IFNET_SLOWHZ is 
defined to be 1, the kernel calls if_slowtimo once every hz clock ticks, which is once per 
second.

The functions scheduled by the timeout function are called back by the kernel's 
callout function. See [Leffler et al. 1989] for additional details. 
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3.13 Summary 

In this chapter we have examined the ifnet and ifaddr structures that are allocated for each 
network interface found at system initialization time. The ifnet structures are linked into the 
ifnet list. The link-level address for each interface is initialized, attached to the ifnet structure's 
address list, and entered into the if_addrs array. 

We discussed the generic sockaddr structure and its sa_family, and sa_len members, 
which specify the type and length of every address. We also looked at the initialization of the 
sockaddr_dl structure for a link-level address. 

In this chapter, we introduced the three example network interfaces that we use throughout the book. 

Exercises

3.1 The netstat program on many Unix systems lists network interfaces and their 
configuration. Try netstat -i on a system you have access to. What are the names 
(if_name) and maximum transmission units (if_mtu) of the network interfaces? 

3.2 In if_slowtimo (Figure 3.43) the splimp and splx calls appear outside the 
loop. What are the advantages and disadvantages of this arrangement compared with 
placing the calls within the loop? 

3.3 Why is SLIP's interactive queue shorter than SLIP's standard output queue? 

3.4 Why aren't if_hdrlen and if_addrlen initialized in slattach?

3.5 Draw a picture similar to Figure 3.38 for the SLIP and loopback devices. 
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Chapter 4. Interfaces: Ethernet 

4.1. Introduction 

In Chapter 3 we discussed the data structures used by all interfaces and the 
initialization of those data structures. In this chapter we show how the Ethernet device 
driver operates once it has been initialized and is receiving and transmitting frames. 
The second half of this chapter covers the generic ioctl commands for configuring 
network devices. Chapter 5 covers the SLIP and loopback drivers. 

We won’t go through the entire source code for the Ethernet driver, since it is around 
1,000 lines of C code (half of which is concerned with the hardware details of one 
particular interface card), but we do look at the device-independent Ethernet code and 
how the driver interfaces with the rest of the kernel. 

If the reader is interested in going through the source code for a driver, the Net/3 
release contains the source code for many different interfaces. Access to the 
interface’s technical specifications is required to understand the device-specific 
commands. Figure 4.1 shows the various drivers provided with Net/3, including the 
LANCE driver, which we discuss in this text. 

Figure 4.1. Ethernet drivers available in Net/3. 

 

 

Network device drivers are accessed through the seven function pointers in the 
ifnet structure (Figure 3.6). Figure 4.2 lists the entry points to our three example 
drivers. 

 94
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Figure 4.2. Interface functions for the example drivers. 

 

 

Input functions are not included in Figure 4.2 as they are interrupt-driven for network 
devices. The configuration of interrupt service routines is hardware-dependent and 
beyond the scope of this book. We’ll identify the functions that handle device 
interrupts, but not the mechanism by which these functions are invoked. 

Only the if_output and if_ioctl functions are called with any 
consistency. if_init, if_done, and if_reset are never called 
or only called from device-specific code (e.g., leinit is called 
directly by leioctl). if_start is called only by the 
ether_output function. 

4.2. Code Introduction 

The code for the Ethernet device driver and the generic interface ioctls resides in 
two headers and three C files, which are listed in Figure 4.3. 

Figure 4.3. Files discussed in this chapter. 

 

 
 

Global Variables

The global variables shown in Figure 4.4 include the protocol input queues, the 
LANCE interface structure, and the Ethernet broadcast address. 
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Figure 4.4. Global variables introduced in this chapter. 

 

 

le_softc is an array, since there can be several Ethernet interfaces. 

Statistics

The statistics collected in the ifnet structure for each interface are described in 
Figure 4.5. 

Figure 4.5. Statistics maintained in the ifnet structure. 

 

 

Figure 4.6 shows some sample output from the netstat command, which includes 
statistics from the ifnet structure. 
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Figure 4.6. Sample interface statistics. 

 

 

The first column contains if_name and if_unit displayed as a string. If the 
interface is shut down (IFF_UP is not set), an asterisk appears next to the name. In 
Figure 4.6, sl0, sl2, and sl3 are shut down. 

The second column shows if_mtu. The output under the "Network" and "Address" 
headings depends on the type of address. For link-level addresses, the contents of 
sdl_data from the sockaddr_dl structure are displayed. For IP addresses, the 
subnet and unicast addresses are displayed. The remaining columns are 
if_ipackets, if_ierrors, if_opackets, if_oerrors, and 
if_collisions.

Approximately 3% of the packets collide on output (942,798/29,234,729 = 
3%). 
The SLIP output queues are never full on this machine since there are no 
output errors for the SLIP interfaces. 
The 12 Ethernet output errors are problems detected by the LANCE hardware 
during transmission. Some of these errors may also be counted as collisions. 
The 814 Ethernet input errors are also problems detected by the hardware, 
such as packets that are too short or that have invalid checksums. 

SNMP Variables

Figure 4.7 shows a single interface entry object (ifEntry) from the SNMP interface 
table (ifTable), which is constructed from the ifnet structures for each interface. 
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Figure 4.7. Variables in interface table: ifTable.

 

 

The ISODE SNMP agent derives ifSpeed from if_type and maintains an internal 
variable for ifAdminStatus. The agent reports ifLastChange based on 
if_lastchange in the ifnet structure but relative to the agent’s boot time, not the 
boot time of the system. The agent returns a null variable for ifSpecific.

4.3. Ethernet Interface 

Net/3 Ethernet device drivers all follow the same general design. This is common for 
most Unix device drivers because the writer of a driver for a new interface card often 
starts with a working driver for another card and modifies it. In this section we’ll 
provide a brief overview of the Ethernet standard and outline the design of an 
Ethernet driver. We’ll refer to the LANCE driver to illustrate the design. 

Figure 4.8 illustrates Ethernet encapsulation of an IP packet. 
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Figure 4.8. Ethernet encapsulation of an IP packet. 

 

 

Ethernet frames consist of 48-bit destination and source addresses followed by a 16-
bit type field that identifies the format of the data carried by the frame. For IP packets, 
the type is 0x0800 (2048). The frame is terminated with a 32-bit CRC (cyclic 
redundancy check), which detects errors in the frame. 

We are describing the original Ethernet framing standard published in 
1982 by Digital Equipment Corp., Intel Corp., and Xerox Corp., as it is 
the most common form used today in TCP/IP networks. An alternative 
form is specified by the IEEE (Institute of Electrical and Electronics 
Engineers) 802.2 and 802.3 standards. Section 2.2 in Volume 1 
describes the differences between the two forms. See [Stallings 1987] 
for more information on the IEEE standards. 

Encapsulation of IP packets for Ethernet is specified by RFC 894 
[Hornig 1984] and for 802.3 networks by RFC 1042 [Postel and 
Reynolds 1988]. 

We will refer to the 48-bit Ethernet addresses as hardware addresses. The translation 
from IP to hardware addresses is done by the ARP protocol described in Chapter 21 
(RFC 826 [Plummer 1982]) and from hardware to IP addresses by the RARP protocol 
(RFC 903 [Finlayson et al. 1984]). Ethernet addresses come in two types, unicast and 
multicast. A unicast address specifies a single Ethernet interface, and a multicast 
address specifies a group of Ethernet interfaces. An Ethernet broadcast is a multicast 
received by all interfaces. Ethernet unicast addresses are assigned by the device’s 
manufacturer, although some devices allow the address to be changed by software. 

Some DECNET protocols require the hardware addresses of a 
multihomed host to be identical, so DECNET must be able to change 
the Ethernet unicast address of a device. 

Figure 4.9 illustrates the data structures and functions that are part of the Ethernet 
interface. 
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Figure 4.9. Ethernet device driver. 

 

 

In figures, a function is identified by an ellipse (leintr), data 
structures by a box (le_softc[0]), and a group of functions by a 
rounded box (ARP protocol). 

In the top left corner of Figure 4.9 we show the input queues for the OSI 
Connectionless Network Layer (clnl) protocol, IP, and ARP. We won’t say anything 
more about clnlintrq, but include it to emphasize that ether_input 
demultiplexes Ethernet frames into multiple protocol queues. 

Technically, OSI uses the term Connectionless Network Protocol
(CLNP versus CLNL) but we show the terminology used by the Net/3 
code. The official standard for CLNP is ISO 8473. [Stallings 1993] 
summarizes the standard. 

The le_softc interface structure is in the center of Figure 4.9. We are interested 
only in the ifnet and arpcom portions of the structure. The remaining portions are 
specific to the LANCE hardware. We showed the ifnet structure in Figure 3.6 and 
the arpcom structure in Figure 3.26. 
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leintr Function

We start with the reception of Ethernet frames. For now, we assume that the hardware 
has been initialized and the system has been configured so that leintr is called 
when the interface generates an interrupt. In normal operation, an Ethernet interface 
receives frames destined for its unicast hardware address and for the Ethernet 
broadcast address. When a complete frame is available, the interface generates an 
interrupt and the kernel calls leintr.

In Chapter 12, we’ll see that many Ethernet interfaces may be 
configured to receive Ethernet multicast frames (other than broadcasts). 

Some interfaces can be configured to run in promiscuous mode in 
which the interface receives all frames that appear on the network. The 
tcpdump program described in Volume 1 can take advantage of this 
feature using BPF. 

leintr examines the hardware and, if a frame has arrived, calls leread to transfer 
the frame from the interface to a chain of mbufs (with m_devget). If the hardware 
reports that a frame transmission has completed or an error has been detected (such as 
a bad checksum), leintr updates the appropriate interface statistics, resets the 
hardware, and calls lestart, which attempts to transmit another frame. 

All Ethernet device drivers deliver their received frames to ether_input for further 
processing. The mbuf chain constructed by the device driver does not include the 
Ethernet header, so it is passed as a separate argument to ether_input. The 
ether_header structure is shown in Figure 4.10. 

Figure 4.10. The ether_header structure. 

 

 

38-42

The Ethernet CRC is not generally available. It is computed and checked by the 
interface hardware, which discards frames that arrive with an invalid CRC. The 
Ethernet device driver is responsible for converting ether_type between network 
and host byte order. Outside of the driver, it is always in host byte order. 
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leread Function

The leread function (Figure 4.11) starts with a contiguous buffer of memory passed 
to it by leintr and constructs an ether_header structure and a chain of mbufs. 
The chain contains the data from the Ethernet frame. leread also passes the 
incoming frame to BPF. 

Figure 4.11. leread function. 
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528-539

The leintr function passes three arguments to leread:unit, which identifies 
the particular interface card that received a frame; buf, which points to the received 
frame; and len, the number of bytes in the frame (including the header and the 
CRC). 

The function constructs the ether_header structure by pointing et to the front of 
the buffer and converting the Ethernet type value to host byte order. 

540-551

The number of data bytes is computed by subtracting the sizes of the Ethernet header 
and the CRC from len. Runt packets, which are too short to be a valid Ethernet 
frame, are logged, counted, and discarded. 

552-557

Next, the destination address is examined to determine if it is the Ethernet broadcast 
or an Ethernet multicast address. The Ethernet broadcast address is a special case of 
an Ethernet multicast address; it has every bit set. etherbroadcastaddr is an 
array defined as 

    u_char  etherbroadcastaddr[6] = { 0xff, 0xff, 0xff, 
0xff, 0xff, 0xff }; 
 

This is a convenient way to define a 48-bit value in C. This technique 
works only if we assume that characters are 8-bit values something 
that isn’t guaranteed by ANSI C. 

If bcmp reports that etherbroadcastaddr and ether_dhost are the same, the 
M_BCAST flag is set. 

An Ethernet multicast addresses is identified by the low-order bit of the most 
significant byte of the address. Figure 4.12 illustrates this. 

Figure 4.12. Testing for an Ethernet multicast address. 
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In Chapter 12 we’ll see that not all Ethernet multicast frames are IP multicast 
datagrams and that IP must examine the packet further. 

If the multicast bit is on in the address, M_MCAST is set in the mbuf header. The order 
of the tests is important: first ether_input compares the entire 48-bit address to 
the Ethernet broadcast address, and if they are different it checks the low-order bit of 
the most significant byte to identify an Ethernet multicast address (Exercise 4.1). 

558-573

If the interface is tapped by BPF, the frame is passed directly to BPF by calling 
bpf_tap. We’ll see that for SLIP and the loopback interfaces, a special BPF frame 
is constructed since those networks do not have a link-level header (unlike Ethernet). 

When an interface is tapped by BPF, it can be configured to run in promiscuous mode 
and receive all Ethernet frames that appear on the network instead of the subset of 
frames normally received by the hardware. The packet is discarded by leread if it 
was sent to a unicast address that does not match the interface’s address. 

574-585

m_devget (Section 2.6) copies the data from the buffer passed to leread to an 
mbuf chain it allocates. The first argument to m_devget points to the first byte after 
the Ethernet header, which is the first data byte in the frame. If m_devget runs out of 
memory, leread returns immediately. Otherwise the broadcast and multicast flags 
are set in the first mbuf in the chain, and ether_input processes the packet. 

ether_input Function

ether_input, shown in Figure 4.13, examines the ether_header structure to 
determine the type of data that has been received and then queues the received packet 
for processing. 

Figure 4.13. ether_input function. 
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Broadcast and multicast recognition

196-209

The arguments to ether_input are ifp, a pointer to the receiving interface’s 
ifnet structure; eh, a pointer to the Ethernet header of the received packet; and m, 
a pointer to the received packet (excluding the Ethernet header). 

Any packets that arrive on an inoperative interface are silently discarded. The 
interface may not have been configured with a protocol address, or may have been 
disabled by an explicit request from the ifconfig(8) program (Section 6.6). 

210-218

 105

The variable time is a global timeval structure that the kernel maintains with the 
current time and date, as the number of seconds and microseconds past the Unix 
Epoch (00:00:00 January 1, 1970, Coordinated Universal Time [UTC]). A brief 
discussion of UTC can be found in [Itano and Ramsey 1993]. We’ll encounter the 
timeval structure throughout the Net/3 sources: 
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    struct timeval { 
      long  tv_sec;     /* seconds */ 
      long  tv_usec;    /* and microseconds */ 
    }; 
 

ether_input updates if_lastchange with the current time and increments 
if_ibytes by the size of the incoming packet (the packet length plus the 14-byte 
Ethernet header). 

Next, ether_input repeats the tests done by leread to determine if the packet is 
a broadcast or multicast packet. 

Some kernels may not have been compiled with the BPF code, so the 
test must also be done in ether_input.

Link-level demultiplexing

219-227

ether_input jumps according to the Ethernet type field. For an IP packet, 
schednetisr schedules an IP software interrupt and the IP input queue, ipintrq, 
is selected. For an ARP packet, the ARP software interrupt is scheduled and 
arpintrq is selected. 

An isr is an interrupt service routine. 

In previous BSD releases, ARP packets were processed immediately 
while at the network interrupt level by calling arpinput directly. By 
queueing the packets, they can be processed at the software interrupt 
level. 

If other Ethernet types are to be handled, a kernel programmer would 
add additional cases here. Alternately, a process can receive other 
Ethernet types using BPF. For example, RARP servers are normally 
implemented using BPF under Net/3. 

228-307

The default case processes unrecognized Ethernet types or packets that are 
encapsulated according to the 802.3 standard (such as the OSI connectionless 
transport). The Ethernet type field and the 802.3 length field occupy the same position 
in an Ethernet frame. The two encapsulations can be distinguished because the range 
of types in an Ethernet encapsulation is distinct from the range of lengths in the 802.3 
encapsulation (Figure 4.14). We have omitted the OSI code. [Stallings 1993] contains 
a description of the OSI link-level protocols. 
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Figure 4.14. Ethernet type and 802.3 length fields. 

 

 

There are many additional Ethernet type values that are assigned to various protocols; 
we don’t show them in Figure 4.14. RFC 1700 [Reynolds and Postel 1994] contains a 
list of the more common types. 

Queue the packet

308-315

Finally, ether_input places the packet on the selected queue or discards the packet 
if the queue is full. We’ll see in Figures 7.23 and 21.16 that the default limit for the IP 
and ARP input queues is 50 (ipqmaxlen) packets each. 

When ether_input returns, the device driver tells the hardware that it is ready to 
receive the next packet, which may already be present in the device. The packet input 
queues are processed when the software interrupt scheduled by schednetisr 
occurs (Section 1.12). Specifically, ipintr is called to process the packets on the IP 
input queue, and arpintr is called to process the packets on the ARP input queue. 

ether_output Function

We now examine the output of Ethernet frames, which starts when a network-level 
protocol such as IP calls the if_output function, specified in the interface’s ifnet 
structure. The if_output function for all Ethernet devices is ether_output 
(Figure 4.2). ether_output takes the data portion of an Ethernet frame, 
encapsulates it with the 14-byte Ethernet header, and places it on the interface’s send 
queue. This is a large function so we describe it in four parts: 

verification, 
protocol-specific processing, 
frame construction, and 
interface queueing. 

Figure 4.15 includes the first part of the function. 
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Figure 4.15. ether_output function: verification. 

 

 

49-64

The arguments to ether_output are ifp, which points to the outgoing interface’s 
ifnet structure; m0, the packet to send; dst, the destination address of the packet; 
and rt0, routing information. 

65-67

The macro senderr is called throughout ether_output.

    #define senderr(e) { error = (e); goto bad;} 
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senderr saves the error code and jumps to bad at the end of the function, where the 
packet is discarded and ether_output returns error.

If the interface is up and running, ether_output updates the last change time for 
the interface. Otherwise, it returns ENETDOWN.

Host route

68-74

rt0 points to the routing entry located by ip_output and passed to 
ether_output. If ether_output is called from BPF, rt0 can be null, in which 
case control passes to the code in Figure 4.16. Otherwise, the route is verified. If the 
route is not valid, the routing tables are consulted and EHOSTUNREACH is returned if 
a route cannot be located. At this point, rt0 and rt point to a valid route for the 
next-hop destination. 

Figure 4.16. ether_output function: network protocol processing. 
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Gateway route

75-85

If the next hop for the packet is a gateway (versus a final destination), a route to the 
gateway is located and pointed to by rt. If a gateway route cannot be found, 
EHOSTUNREACH is returned. At this point, rt points to the route for the next-hop 
destination. The next hop may be a gateway or the final destination. 

Avoid ARP flooding

86-90

The RTF_REJECT flag is enabled by the ARP code to discard packets to the 
destination when the destination is not responding to ARP requests. This is described 
with Figure 21.24. 

ether_output processing continues according to the destination address of the 
packet. Since Ethernet devices respond only to Ethernet addresses, to send a packet, 
ether_output must find the Ethernet address that corresponds to the IP address of 
the next-hop destination. The ARP protocol (Chapter 21) implements this translation. 
Figure 4.16 shows how the driver accesses the ARP protocol. 

IP output

91-101

ether_output jumps according to sa_family in the destination address. We 
show only the AF_INET, AF_ISO, and AF_UNSPEC cases in Figure 4.16 and have 
omitted the code for AF_ISO.

The AF_INET case calls arpresolve to determine the Ethernet address 
corresponding to the destination IP address. If the Ethernet address is already in the 
ARP cache, arpresolve returns 1 and ether_output proceeds. Otherwise this 
IP packet is held by ARP, and when ARP determines the address, it calls 
ether_output from the function in_arpinput.

Assuming the ARP cache contains the hardware address, ether_output checks if 
the packet is going to be broadcast and if the interface is simplex (i.e., it can’t receive 
its own transmissions). If both tests are true, m_copy makes a copy of the packet. 
After the switch, the copy is queued as if it had arrived on the Ethernet interface. 
This is required by the definition of broadcasting; the sending host must receive a 
copy of the packet. 

We’ll see in Chapter 12 that multicast packets may also be looped back 
to be received on the output interface. 
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Explicit Ethernet output

142-146

Some protocols, such as ARP, need to specify the Ethernet destination and type 
explicitly. The address family constant AF_UNSPEC indicates that dst points to an 
Ethernet header. bcopy duplicates the destination address in edst and assigns the 
Ethernet type to type. It isn’t necessary to call arpresolve (as for AF_INET) 
because the Ethernet destination address has been provided explicitly by the caller. 

Unrecognized address families

147-151

Unrecognized address families generate a console message and ether_output 
returns EAFNOSUPPORT.

In the next section of ether_output, shown in Figure 4.17, the Ethernet frame is 
constructed. 

Figure 4.17. ether_output function: Ethernet frame construction. 

 

 
 

Ethernet header

152-167

If the code in the switch made a copy of the packet, the copy is processed as if it 
had been received on the output interface by calling looutput. The loopback 
interface and looutput are described in Section 5.4. 

M_PREPEND ensures that there is room for 14 bytes at the front of the packet. 
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Most protocols arrange to leave room at the front of the mbuf chain so 
that M_PREPEND needs only to adjust some pointers (e.g., sosend for 
UDP output in Section 16.7 and igmp_sendreport in Section 13.6). 

ether_output forms the Ethernet header from type, edst, and ac_enaddr 
(Figure 3.26). ac_enaddr is the unicast Ethernet address associated with the output 
interface and is the source Ethernet address for all frames transmitted on the interface. 
ether_output overwrites the source address the caller may have specified in the 
ether_header structure with ac_enaddr. This makes it more difficult to forge 
the source address of an Ethernet frame. 

At this point, the mbuf contains a complete Ethernet frame except for the 32-bit CRC, 
which is computed by the Ethernet hardware during transmission. The code shown in 
Figure 4.18 queues the frame for transmission by the device. 

Figure 4.18. ether_output function: output queueing. 

 

 

168-185

If the output queue is full, ether_output discards the frame and returns 
ENOBUFS. If the output queue is not full, the frame is placed on the interface’s send 
queue, and the interface’s if_start function transmits the next frame if the 
interface is not already active. 

186-190

The senderr macro jumps to bad where the frame is discarded and an error code is 
returned. 
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lestart Function

The lestart function dequeues frames from the interface output queue and arranges 
for them to be transmitted by the LANCE Ethernet card. If the device is idle, the 
function is called to begin transmitting frames. An example appears at the end of 
ether_output (Figure 4.18), where lestart is called indirectly through the 
interface’s if_start function. 

If the device is busy, it generates an interrupt when it completes transmission of the 
current frame. The driver calls lestart to dequeue and transmit the next frame. 
Once started, the protocol layer can queue frames without calling lestart since the 
driver dequeues and transmits frames until the queue is empty. 

Figure 4.19 shows the lestart function. lestart assumes splimp has been 
called to block any device interrupts. 

Figure 4.19. lestart function. 
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Interface must be initialized

325-333

If the interface is not initialized, lestart returns immediately. 

Dequeue frame from output queue

335-342

If the interface is initialized, the next frame is removed from the queue. If the 
interface output queue is empty, lestart returns. 

Transmit frame and pass to BPF

343-350

leput copies the frame in m to the hardware buffer pointed to by the first argument 
to leput. If the interface is tapped by BPF, the frame is passed to bpf_tap. We 
have omitted the device-specific code that initiates the transmission of the frame from 
the hardware buffer. 

Repeat if device is ready for more frames

359

lestart stops passing frames to the device when le->sc_txcnt equals 
LETBUF. Some Ethernet interfaces can queue more than one outgoing Ethernet 
frame. For the LANCE driver, LETBUF is the number of hardware transmit buffers 
available to the driver, and le->sc_txcnt keeps track of how many of the buffers 
are in use. 

Mark device as busy

360-362

Finally, lestart turns on IFF_OACTIVE in the ifnet structure to indicate the 
device is busy transmitting frames. 

There is an unfortunate side effect to queueing multiple frames in the 
device for transmission. According to [Jacobson 1988a], the LANCE 
chip is able to transmit queued frames with very little delay between 
frames. Unfortunately, some [broken] Ethernet devices drop the frames 
because they can’t process the incoming data fast enough. 
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This interacts badly with an application such as NFS that sends large 
UDP datagrams (often greater than 8192 bytes) that are fragmented by 
IP and queued in the LANCE device as multiple Ethernet frames. 
Fragments are lost on the receiving side, resulting in many incomplete 
datagrams and high delays as NFS retransmits the entire UDP 
datagram. 

Jacobson noted that Sun’s LANCE driver only queued one frame at a 
time, perhaps to avoid this problem. 

4.4. ioctl System Call 

The ioctl system call supports a generic command interface used by a process to 
access features of a device that aren’t supported by the standard system calls. The 
prototype for ioctl is: 

    int ioctl (int fd, unsigned long com, ...); 
 

fd is a descriptor, usually a device or network connection. Each type of descriptor 
supports its own set of ioctl commands specified by the second argument, com. A 
third argument is shown as " " in the prot otype, since it is a pointer of some type 
that depends on the ioctl command being invoked. If the command is retrieving 
information, the third argument must point to a buffer large enough to hold the data. 
In this text, we discuss only the ioctl commands applicable to socket descriptors. 

The prototype we show for system calls is the one used by a process to 
issue the system call. We’ll see in Chapter 15 that the function within 
the kernel that implements a system call has a different prototype. 

We describe the implementation of the ioctl system call in Chapter 17 but we 
discuss the implementation of individual ioctl commands throughout the text. 

The first ioctl commands we discuss provide access to the network interface 
structures that we have described. Throughout the text we summarize ioctl 
commands as shown in Figure 4.20. 

Figure 4.20. Interface ioctl commands. 
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The first column shows the symbolic constant that identifies the ioctl command 
(the second argument, com). The second column shows the type of the third argument 
passed to the ioctl system call for the command shown in the first column. The 
third column names the function that implements the command. 

Figure 4.21 shows the organization of the various functions that process ioctl 
commands. The shaded functions are the ones we describe in this chapter. The 
remaining functions are described in other chapters. 

Figure 4.21. ioctl functions described in this chapter. 
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ifioctl Function

The ioctl system call routes the five commands shown in Figure 4.20 to the 
ifioctl function shown in Figure 4.22. 

Figure 4.22. ifioctl function: overview and SIOCGIFCONF.

 

 

394-405

For the SIOCGIFCONF command, ifioctl calls ifconf to construct a table of 
variable-length ifreq structures. 

406-410

For the remaining ioctl commands, the data argument is a pointer to an ifreq 
structure. ifunit searches the ifnet list for an interface with the text name 
provided by the process in ifr->ifr_name (e.g., "sl0","le1", or "lo0"). If 
there is no matching interface, ifioctl returns ENXIO. The remaining code 
depends on cmd and is described with Figure 4.29. 
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447-454

If the interface ioctl command is not recognized, ifioctl forwards the command 
to the user-request function of the protocol associated with the socket on which the 
request was made. For IP, these commands are issued on a UDP socket and 
udp_usrreq is called. The commands that fall into this category are described in 
Figure 6.10. Section 23.10 describes the udp_usrreq function in detail. 

If control falls out of the switch, 0 is returned. 

ifconf Function

ifconf provides a standard way for a process to discover the interfaces present and 
the addresses configured on a system. Interface information is represented by ifreq 
and ifconf structures shown in Figures 4.23 and 4.24. 

Figure 4.23. ifreq structure. 

 

 
Figure 4.24. ifconf structure. 

 

 

262-279
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An ifreq structure contains the name of an interface in ifr_name. The remaining 
members in the union are accessed by the various ioctl commands. As usual, 
macros simplify the syntax required to access the members of the union. 

292-300

In the ifconf structure, ifc_len is the size in bytes of the buffer pointed to by 
ifc_buf. The buffer is allocated by a process but filled in by ifconf with an array 
of variable-length ifreq structures. For the ifconf function, ifr_addr is the 
relevant member of the union in the ifreq structure. Each ifreq structure has a 
variable length because the length of ifr_addr (a sockaddr structure) varies 
according to the type of address. The sa_len member from the sockaddr structure 
must be used to locate the end of each entry. Figure 4.25 illustrates the data structures 
manipulated by ifconf.

Figure 4.25. ifconf data structures. 

 

 

In Figure 4.25, the data on the left is in the kernel and the data on the right is in a 
process. We’ll refer to this figure as we discuss the ifconf function listed in Figure 
4.26. 

Figure 4.26. ifconf function. 
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462-474

The two arguments to ifconf are: cmd, which is ignored; and data, which points 
to a copy of the ifconf structure specified by the process. 

ifc is data cast to a ifconf structure pointer. ifp traverses the interface list 
starting at ifnet (the head of the list), and ifa traverses the address list for each 
interface. cp and ep control the construction of the text interface name within ifr, 
which is the ifreq structure that holds an interface name and address before they are 
copied to the process’s buffer. ifrp points to this buffer and is advanced after each 
address is copied. space is the number of bytes remaining in the process’s buffer, cp 
is used to search for the end of the name, and ep marks the last possible location for 
the numeric portion of the interface name. 

475-488
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The for loop traverses the list of interfaces. For each interface, the text name is 
copied to ifr_name followed by the text representation of the if_unit number. If 
no addresses have been assigned to the interface, an address of all 0s is constructed, 
the resulting ifreq structure is copied to the process, space is decreased, and ifrp 
is advanced. 

489-515

If the interface has one or more addresses, the for loop processes each one. The 
address is added to the interface name in ifr and then ifr is copied to the process. 
Addresses longer than a standard sockaddr structure don’t fit in ifr and are copied 
directly out to the process. After each address, space and ifrp are adjusted. After 
all the interfaces are processed, the length of the buffer is updated (ifc->ifc_len) 
and ifconf returns. The ioctl system call takes care of copying the new contents 
of the ifconf structure back to the ifconf structure in the process. 

Example

Figure 4.27 shows the configuration of the interface structures after the Ethernet, 
SLIP, and loopback interfaces have been initialized. 

Figure 4.27. Interface and address data structures. 

 

 

Figure 4.28 shows the contents of ifc and buffer after the following code is 
executed. 
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Figure 4.28. Data returned by the SIOCGIFCONF command. 

 

 
Code View: Scroll / Show All 
    struct ifconf ifc;    /* SIOCGIFCONF adjusts this */ 
    char buffer[144];     /* contains interface addresses 
when ioctl returns */ 
    int s;                /* any socket */ 

    ifc.ifc_len = 144; 
    ifc.ifc_buf = buffer; 
    if (ioctl(s, SIOCGIFCONF, &ifc) < 0 ) { 
        perror("ioctl failed"); 
        exit(1); 
}

        
 

There are no restrictions on the type of socket specified with the SIOCGIFCONF 
command, which, as we have seen, returns the addresses for all protocol families. 

In Figure 4.28, ifc_len has been changed from 144 to 108 by ioctl since the 
three addresses returned in the buffer only occupy 108 (3x36) bytes. Three 
sockaddr_dl addresses are returned and the last 36 bytes of the buffer are unused. 
The first 16 bytes of each entry contain the text name of the interface. In this case 
only 3 of the 16 bytes are used. 

ifr_addr has the form of a sockaddr structure, so the first value is the length (20 
bytes) and the second value is the type of address (18, AF_LINK). The next value is 
sdl_index, which is different for each interface as is sdl_type (6, 28, and 24 
correspond to IFT_ETHER, IFT_SLIP, and IFT_LOOP). 

The next three values are sa_nlen (the length of the text name), sa_alen (the 
length of the hardware address), and sa_slen (unused). sa_nlen is 3 for all three 
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entries. sa_alen is 6 for the Ethernet address and 0 for both the SLIP and loopback 
interfaces. sa_slen is always 0. 

Finally, the text interface name appears, followed by the hardware address (Ethernet 
only). Neither the SLIP nor the loopback interface store a hardware-level address in 
the sockaddr_dl structure. 

In the example, only sockaddr_dl addresses are returned (because no other address 
types were configured in Figure 4.27), so each entry in the buffer is the same size. If 
other addresses (e.g., IP or OSI addresses) were configured for an interface, they 
would be returned along with the sockaddr_dl addresses, and the size of each 
entry would vary according to the type of address returned. 

Generic Interface ioctl commands

The four remaining interface commands from Figure 4.20 (SIOCGIFFLAGS,
SIOCGIFMETRIC, SIOCSIFFLAGS, and SIOCSIFMETRIC) are handled by the 
ifioctl function. Figure 4.29 shows the case statements for these commands. 

Figure 4.29. ifioctl function: flags and metrics. 
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SIOCGIFFLAGS and SIOCGIFMETRIC

410-416

For the two SIOCGxxx commands, ifioctl copies the if_flags or if_metric 
value for the interface into the ifreq structure. For the flags, the ifr_flags 
member of the union is used and for the metric, the ifr_metric member is used 
(Figure 4.23). 

SIOCSIFFLAGS

417-429

To change the interface flags, the calling process must have superuser privileges. If 
the process is shutting down a running interface or bringing up an interface that isn’t 
running, if_down or if_up are called respectively. 

Ignore IFF_CANTCHANGE flags

430-434

Recall from Figure 3.7 that some interface flags cannot be changed by a process. The 
expression (ifp->if_flags & IFF_CANTCHANGE) clears the interface flags that 
can be changed by the process, and the expression (ifr->ifr_flags
&~IFF_CANTCHANGE) clears the flags in the request that may not be changed by the 
process. The two expressions are ORed together and saved as the new value for ifp-
>if_flags. Before returning, the request is passed to the if_ioctl function 
associated with the device (e.g., leioctl for the LANCE driver Figure 4.31). 

SIOCSIFMETRIC

435-439

Changing the interface metric is easier; as long as the process has superuser 
privileges, ifioctl copies the new metric into if_metric for the interface. 

if_down and if_up Functions

With the ifconfig program, an administrator can enable and disable an interface by 
setting or clearing the IFF_UP flag through the SIOCSIFFLAGS command. Figure 
4.30 shows the code for the if_down and if_up functions. 
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Figure 4.30. if_down and if_up functions. 

 

 

292-302

When an interface is shut down, the IFF_UP flag is cleared and the PRC_IFDOWN 
command is issued by pfctlinput (Section 7.7) for each address associated with 
the interface. This gives each protocol an opportunity to respond to the interface being 
shut down. Some protocols, such as OSI, terminate connections using the interface. IP 
attempts to reroute connections through other interfaces if possible. TCP and UDP 
ignore failing interfaces and rely on the routing protocols to find alternate paths for 
the packets. 

if_qflush discards any packets queued for the interface. The routing system is 
notified of the change by rt_ifmsg. TCP retransmits the lost packets 
automatically; UDP applications must explicitly detect and respond to this condition 
on their own. 

308-315

When an interface is enabled, the IFF_UP flag is set and rt_ifmsg notifies the 
routing system that the interface status has changed. 

Ethernet, SLIP, and Loopback

We saw in Figure 4.29 that for the SIOCSIFFLAGS command, ifioctl calls the 
if_ioctl function for the interface. In our three sample interfaces, the slioctl 
and loioctl functions return EINVAL for this command, which is ignored by 
ifioctl. Figure 4.31 shows the leioctl function and SIOCSIFFLAGS 
processing of the LANCE Ethernet driver. 
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Figure 4.31. leioctl function: SIOCSIFFLAGS.

 

 

614-623

leioctl casts the third argument, data, to an ifaddr structure pointer and saves 
the value in ifa. The le pointer references the le_softc structure indexed by 
ifp->if_unit. The switch statement, based on cmd, makes up the main body 
of the function. 

638-656

Only the SIOCSIFFLAGS case is shown in Figure 4.31. By the time ifioctl calls 
leioctl, the interface flags have been changed. The code shown here forces the 
physical interface into a state that matches the configuration of the flags. If the 
interface is going down (IFF_UP is not set), but the interface is operating, the 
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interface is shut down. If the interface is going up but is not operating, the interface is 
initialized and restarted. 

If the promiscuous bit has been changed, the interface is shut down, reset, and 
restarted to implement the change. 

The expression including the exclusive OR and IFF_PROMISC is true only if the 
request changes the IFF_PROMISC bit. 

672-677

The default case for unrecognized commands posts EINVAL, which is returned at 
the end of the function. 

4.5. Summary 

In this chapter we described the implementation of the LANCE Ethernet device 
driver, which we refer to throughout the text. We saw how the Ethernet driver detects 
broadcast and multicast addresses on input, how the Ethernet and 802.3 
encapsulations are detected, and how incoming frames are demultiplexed to the 
appropriate protocol queue. In Chapter 21 we’ll see how IP addresses (unicast, 
broadcast, and multicast) are converted into the correct Ethernet addresses on output. 

Finally, we discussed the protocol-specific ioctl commands that access the 
interface-layer data structures. 

Exercises

4.1 In leread, the M_MCAST flag (in addition to M_BCAST) is always set 
when a broadcast packet is received. Compare this behavior to the code in 
ether_input. Why are the flags set in leread and ether_input? 
Does it matter? Which is correct? 

4.2 In ether_input (Figure 4.13), what would happen if the test for the 
broadcast address and the test for a multicast address were swapped? What 
would happen if the if on the test for a multicast address were not preceded 
by an else?
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Chapter 5. Interfaces: SLIP and Loopback 

5.1. Introduction 

In Chapter 4 we looked at the Ethernet interface. In this chapter we describe the SLIP and loopback 
interfaces, as well as the ioctl commands used to configure all network interfaces. The TCP 
compression algorithm used by the SLIP driver is described in Section 29.13. The loopback driver is 
straightforward and we discuss it here in its entirety. 

Figure 5.1, which also appeared as Figure 4.2, lists the entry points to our three example drivers. 

Figure 5.1. Interface functions for the example drivers. 

 

 

5.2. Code Introduction 

The files containing code for SLIP and loopback drivers are listed in Figure 5.2. 

Figure 5.2. Files discussed in this chapter. 

 

 
 

Global Variables

The SLIP and loopback interface structures are described in this chapter. 

Figure 5.3. Global variables introduced in this chapter. 
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sl_softc is an array, since there can be many SLIP interfaces. loif is not an array, since there 
can be only one loopback interface. 

Statistics

The statistics from the ifnet structure described in Chapter 4 are also updated by the SLIP and 
loopback drivers. One other variable (which is not in the ifnet structure) collects statistics; it is 
shown in Figure 5.4. 

Figure 5.4. tk_nin variable. 

 

 

5.3. SLIP Interface 

A SLIP interface communicates with a remote system across a standard asynchronous serial line. As 
with Ethernet, SLIP defines a standard way to frame IP packets as they are transmitted on the serial 
line. Figure 5.5 shows the encapsulation of an IP packet into a SLIP frame when the IP packet 
contains SLIP’s reserved characters. 

Figure 5.5. SLIP encapsulation of an IP packet. 

 

 

Packets are separated by the SLIP END character 0xc0. If the END character appears in the IP 
packet, it is prefixed with the SLIP ESC character 0xdb and transmitted as 0xdc instead. When the 
ESC character appears in the IP packet, it is prefixed with the ESC character 0xdb and transmitted as 
0xdd.

Since there is no type field in SLIP frames (as there is with Ethernet), SLIP is suitable only for 
carrying IP packets. 

SLIP is described in RFC 1055 [Romkey 1988], where its many weaknesses and 
nonstandard status are also stated. Volume 1 contains a more detailed description of 
SLIP encapsulation. 
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The Point-to-Point Protocol (PPP) was designed to address SLIP’s problems and to 
provide a standard method for transmitting frames across a serial link. PPP is defined 
in RFC 1332 [McGregor 1992] and RFC 1548 [Simpson 1993]. Net/3 does not 
contain an implementation of PPP, so we do not discuss it in this text. See Section 
2.6 of Volume 1 for more information regarding PPP. Appendix B describes where 
to obtain a reference implementation of PPP. 

The SLIP Line Discipline: SLIPDISC

In Net/3 the SLIP interface relies on an asynchronous serial device driver to send and receive the data. 
Traditionally these device drivers have been called TTYs (teletypes). The Net/3 TTY subsystem 
includes the notion of a line discipline that acts as a filter between the physical device and I/O system 
calls such as read and write. A line discipline implements features such as line editing, newline 
and carriage-return processing, tab expansion, and more. The SLIP interface appears as a line 
discipline to the TTY subsystem, but it does not pass incoming data to a process reading from the 
device and does not accept outgoing data from a process writing to the device. Instead, the SLIP 
interface passes incoming packets to the IP input queue and accepts outgoing packets through the 
if_output function in SLIP’s ifnet structure. The kernel identifies line disciplines by an 
integer constant, which for SLIP is SLIPDISC.

Figure 5.6 shows a traditional line discipline on the left and the SLIP discipline on the right. We show 
the process on the right as slattach since it is the program that initializes a SLIP interface. The 
details of the TTY subsystem and line disciplines are outside the scope of this text. We present only 
the information required to understand the workings of the SLIP code. For more information about the 
TTY subsystem see [Leffler et al. 1989]. Figure 5.7 lists the functions that implement the SLIP driver. 
The middle columns indicate whether the function implements line discipline features, network 
interface features, or both. 

Figure 5.6. The SLIP interface as a line discipline. 
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Figure 5.7. The functions in the SLIP device driver. 

 

 

The SLIP driver in Net/3 supports compression of TCP packet headers for better throughput. We 
discuss header compression in Section 29.13, so Figure 5.7 omits the functions that implement this 
feature. 

The Net/3 SLIP interface also supports an escape sequence. When detected by the 
receiver, the sequence shuts down SLIP processing and returns the device to the 
standard line discipline. We omit this processing from our discussion. 

Figure 5.8 shows the complex relationship between SLIP as a line discipline and SLIP as a network 
interface. 

Figure 5.8. SLIP device driver. 
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In Net/3 sc_ttyp and t_sc point to the tty structure and the 
sl_softc[0] structure. Instead of cluttering the figure with two arrows, we use 
a double-ended arrow positioned at each pointer to illustrated the two links between 
the structures. 

Figure 5.8 contains a lot of information: 

The network interface is represented by the sl_softc structure and the TTY device by 
the tty structure. 
Incoming bytes are stored in the cluster (shown behind the tty structure). When a complete 
SLIP frame is received, the enclosed IP packet is put on the ipintrq by slinput. 
Outgoing packets are dequeued from if_snd or sc_fastq, converted to SLIP frames, 
and passed to the TTY device by slstart. The TTY buffers outgoing bytes in the 
clist structure. The t_oproc function drains and transmits the bytes held in the 
clist structure. 

SLIP Initialization: slopen and slinit

We discussed in Section 3.7 how slattach initializes the sl_softc structures. The interface 
remains initialized but inoperative until a program (usually slattach) opens a TTY device (e.g., 
/dev/tty01) and issues an ioctl command to replace the standard line discipline with the 
SLIP discipline. At this point the TTY subsystem calls the line discipline’s open function (in this case 
slopen), which establishes the association between a particular TTY device and a particular SLIP 
interface. slopen is shown in Figure 5.9. 

Figure 5.9. The slopen function. 
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181-193

Two arguments are passed to slopen:dev, a kernel device identifier that slopen does not 
use; and tp, a pointer to the tty structure associated with the TTY device. First some precautions: 
if the process does not have superuser privileges, or if the TTY’s line discipline is set to SLIPDISC 
already, slopen returns immediately. 

194-205

The for loop searches the array of sl_softc structures for the first unused entry, calls slinit 
(Figure 5.10), joins the tty and sl_softc structures by t_sc and sc_ttyp, and copies the 
TTY output speed (t_ospeed) into the SLIP interface. ttyflush discards any pending input or 
output data in the TTY queues. slopen returns ENXIO if a SLIP interface structure is not 
available, or 0 if it was successful. 

Figure 5.10. The slinit function. 

 

 

Notice that the first available sl_softc structure is associated with the TTY 
device. There need not be a fixed mapping between TTY devices and SLIP interfaces 
if the system has more than one SLIP line. In fact, the mapping depends on the order 
in which slattach opens and closes the TTY devices. 

The slinit function shown in Figure 5.10 initializes the sl_softc structure. 

156-175

The slinit function allocates an mbuf cluster and attaches it to the sl_softc structure with 
three pointers. Incoming bytes are stored in the cluster until an entire SLIP frame has been received. 
sc_buf always points to the start of the packet in the cluster, sc_mp points to the location of the 
next byte to be received, and sc_ep points to the end of the cluster. sl_compress_init 
initializes the TCP header compression state for this link (Section 29.13). 
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In Figure 5.8 we see that sc_buf does not point to the first byte in the cluster. slinit leaves 
room for 148 bytes (BUFOFFSET), as the incoming packet may have a compressed header that will 
expand to fill this space. The bytes that have already been received are shaded in the cluster. We see 
that sc_mp points to the byte just after the last byte received and sc_ep points to the end of the 
cluster. Figure 5.11 shows the relationships between several SLIP constants. 

Figure 5.11. SLIP constants. 

 

 

All that remains to make the interface operational is to assign it an IP address. As with the Ethernet 
driver, we postpone the discussion of address assignment until Section 6.6. 

SLIP Input Processing: slinput

The TTY device driver delivers incoming characters to the SLIP line discipline one at a time by 
calling slinput. Figure 5.12 shows the slinput function but omits the end-of-frame 
processing, which is discussed separately. 
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Figure 5.12. slinput function. 

 

 

 

527-545

 135



ptg11539634

The arguments to slinput are c, the next input character; and tp, a pointer to the device’s tty 
structure. The global integer tk_nin counts the incoming characters for all TTY devices. 
slinput converts tp->t_sc to sc, a pointer to an sl_softc structure. If there is no 
interface associated with the TTY device, slinput returns immediately. 

The first argument to slinput is an integer. In addition to the received character, c contains 
control information sent from the TTY device driver in the high-order bits. If an error is indicated in c 
or the modem-control lines are not enabled and should not be ignored, SC_ERROR is set and 
slinput returns. Later, when slinput processes the END character, the frame is discarded. 
The CLOCAL flag indicates that the system should treat the line as a local line (i.e., not a dialup line) 
and should not expect to see modem-control signals. 

546-636

slinput discards the control bits in c by masking it with TTY_CHARMASK, updates the count 
of bytes received on the interface, and jumps based on the received character: 

If c is an escaped ESC character and the previous character was an ESC, slinput 
replaces c with an ESC character. 
If c is an escaped END character and the previous character was an ESC, slinput 
replaces c with an END character. 
If c is the SLIP ESC character, sc_escape is set and slinput returns immediately 
(i.e., the ESC character is discarded). 
If c is the SLIP END character, the packet is put on the IP input queue. The processing for 
the SLIP frame end character is shown in Figure 5.13. 

Figure 5.13. slinput function: end-of-frame processing. 
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The common flow of control through this switch statement is to fall through (there is no 
default case). Most bytes are data and don’t match any of the four cases. Control also falls 
through the switch in the first two cases. 

637-649

If control falls through the switch, the received character is part of the IP packet. The character is 
stored in the cluster (if there is room), the pointers are advanced, sc_escape is cleared, and 
slinput returns. 

If the cluster is full, the character is discarded and slinput sets SC_ERROR. Control reaches 
error when the cluster is full or when an error is detected in the end-of-frame processing. At 
newpack the cluster pointers are reset for a new packet, sc_escape is cleared, and slinput 
returns. 

Figure 5.13 shows the FRAME_END code omitted from Figure 5.12. 

560-579
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slinput discards an incoming SLIP packet immediately if SC_ERROR was set while the packet 
was being received or if the packet is less than 3 bytes in length (remember that the packet may be 
compressed). 

If the SLIP interface is tapped by BPF, slinput saves a copy of the (possibly compressed) header 
in the chdr array. 

580-606

By examining the first byte of the packet, slinput determines if it is an uncompressed IP packet, a 
compressed TCP segment, or an uncompressed TCP segment. The type is saved in c and the type 
information is removed from the first byte of data (Section 29.13). If the packet appears to be 
compressed and compression is enabled, sl_uncompress_tcp attempts to uncompress the 
packet. If compression is not enabled, auto-enable compression is on, and if the packet is large enough 
sl_uncompress_tcp is also called. If it is a compressed TCP packet, the compression flag is 
set. 

slinput discards packets it does not recognize by jumping to error. Section 29.13 discusses 
the header compression techniques in more detail. The cluster now contains a complete uncompressed 
packet. 

607-618

After SLIP has decompressed the packet, the header and data are passed to BPF. Figure 5.14 shows 
the layout of the buffer constructed by slinput.

Figure 5.14. SLIP packet in BPF format. 

 

 

The first byte of the BPF header encodes the direction of the packet, in this case incoming 
(SLIPDIR_IN). The next 15 bytes contain the compressed header. The entire packet is passed to 
bpf_tap.

619-635

sl_btom converts the cluster to an mbuf chain. If the packet is small enough to fit in a single mbuf, 
sl_btom copies the packet from the cluster to a newly allocated mbuf packet header; otherwise 
sl_btom attaches the cluster to an mbuf and allocates a new cluster for the interface. This is faster 
than copying from one cluster to another. We do not show sl_btom in this text. 

Since only IP packets are transmitted on a SLIP interface, slinput does not have to select a 
protocol queue (as it does in the Ethernet driver). The packet is queued on ipintrq, an IP 
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software interrupt is scheduled, and slinput jumps to newpack, where it updates the cluster 
packet pointers and clears sc_escape.

While the SLIP driver increments if_ierrors if the packet cannot be queued 
on ipintrq, neither the Ethernet nor loopback drivers increment this statistic in 
the same situation. 

Access to the IP input queue must be protected by splimp even though slinput is called at 
spltty. Recall from Figure 1.14 that an splimp interrupt can preempt spltty processing. 

SLIP Output Processing: sloutput

As with all network interfaces, output processing begins when a network-level protocol calls the 
interface’s if_output function. For the Ethernet driver, the function is ether_output. For 
SLIP, the function is sloutput (Figure 5.15). 

Figure 5.15. sloutput function. 
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259-289

The four arguments to sloutput are: ifp, a pointer to the SLIP ifnet structure (in this case 
an sl_softc structure); m, a pointer to the packet to be queued for output; dst, the next-hop 
destination for the packet; and rtp, a pointer to a route entry. The fourth argument is not used by 
sloutput, but it is required since sloutput must match the prototype for the if_output 
function in the ifnet structure. 

sloutput ensures that dst is an IP address, that the interface is connected to a TTY device, and 
that the TTY device is operating (i.e., the carrier is on or should be ignored). An error is returned 
immediately if any of these tests fail. 

290-291

The SLIP interface maintains two queues of outgoing packets. The standard queue, if_snd, is 
selected by default. 

292-295

If the outgoing packet contains an ICMP message and SC_NOICMP is set for the interface, the 
packet is discarded. This prevents a SLIP link from being overwhelmed by extraneous ICMP packets 
(e.g., ECHO packets) sent by a malicious user (Chapter 11). 

The error code ENETRESET indicates that the packet was discarded because of a policy decision 
(versus a network failure). We’ll see in Chapter 11 that the error is silently discarded unless the ICMP 
message was generated locally, in which case an error is returned to the process that tried to send the 
message. 

Net/2 returned a 0 in this case. To a diagnostic tool such as ping or 
traceroute it would appear as if the packet disappeared since the output 
operation would report a successful completion. 

In general, ICMP messages can be discarded. They are not required for correct 
operation, but discarding them makes troubleshooting more difficult and may lead to 
less than optimal routing decisions, poorer performance, and wasted network 
resources. 

296-297

If the TOS field in the outgoing packet specifies low-delay service (IPTOS_LOWDELAY), the 
output queue is changed to sc_fastq.

RFC 1700 and RFC 1349 [Almquist 1992] specify the TOS settings for the standard 
protocols. Low-delay service is specified for Telnet, Rlogin, FTP (control), TFTP, 
SMTP (command phase), and DNS (UDP query). See Section 3.2 of Volume 1 for 
more details. 

In previous BSD releases, the ip_tos was not set correctly by applications. The 
SLIP driver implemented TOS queueing by examining the transport headers 
contained within the IP packet. If it found TCP packets for the FTP (command), 
Telnet, or Rlogin ports, the packet was queued as if IPTOS_LOWDELAY was 
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specified. Many routers continue this practice, since many implementations of these 
interactive services still do not set ip_tos.

298-312

The packet is now placed on the selected queue, the interface statistics are updated, and (if the TTY 
output queue is empty) sloutput calls slstart to initiate transmission of the packet. 

SLIP increments if_oerrors if the interface queue is full; ether_output 
does not. 

Unlike the Ethernet output function (ether_output), sloutput does not construct a data-
link header for the outgoing packet. Since the only other system on a SLIP network is at the other end 
of the serial link, there is no need for hardware addresses or a protocol, such as ARP, to convert 
between IP addresses and hardware addresses. Protocol identifiers (such as the Ethernet type field) are 
also superfluous, since a SLIP link carries only IP packets. 

slstart Function

In addition to the call by sloutput, the TTY device driver calls slstart when it drains its 
output queue and needs more bytes to transmit. The TTY subsystem manages its queues through a 
clist structure. In Figure 5.8 the output clist t_outq is shown below slstart and above the 
device’s t_oproc function. slstart adds bytes to the queue, while t_oproc drains the 
queue and transmits the bytes. 

The slstart function is shown in Figure 5.16. 

Figure 5.16. slstart function: packet dequeueing. 

 

 141



ptg11539634
 

 

318-358

When slstart is called, tp points to the device’s tty structure. The body of slstart 
consists of a single for loop. If the output queue t_outq is not empty, slstart calls the 
output function for the device, t_oproc, which transmits as many bytes as the device will accept. 
If more than 100 bytes (SLIP_HIWAT) remain in the TTY output queue, slstart returns 
instead of adding another packet’s worth of bytes to the queue. The output device generates an 
interrupt when it has transmitted all the bytes, and the TTY subsystem calls slstart when the 
output list is empty. 

If the TTY output queue is empty, a packet is dequeued from sc_fastq or, if sc_fastq is 
empty, from the if_snd queue, thus transmitting all interactive packets before any other packets. 

There are no standard SNMP variables to count packets queued according to the TOS 
fields. The XXX comment in line 353 indicates that the SLIP driver is counting low-
delay packets in if_omcasts, not multicast packets. 

359-383

If the SLIP interface is tapped by BPF, slstart makes a copy of the output packet before any 
header compression occurs. The copy is saved on the stack in the bpfbuf array. 

384-388
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If compression is enabled and the packet contains a TCP segment, sloutput calls 
sl_compress_tcp, which attempts to compress the packet. The resulting packet type is 
returned and logically ORed with the first byte in IP header (Section 29.13). 

389-398

The compressed header is now copied into the BPF header, and the direction recorded as 
SLIPDIR_OUT. The completed BPF packet is passed to bpf_tap.

483-484

slstart returns if the for loop terminates. 

The next section of slstart (Figure 5.17) discards packets if the system is low on memory, and 
implements a simple technique for discarding data generated by noise on the serial line. This is the 
code omitted from Figure 5.16. 

Figure 5.17. slstart function: resource shortages and line noise. 

 

 

399-409

If the system is low on clist structures, the packet is discarded and counted as a collision. By 
continuing the loop instead of returning, slstart quickly discards all remaining packets queued 
for output. Each iteration discards a packet, since the device still has too many bytes queued for 
output. Higher-level protocols must detect the lost packets and retransmit them. 

410-418

If the TTY output queue is empty, the communication line may have been idle for a period of time and 
the receiver at the other end may have received extraneous data created by line noise. slstart 
places an extra SLIP END character in the output queue. A 0-length frame or a frame created by noise 
on the line should be discarded by the SLIP interface or IP protocol at the receiver. 
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Figure 5.18 illustrates this technique for discarding line noise and is attributed to Phil Karn in RFC 
1055. In Figure 5.18, the second end-of-frame (END) is transmitted because the line was idle for a 
period of time. The invalid frame created by the noise and the END byte is discarded by the receiving 
system. 

Figure 5.18. Karn's method for discarding noise on a SLIP line. 

 

 

In Figure 5.19 there is no noise on the line and the 0-length frame is discarded by the receiving 
system. 

Figure 5.19. Karn's method with no noise. 

 

 

The next section of slstart (Figure 5.20) transfers the data from an mbuf to the output queue for 
the TTY device. 
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Figure 5.20. s1start function: packet transmission. 

 

 

419-467

The outer while loop in this section is executed once for each mbuf in the chain. The middle 
while loop transfers the data from each mbuf to the output device. The inner while loop 
advances cp until it finds an END or ESC character. b_to_q transfers the bytes between bp and 
cp. END and ESC characters are escaped and queued with two calls to putc. This middle loop is 
repeated until all the bytes in the mbuf are passed to the TTY device’s output queue. Figure 5.21 
illustrates this process with an mbuf containing a SLIP END character and a SLIP ESC character. 
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Figure 5.21. SLIP transmission of a single mbuf. 

 

 

bp marks the beginning of the first section of the mbuf to transfer with b_to_q, and cp marks the 
end of the first section. ep marks the end of the data in the mbuf. 

If b_to_q or putc fail (i.e., data cannot be queued on the TTY device), the break causes 
slstart to fall out of the middle while loop. The failure indicates that the kernel has run out of 
clist resources. After each mbuf is copied to the TTY device, or when an error occurs, the mbuf is 
released, m is advanced to the next mbuf in the chain, and the outer while loop continues until all 
the mbufs in the chain have been processed. 

Figure 5.22 shows the processing done by slstart to complete the outgoing frame. 

Figure 5.22. slstart function: end-of-frame processing. 

 

 

468-482

Control reaches this code when the outer while loop has finished queueing the bytes on the output 
queue. The driver sends a SLIP END character, which terminates the frame. 

If an error occurred while queueing the bytes, the outgoing frame is invalid and is detected by the 
receiving system because of an invalid checksum or length. 

Whether or not the frame is terminated because of an error, if the END character does not fit on the 
output queue, the last character on the queue is discarded and slstart ends the frame. This 
guarantees that an END character is transmitted. The invalid frame is discarded at the destination. 
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SLIP Packet Loss

The SLIP interface provides a good example of a best-effort service. SLIP discards packets if the TTY 
is overloaded; it truncates packets if resources are unavailable after the packet transmission has 
started, and it inserts extraneous null packets to detect and discard line noise. In each of these cases, 
no error message is generated. SLIP depends on IP and the transport layers to detect damaged and 
missing packets. 

On a router forwarding packets from a fast interface such as Ethernet to a low-speed SLIP line, a large 
percentage of packets are discarded if the sender does not recognize the bottleneck and respond by 
throttling back the data rate. In Section 25.11 we’ll see how TCP detects and responds to this 
condition. Applications using a protocol without flow control, such as UDP, must recognize and 
respond to this condition on their own (Exercise 5.8). 

SLIP Performance Considerations

The MTU of a SLIP frame (SLMTU), the clist high-water mark (SLIP_HIWAT), and SLIP’s TOS 
queueing strategies are all designed to minimize the delay inherent in a slow serial link for interactive 
traffic. 

1. A small MTU improves the delay for interactive data (such as keystrokes and echoes), but 
hurts the throughput for bulk data transfer. A large MTU improves bulk data throughput, but 
increases interactive delays. Another problem with SLIP links is that a single typed character 
is burdened with 40 bytes of TCP and IP header information, which increases the 
communication delay. 

The solution is to pick an MTU large enough to provide good interactive response time and 
decent bulk data throughput, and to compress TCP/IP headers to reduce the per-packet 
overhead. RFC 1144 [Jacobson 1990a] describes a compression scheme and the timing 
calculations that result in selecting an MTU of 296 for a typical 9600 bits/sec asynchronous 
SLIP link. We describe Compressed SLIP (CSLIP) in Section 29.13. Sections 2.10 and 7.2 of 
Volume 1 summarize the timing considerations and illustrate the delay on SLIP links. 

2. If too many bytes are buffered in the clist (because SLIP_HIWAT is set too high), the TOS 
queueing will be thwarted as new interactive traffic waits behind the large amount of buffered 
data. If SLIP passes 1 byte at a time to the TTY driver (because SLIP_HIWAT is set too 
low), the device calls slstart for each byte and the line is idle for a brief period of time 
after each byte is transferred. Setting SLIP_HIWAT to 100 minimizes the amount of data 
queued at the device and reduces the frequency at which the TTY subsystem must call 
slstart to approximately once every 100 characters. 

3. As described, the SLIP driver provides TOS queueing by transmitting interactive traffic from 
the sc_fastq queue before other traffic on the standard interface queue, if_snd. 

slclose Function

For completeness, we show the slclose function, which is called when the slattach program 
closes SLIP’s TTY device and terminates the connection to the remote system. 
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Figure 5.23. slclose function. 

 

 

210-230

tp points to the TTY device to be closed. slclose flushes any remaining data out to the serial 
device, blocks TTY and network processing, and resets the TTY to the default line discipline. If the 
TTY device is attached to a SLIP interface, the interface is shut down, the links between the two 
structures are severed, the mbuf cluster associated with the interface is released, and the pointers into 
the now-discarded cluster are reset. Finally, splx reenables the TTY and network interrupts. 

sltioctl Function

Recall that a SLIP interface has two roles to play in the kernel: 

as a network interface, and 
as a TTY line discipline. 

Figure 5.7 indicated that slioctl processes ioctl commands issued for a SLIP interface 
through a socket descriptor. In Section 4.4 we showed how ifioctl calls slioctl. We’ll see a 
similar pattern for ioctl commands that we cover in later chapters. 

Figure 5.7 also indicated that sltioctl processes ioctl commands issued for the TTY device 
associated with a SLIP network interface. The one command recognized by sltioctl is shown in 
Figure 5.24. 

Figure 5.24. sltioctl commands. 
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The sltioctl function is shown in Figure 5.25. 

Figure 5.25. sltioctl function. 

 

 

236-252

The t_sc pointer in the tty structure points to the associated sl_softc structure. The unit 
number of the SLIP interface is copied from if_unit to *data, which is eventually returned to 
the process (Section 17.5). 

if_unit is initialized by slattach when the system is initialized, and t_sc is initialized by 
slopen when the slattach program selects the SLIP line discipline for the TTY device. Since 
the mapping between a TTY device and a SLIP sl_softc structure is established at run time, a 
process can discover the interface structure selected by the SLIOCGUNIT command. 

5.4. Loopback Interface 

Any packets sent to the loopback interface (Figure 5.26) are immediately queued for input. The 
interface is implemented entirely in software. 

Figure 5.26. Loopback device driver. 
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looutput, the if_output function for the loopback interface, places outgoing packets on the 
input queue for the protocol specified by the packet’s destination address. 

We already saw that ether_output may call looutput to queue a copy of an outgoing 
broadcast packet when the device has set IFF_SIMPLEX. In Chapter 12, we’ll see that multicast 
packets may be also be looped back in this way. looutput is shown in Figure 5.27. 

Figure 5.27. The looutput function. 
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57-68

The arguments to looutput are the same as those to ether_output since both are called 
indirectly through the if_output pointer in their ifnet structures: ifp, a pointer to the 
outgoing interface’s ifnet structure; m, the packet to send; dst, the destination address of the 
packet; and rt, routing information. If the first mbuf on the chain does not contain a packet, 
looutput calls panic.

Figure 5.28 shows the logical layout for a BPF loopback packet. 

Figure 5.28. BPF loopback packet: logical format. 

 

 

69-83

The driver constructs the BPF loopback packet header in m0 on the stack and connects m0 to the 
mbuf chain containing the original packet. Note the unusual declaration of m0. It is an mbuf, not a 
pointer to an mbuf. m_data in m0 points to af, which is also allocated on the stack. Figure 5.29 
shows this arrangement. 

Figure 5.29. BPF loopback packet: mbuf format. 

 

 

looutput copies the destination’s address family into af and passes the new mbuf chain to 
bpf_mtap, which processes the packet. Contrast this to bpf_tap, which accepts the packet in 
a single contiguous buffer not in an mbuf chain. As the comment indicates, BPF never releases mbufs 
in a chain, so it is safe to pass m0 (which points to an mbuf on the stack) to bpf_mtap.

84-89

 151

The remainder of looutput contains input processing for the packet. Even though this is an output 
function, the packet is being looped back to appear as input. First, m->m_pkthdr.rcvif is set 
to point to the receiving interface. If the caller provided a routing entry, looutput checks to see if 
it indicates that the packet should be rejected (RTF_REJECT) or silently discarded 
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(RTF_BLACKHOLE). A black hole is implemented by discarding the mbuf and returning 0. It 
appears to the caller as if the packet has been transmitted. To reject a packet, looutput returns 
EHOSTUNREACH if the route is for a host and ENETUNREACH if the route is for a network. 

The various RTF_xxx flags are described in Figure 18.25. 

90-120

looutput then selects the appropriate protocol input queue and software interrupt by examining 
sa_family in the packet’s destination address. It then queues recognized packets and schedules a 
software interrupt with schednetisr.

5.5. Summary 

We described the two remaining interfaces to which we refer throughout the text: sl0, a SLIP 
interface, and lo0, the standard loopback interface. 

We showed the relationship between the SLIP interface and the SLIP line discipline, described the 
SLIP encapsulation method, and discussed TOS processing for interactive traffic and other 
performance considerations for the SLIP driver. 

We showed how the loopback interface demultiplexes outgoing packets based on their destination 
address family and places the packet on the appropriate input queue. 

Exercises

5.1 Why does the loopback interface not have an input function? 

5.2 Why do you think mo is allocated on the stack in Figure 5.27? 

5.3 Perform an analysis of SLIP characteristics for a 19,200 bps serial line. Should the SLIP 
MTU be changed for this line? 

5.4 Derive a formula to select a SLIP MTU based on the speed of the serial line. 

5.5 What happens if a packet is too large to fit in SLIP’S input buffer? 

5.6 An earlier version of slinput did not set SC_ERROR when a packet overflowed the 
input buffer. How would the error be detected in this case? 

5.7 In Figure 4.31 le is initialized by indexing the le_softc array with ifp-
>if_unit. Can you think of another method for initializing le?

5.8 How can a UDP application recognize when its packets are being discarded because of a 
bottleneck in the network? 
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Chapter 6. IP Addressing 

6.1. Introduction 

This chapter describes how Net/3 manages IP addressing information. We start with the 
in_ifaddr and sockaddr_in structures, which are based on the generic ifaddr and 
sockaddr structures. 

The remainder of the chapter covers IP address assignment and several utility functions that search the 
interface data structures and manipulate IP addresses. 

IP Addresses 

Although we assume that readers are familiar with the basic Internet addressing system, several issues 
are worth pointing out. 

In the IP model, it is the network interfaces on a system (a host or a router) that are assigned 
addresses, not the system itself. In the case of a system with multiple interfaces, the system is 
multihomed and has more than one IP address. A router is, by definition, multihomed. As we’ll see, 
this architectural feature has several subtle ramifications. 

Five classes of IP addresses are defined. Class A, B, and C addresses support unicast communication. 
Class D addresses support IP multicasting. In a multicast communication, a single source sends a 
datagram to multiple destinations. Class D addresses and multicasting protocols are described in 
Chapter 12. Class E addresses are experimental. Packets received with class E addresses are discarded 
by hosts that aren’t participating in the experiment. 

It is important that we emphasize the difference between IP multicasting and hardware multicasting. 
Hardware multicasting is a feature of the data-link hardware used to transmit packets to multiple 
hardware interfaces. Some network hardware, such as Ethernet, supports data-link multicasting. Other 
hardware may not. 

IP multicasting is a software feature implemented in IP systems to transmit packets to multiple IP 
addresses that may be located throughout the internet. 

We assume that the reader is familiar with subnetting of IP networks (RFC 950 [Mogul and Postel 
1985] and Chapter 3 of Volume 1). We’ll see that each network interface has an associated subnet 
mask, which is critical in determining if a packet has reached its final destination or if it needs to be 
forwarded. In general, when we refer to the network portion of an IP address we are including any 
subnet that may defined. When we need to differentiate between the network and the subnet, we do so 
explicitly. 

The loopback network, 127.0.0.0, is a special class A network. Addresses of this form must never 
appear outside of a host. Packets sent to this network are looped back and received by the host. 

RFC 1122 requires that all addresses within the loopback network be handled 
correctly. Since the loopback interface must be assigned an address, many systems 
select 127.0.0.1 as the loopback address. If the system is not configured correctly, 
addresses such as 127.0.0.2 may not be routed to the loopback interface but instead 
may be transmitted on an attached network, which is prohibited. Some systems may 
correctly route the packet to the loopback interface where it is dropped since the 
destination address does not match the configured address: 127.0.0.1. 
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Figure 18.2 shows a Net/3 system configured to reject packets sent to a loopback 
address other than 127.0.0.1. 

Typographical Conventions for IP Addresses 

We usually display IP addresses in dotted-decimal notation. Figure 6.1 lists the range of IP address for 
each address class. 

Figure 6.1. Ranges for different classes of IP addresses. 

 

 

For some of our examples, the subnet field is not aligned with a byte boundary (i.e., a 
network/subnet/host division of 16/11/5 in a class B network). It can be difficult to identify the 
portions of such address from the dotted-decimal notation so we’ll also use block diagrams to illustrate 
the contents of IP addresses. We’ll show each address with three parts: network, subnet, and host. The 
shading of each part indicates its contents. Figure 6.2 illustrates both the block notation and the 
dotted-decimal notation using the Ethernet interface of the host sun from our sample network 
(Section 1.14). 

Figure 6.2. Alternate IP address notations. 
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When a portion of the address is not all 0s or all 1s, we use the two intermediate 
shades. We have two types of intermediate shades so we can distinguish network and 
subnet portions or to show combinations of address as in Figure 6.31. 
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Hosts and Routers 

Systems on an internet can generally be divided into two types: hosts and routers. A host usually has a 
single network interface and is either the source or destination for an IP packet. A router has multiple 
network interfaces and forwards packets from one network to the next as the packet moves toward its 
destination. To perform this function, routers exchange information about the network topology using 
a variety of specialized routing protocols. IP routing issues are complex, and they are discussed 
starting in Chapter 18. 

A system with multiple network interfaces is still called a host if it does not route packets between its 
network interfaces. A system may be both a host and a router. This is often the case when a router 
provides transport-level services such as Telnet access for configuration, or SNMP for network 
management. When the distinction between a host and router is unimportant, we use the term system.

Careless configuration of a router can disrupt the normal operation of a network, so RFC 1122 states 
that a system must default to operate as a host and must be explicitly configured by an administrator to 
operate as a router. This purposely discourages administrators from operating general-purpose host 
computers as routers without careful consideration. In Net/3, a system acts as a router if the global 
integer ipforwarding is nonzero and as a host if ipforwarding is 0 (the default). 

A router is often called a gateway in Net/3, although the term gateway is now more often associated 
with a system that provides application-level routing, such as an electronic mail gateway, and not one 
that forwards IP packets. We use the term router and assume that ipforwarding is nonzero in 
this book. We have also included all code conditionally included when GATEWAY is defined during 
compilation of the Net/3 kernel, which defines ipforwarding to be 1. 

6.2. Code Introduction 

The two headers and two C files listed in Figure 6.3 contain the structure definitions and utility 
functions described in this chapter. 

Figure 6.3. Files discussed in this chapter. 

 

 
 

Global Variables 

The two global variables introduced in this chapter are listed in Figure 6.4. 

Figure 6.4. Global variables introduced in this chapter. 
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6.3. Interface and Address Summary 

A sample configuration of all the interface and address structures described in this chapter is 
illustrated in Figure 6.5. 

Figure 6.5. Interface and address data structures. 

 

 

Figure 6.5 shows our three example interfaces: the Ethernet interface, the SLIP interface, and the 
loopback interface. All have a link-level address as the first node in their address list. The Ethernet 
interface is shown with two IP addresses, the SLIP interface with one IP address, and the loopback 
interface has an IP address and an OSI address. 

Note that all the IP addresses are linked into the in_ifaddr list and all the link-level addresses 
can be accessed from the ifnet_addrs array. 
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The ifa_ifp pointers within each ifaddr structure have been omitted from Figure 6.5 for 
clarity. The pointers refer back to the ifnet structure that heads the list containing the ifaddr 
structure. 
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The following sections describe the data structures contained in Figure 6.5 and the IP-specific 
ioctl commands that examine and modify the structures. 

6.4. sockaddr_in Structure 

We discussed the generic sockaddr and ifaddr structures in Chapter 3. Now we show the 
structures specialized for IP: sockaddr_in and in_ifaddr. Addresses in the Internet 
domain are held in a sockaddr_in structure: 

Figure 6.6. sockaddr_in structure. 

 

 

68-70

Net/3 stores 32-bit Internet addresses in network byte order in an in_addr structure for historical 
reasons. The structure has a single member, s_addr, which contains the address. That organization 
is kept in Net/3 even though it is superfluous and clutters the code. 

106-112

sin_len is always 16 (the size of the sockaddr_in structure) and sin_family is 
AF_INET. sin_port is a 16-bit value in network (not host) byte order used to demultiplex 
transport-level messages. sin_addr specifies a 32-bit Internet address. 

Figure 6.6 shows that the sin_port, sin_addr, and sin_zero members of 
sockaddr_in overlay the sa_data member of sockaddr. sin_zero is unused in the 
Internet domain but must consist of all 0 bytes (Section 22.7). It pads the sockaddr_in structure 
to the length of a sockaddr structure. 

Usually, when an Internet addresses is stored in a u_long it is in host byte order to facilitate 
comparisons and bit operations on the address. s_addr within the in_addr structure (Figure 
6.7) is a notable exception. 
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Figure 6.7. The organization of a sockaddr_in structure (sin_omitted). 

 

 

6.5. in_ifaddr Structure 

Figure 6.8 shows the interface address structure defined for the Internet protocols. For each IP address 
assigned to an interface, an in_ifaddr structure is allocated and added to the interface address list 
and to the global list of IP addresses (Figure 6.5). 

Figure 6.8. The in_ifaddr structure. 

 

 

41-45

in_ifaddr starts with the generic interface address structure, ia_ifa, followed by the IP-
specific members. The ifaddr structure was shown in Figure 3.15. The two macros, ia_ifp and 
ia_flags, simplify access to the interface pointer and interface address flags stored in the 
generic ifaddr structure. ia_next maintains a linked list of all Internet addresses that have 
been assigned to any interface. This list is independent of the list of link-level ifaddr structures 
associated with each interface and is accessed through the global list in_ifaddr.

46-54

The remaining members (other than ia_multiaddrs) are included in Figure 6.9, which shows 
the values for the three interfaces on sun from our example class B network. The addresses stored as 
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u_long variables are kept in host byte order; the in_addr and sockaddr_in variables are 
in network byte order. sun has a PPP interface, but the information shown in this table is the same 
for a PPP interface or for a SLIP interface. 

Figure 6.9. Ethernet, PPP, and loopback in_ifaddr structures on sun.

 

 

55-56

The last member of the in_ifaddr structure points to a list of in_multi structures (Section 
12.6), each of which contains an IP multicast address associated with the interface. 

6.6. Address Assignment 

In Chapter 4 we showed the initialization of the interface structures when they are recognized at 
system initialization time. Before the Internet protocols can communicate through the interfaces, they 
must be assigned an IP address. Once the Net/3 kernel is running, the interfaces are configured by the 
ifconfig program, which issues configuration commands through the ioctl system call on a 
socket. This is normally done by the /etc/netstart shell script, which is executed when the 
system is bootstrapped. 

Figure 6.10 shows the ioctl commands discussed in this chapter. The addresses associated with the 
commands must be from the same address family supported by the socket on which the commands are 
issued (i.e., you can’t configure an OSI address through a UDP socket). For IP addresses, the ioctl 
commands are issued on a UDP socket. 
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Figure 6.10. Interface ioctl commands. 

 

 

The commands that get address information start with SIOCG, and the commands that set address 
information start with SIOCS. SIOC stands for socket ioctl, the G for get, and the S for set.

In Chapter 4 we looked at five protocol-independent ioctl commands. The commands in Figure 
6.10 modify the addressing information associated with an interface. Since addresses are protocol-
specific, the command processing is protocol-dependent. Figure 6.11 highlights the ioctl-related 
functions associated with these commands. 

Figure 6.11. ioct1 functions described in this chapter. 
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ifioctl Function 

As shown in Figure 6.11, ifioctl passes protocol-dependent ioctl commands to the 
pr_usrreq function of the protocol associated with the socket. Control is passed to 
udp_usrreq and immediately to in_control where most of the processing occurs. If the 
same commands are issued on a TCP socket, control would also end up at in_control. Figure 
6.12 repeats the default code from ifioctl, first shown in Figure 4.22. 

Figure 6.12. ifioctl function: protocol-specific commands. 

 

 

447-454

The function passes all the relevant data for the ioctl commands listed in Figure 6.10 to the user-
request function of the protocol associated with the socket on which the request was made. For a UDP 
socket, udp_usrreq is called. Section 23.10 describes the udp_usrreq function in detail. For 
now, we need to look only at the PRU_CONTROL code from udp_usrreq:

   if (req == PRU_CONTROL) 
       return (in_control(so, (int)m, (caddr_t)addr, 
(struct ifnet *)control)); 

        
 
 

in_control Function 

Figure 6.11 shows that control can reach in_control through the default case in 
soo_ioctl or through the protocol-dependent case in ifioctl. In both cases, 
udp_usrreq calls in_control and returns whatever in_control returns. Figure 6.13 
shows in_control.
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Figure 6.13. in_control function. 

 

 

132-145

so points to the socket on which the ioctl (specified by the second argument, cmd) was issued. 
The third argument, data, points to the data (second column of Figure 6.10) to be used or returned 
by the command. The last argument, ifp, is null (non-interface ioctl from soo_ioctl) or 
points to the interface named in the ifreq or in_aliasreq structures (interface ioctl from 
ifioctl). in_control initializes ifa and ifra to access data as an ifreq or as an 
in_aliasreq structure. 

146-152

If ifp points to an ifnet structure, the for loop locates the first address on the Internet address 
list associated with the interface. If an address is found, ia points to its in_ifaddr structure, 
otherwise, ia is null. 
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If ifp is null, cmd will not match any of the cases in the first switch or any of the nondefault 
cases in the second switch. The default case in the second switch returns 
EOPNOTSUPP when ifp is null. 

153-330

The first switch in in_control makes sure all the preconditions for each command are met 
before the second switch processes the command. The individual cases are described in the 
following sections. 

If the default case is executed in the second switch, ifp points to an interface structure, 
and the interface has an if_ioctl function, then in_control passes the ioctl command 
to the interface for device-specific processing. 

Net/3 does not define any interface commands that would be processed by the 
default case. But the driver for a particular device might define its own interface 
ioctl commands and they would be processed by this case. 

331-332

We’ll see that many of the cases within the switch statements return directly. If control falls 
through both switch statements, in_control returns 0. Several of the cases do break out of 
the second switch.

We look at the interface ioctl commands in the following order: 

assigning an address, network mask, or destination address; 
assigning a broadcast address; 
retrieving an address, network mask, destination address, or broadcast address; 
assigning multiple addresses to an interface; or 
deleting an address. 

For each group of commands, we describe the precondition processing done in the first switch 
statement and then the command processing done in the second switch statement. 

Preconditions: SIOCSIFADDR, SIOCSIFNETMASK, and 
SIOCSIFDSTADDR

Figure 6.14 shows the precondition testing for SIOCSIFADDR, SIOCSIFNETMASK, and 
SIOCSIFDSTADDR.
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Figure 6.14. in_control function: address assignment. 

 

 
 

Superuser only 

166-172

If the socket was not created by a superuser process, these commands are prohibited and 
in_control returns EPERM. If no interface is associated with the request, the kernel panics. 
The panic should never happen since ifioctl returns if it can’t locate an interface (Figure 
4.22). 

The SS_PRIV flag is set by socreate (Figure 15.16) when a superuser process 
creates a socket. Because the test here is against the flag and not the effective user ID 
of the process, a set-user-ID root process can create a socket, and give up its 
superuser privileges, but still issue privileged ioctl commands. 

 164



ptg11539634

Allocate structure 

173-191

If ia is null, the command is requesting a new address. in_control allocates an in_ifaddr 
structure, clears it with bzero, and links it into the in_ifaddr list for the system and into the 
if_addrlist list for the interface. 

Initialize structure 

192-206

The next portion of code initializes the in_ifaddr structure. First the generic pointers in the 
ifaddr portion of the structure are initialized to point to the sockaddr_in structures in the 
in_ifaddr structure. The function also initializes the ia_sockmask and ia_broadaddr
structures as necessary. Figure 6.15 illustrates the in_ifaddr structure after this initialization. 

Figure 6.15. An in_ifaddr structure after initialization by in_control.

 

 

202-206

Finally, in_control establishes the back pointer from the in_ifaddr to the interface’s 
ifnet structure. 

Net/3 counts only nonloopback interfaces in in_interfaces.

Address Assignment: SIOCSIFADDR

The precondition code has ensured that ia points to an in_ifaddr structure to be modified by 
the SIOCSIFADDR command. Figure 6.16 shows the code executed by in_control in the 
second switch for this command. 
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Figure 6.16. in_control function: address assignment. 

 

 

259-261

in_ifinit does all the work. The IP address included within the ifreq structure 
(ifr_addr) is passed to in_ifinit.

in_ifinit Function 

The major steps in in_ifinit are: 

copy the address into the structure and inform the hardware of the change, 
discard any routes configured with the previous address, 
establish a subnet mask for the address, 
establish a default route to the attached network (or host), and 
join the all-hosts group on the interface. 

The code is described in three parts, starting with Figure 6.17. 

Figure 6.17. in_ifinit function: address assignment and route initialization. 

 

 

353-357

 166



ptg11539634

The four arguments to in_ifinit are: ifp, a pointer to the interface structure; ia, a pointer 
to the in_ifaddr structure to be changed; sin, a pointer to the requested IP address; and 
scrub, which indicates if existing routes for this interface should be discarded, i holds the IP 
address in host byte order. 

Assign address and notify hardware 

358-374

in_ifinit saves the previous address in oldaddr in case it must be restored when an error 
occurs. If the interface has an if_ioctl function defined, in_control calls it. The three 
functions leioctl, slioctl, and loioctl for the sample interfaces are described in the 
next section. The previous address is restored and in_control returns if an error occurs. 

Ethernet configuration 

375-378

For Ethernet devices, arp_rtrequest is selected as the link-level routing function and the 
RTF_CLONING flag is set. arp_rtrequest is described in Section 21.13 and 
RTF_CLONING is described at the end of Section 19.4. As the XXX comment suggests, putting the 
code here avoids changing all the Ethernet drivers. 

Discard previous routes 

379-384

If the caller requests that existing routes be scrubbed, the previous address is reattached to 
ifa_addr while in_ifscrub locates and invalidates any routes based on the old address. 
After in_ifscrub returns, the new address is restored. 

The section of in_ifinit shown in Figure 6.18 constructs the network and subnet masks. 

Figure 6.18. in_ifinit function: network and subnet masks. 
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Construct network mask and default subnetmask 

385-400

A tentative network mask is constructed in ia_netmask based on whether the address is a class 
A, class B, or class C address. If no subnetwork mask is associated with the address yet, 
ia_subnetmask and ia_sockmask are initialized to the tentative mask in 
ia_netmask.

If a subnet has been specified, in_ifinit logically ANDs the tentative netmask and the existing 
submask together to get a new network mask. This operation may clear some of the 1 bits in the 
tentative netmask (it can never set the 0 bits, since 0 logically ANDed with anything is 0). In this case, 
the network mask has fewer 1 bits than would be expected by considering the class of the address. 

This is called supernetting and is described in RFC 1519 [Fuller et al. 1993]. A 
supernet is a grouping of several class A, class B, or class C networks. Supernetting 
is also discussed in Section 10.8 of Volume 1. 

An interface is configured by default without subnetting (i.e., the network and subnetwork masks are 
the same). An explicit request (with SIOCSIFNETMASK or SIOCAIFADDR) is required to 
enable subnetting (or supernetting). 

Construct network and subnetwork numbers 

401-403

The network and subnetwork numbers are extracted from the new address by the network and subnet 
masks. The function in_socktrim sets the length of in_sockmask (which is a 
sockaddr_in structure) by locating the last byte that contains a 1 bit in the mask. 

Figure 6.19 shows the last section of in_ifinit, which adds a route for the interface and joins 
the all-hosts multicast group. 
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Figure 6.19. in_ifinit function: routing and multicast groups. 

 

 
 

Establish route for host or network 

404-422

The next step is to create a route for the network specified by the new address. in_ifinit copies 
the routing metric from the interface to the in_ifaddr structure, constructs the broadcast 
addresses if the interface supports broadcasts, and forces the destination address to be the same as the 
assigned address for loopback interfaces. If a point-to-point interface does not yet have an IP address 
assigned to the other end of the link, in_ifinit returns before trying to establish a route for the 
invalid address. 

in_ifinit initializes flags to RTF_UP and logically ORs in RTF_HOST for loopback and 
point-to-point interfaces. rtinit installs a route to the network (RTF_HOST not set) or host 
(RTF_HOST set) for the interface. If rtinit succeeds, the IFA_ROUTE flag in ia_flags is 
set to indicate that a route is installed for this address. 

Join all-hosts group 

423-433

Finally, a multicast capable interface must join the all-hosts multicast group when it is initialized. 
in_addmulti does the work and is described in Section 12.11. 
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Network Mask Assignment: SIOCSIFNETMASK

Figure 6.20 shows the processing for the network mask command. 

Figure 6.20. in_control function: network mask assignment. 

 

 

262-265

in_control extracts the requested netmask from the ifreq structure and stores it in 
ia_sockmask in network byte order and in ia_subnetmask in host byte order. 

Destination Address Assignment: SIOCSIFDSTADDR

For point-to-point interfaces, the address of the system on the other end of the link is specified by the 
SIOCSIFDSTADDR command. Figure 6.14 showed the precondition processing for the code 
shown in Figure 6.21. 

Figure 6.21. in_control function: destination address assignment. 

 

 

236-245

Only point-to-point networks have destination addresses, so in_control returns EINVAL for 
other networks. After saving the current destination address in oldaddr, the code sets the new 
address and informs the interface through the if_ioctl function. If an error occurs, the old 
address is restored. 
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If the address has a route previously associated with it, that route is deleted by the first call to 
rtinit and a new route to the new destination is installed by the second call to rtinit.

Retrieving Interface Information 

Figure 6.22 shows the precondition processing for the SIOCSIFBRDADDR command as well as 
the ioctl commands that return interface information to the calling process. 

Figure 6.22. in_control function: preconditions. 

 

 

207-217

The broadcast address may only be set through a socket created by a superuser process. The 
SIOCSIFBRDADDR command and the four SIOCGxxx commands work only when an address is 
already defined for the interface, in which case ia won’t be null (ia was set by in_control, 
Figure 6.13). If ia is null, EADDRNOTAVAIL is returned. 

The processing of these five commands (four get commands and one set command) is shown in Figure 
6.23. 

Figure 6.23. in_control function: processing. 
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220-235

The unicast address, broadcast address, destination address, or netmask are copied into the ifreq 
structure. A broadcast address is available only from a network interface that supports broadcasts, and 
a destination address is available only from a point-to-point interface. 

254-258

The broadcast address is copied from the ifreq structure only when the interface supports 
broadcasts. 

Multiple IP Addresses per Interface 

The SIOCGxxx and SIOCSxxx commands operate only on the first IP address associated with an 
interface t he first address located by the loop at the start of in_control (Figure 6.25). To 
support multiple IP addresses per interface, the additional addresses must be assigned and configured 
with the SIOCAIFADDR command. In fact, SIOCAIFADDR can do everything the SIOCGxxx
and SIOCSxxx commands do. The ifconfig program uses SIOCAIFADDR to configure all of 
the address information for an interface. 

As noted earlier, having multiple addresses per interface can ease the transition when hosts or 
networks are renumbered. A fault-tolerant software system might use this feature to allow a backup 
system to assume the IP address of a failed system. 

The -alias option to Net/3’s ifconfig program passes information about the additional 
addresses to the kernel in an in_aliasreq structure, shown in Figure 6.24. 

Figure 6.24. in_aliasreq structure. 

 

 

59-65

Notice that unlike the ifreq structure, there is no union defined within the in_aliasreq 
structure. With SIOCAIFADDR, the address, broadcast address, and mask can be specified in a 
single ioctl call. 
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SIOCAIFADDR adds a new address or changes the information associated with an existing address. 
SIOCDIFADDR deletes the in_ifaddr structure for the matching IP address. Figure 6.25 
shows the precondition processing for the SIOCAIFADDR and SIOCDIFADDR commands, 
which assumes that the loop at the start of in_control (Figure 6.13) has set ia to point to the 
first IP address associated with the interface specified in ifra_name (if it exists). 

Figure 6.25. in_control function: adding and deleting addresses. 

 

 

154-165

Because the SIOCDIFADDR code looks only at the first two members of *ifra, the code shown 
in Figure 6.25 works for SIOCAIFADDR (when ifra points to an in_aliasreq structure) 
and for SIOCDIFADDR (when ifra points to an ifreq structure). The first two members of 
the in_aliasreq and ifreq structures are identical. 

For both commands, the for loop continues the search started by the loop at the start of 
in_control by looking for the in_ifaddr structure with the same IP address specified by 
ifra->ifra_addr. For the delete command, EADDRNOTAVAIL is returned if the address 
isn’t found. 

After the loop and the test for the delete command, control falls through to the code we described in 
Figure 6.14. For the add command, the code in Figure 6.14 allocates a new in_ifaddr structure if 
one was not found that matched the address in the in_aliasreq structure. 

Additional IP Addresses: SIOCAIFADDR

At this point ia points to a new in_ifaddr structure or to an old in_ifaddr structure with 
an IP address that matched the address in the request. The SIOCAIFADDR processing is shown in 
Figure 6.26. 
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Figure 6.26. in_control function: SIOCAIFADDR processing. 

 

 

266-277

Since SIOCAIFADDR can create a new address or change the information associated with an 
existing address, the maskIsNew and hostIsNew flags keep track of what has changed so that 
routes can be updated if necessary at the end of the function. 

By default, the code assumes that a new IP address is being assigned to the interface (hostIsNew 
starts at 1). If the length of the new address is 0, in_control copies the current address into the 
request and changes hostIsNew to 0. If the length is not 0 and the new address matches the old 
address, this request does not contain a new address and hostIsNew is set to 0. 

278-284

If a netmask is specified in the request, any routes using the current address are discarded and 
in_control installs the new mask. 

285-290

If the interface is a point-to-point interface and the request includes a new destination address, 
in_scrub discards any routes using the address, the new destination address is installed, and 
maskIsNew is set to 1 to force the call to in_ifinit, which reconfigures the interface. 

291-297
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If a new address has been configured or a new mask has been assigned, in_ifinit makes all the 
appropriate changes to support the new configuration (Figure 6.17). Note that the last argument to 
in_ifinit is 0. This indicates that it isn’t necessary to scrub any routes since that has already 
been taken care of. Finally, the broadcast address is copied from the in_aliasreq structure if the 
interface supports broadcasts. 

Deleting IP Addresses: SIOCDIFADDR

The SIOCDIFADDR command, which deletes IP addresses from an interface, is shown in Figure 
6.27. Remember that ia points to the in_ifaddr structure to be deleted (i.e., the one that 
matched the request). 

Figure 6.27. in_control function: deleting addresses. 

 

 

298-323

The precondition code arranged for ia to point to the address to be deleted. in_ifscrub deletes 
any routes associated with the address. The first if deletes the structure for the interface address list. 
The second if deletes the structure from the Internet address list (in_ifaddr). 

324-325

IFAFREE only releases the structure when the reference count drops to 0. 

The additional references would be from entries in the routing table. 
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6.7. Interface ioctl Processing 

We now look at the specific ioctl processing done by each of our sample interfaces in the 
leioctl, slioctl, and loioctl functions when an address is assigned to the interface. 

in_ifinit is called by the SIOCSIFADDR code in Figure 6.16 and by the SIOCAIFADDR 
code in Figure 6.26. in_ifinit always issues the SIOCSIFADDR command through the 
interface’s if_ioctl function (Figure 6.17). 

leioctl Function 

Figure 4.31 showed SIOCSIFFLAGS command processing of the LANCE driver. Figure 6.28 
shows the SIOCSIFADDR command processing. 

Figure 6.28. leioctl function. 

 

 

614-637

Before processing the command, data is converted to an ifaddr structure pointer and ifp-
>if_unit selects the appropriate le_softc structure for this request. 
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The interface is marked as up and the hardware is initialized by leinit. For Internet addresses, 
the IP address is stored in the arpcom structure and a gratuitous ARP for the address is issued. 
Gratuitous ARP is discussed in Section 21.5 and in Section 4.7 of Volume 1. 

Unrecognized commands 

672-677

EINVAL is returned for unrecognized commands. 

slioctl Function 

The slioctl function (Figure 6.29) processes the SIOCSIFADDR and SIOCSIFDSTADDR 
command for the SLIP device driver. 

Figure 6.29. slioctl function: SIOCSIFADDR and SIOCSIFDSTADDR commands. 

 

 

663-672

For both commands, EAFNOSUPPORT is returned if the address is not an IP address. The 
SIOCSIFADDR command enables IFF_UP.
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Unrecognized commands 

688-693

EINVAL is returned for unrecognized commands. 

loioctl Function 

The loioctl function and its implementation of the SIOCSIFADDR command is shown in 
Figure 6.30. 

Figure 6.30. loioctl function: SIOCSIFADDR command. 

 

 

135-151

For Internet addresses, loioctl sets IFF_UP and returns immediately. 

Unrecognized commands 

167-171

EINVAL is returned for unrecognized commands. 

Notice that for all three example drivers, assigning an address causes the interface to be marked as up 
(IFF_UP). 
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6.8. Internet Utility Functions 

Figure 6.31 lists several functions that manipulate Internet addresses or that rely on the ifnet 
structures shown in Figure 6.5, usually to discover subnetting information that cannot be obtained 
from the 32-bit IP address alone. The implementation of these functions consists primarily of 
traversing data structures and manipulating bit masks. The reader can find these functions in 
netinet/in.c.

Net/2 had a bug in in_canforward that permitted loopback addresses to be 
forwarded. Since most Net/2 systems are configured to recognize only a single 
loopback address, such as 127.0.0.1, Net/2 systems often forward other addresses in 
the loopback network (e.g., 127.0.0.2) along the default route. 

A telnet to 127.0.0.2 may not do what you expect! (Exercise 6.6) 

Figure 6.31. Internet address functions. 

 

 

6.9. ifnet Utility Functions 

Several functions search the data structures shown in Figure 6.5. The functions listed in Figure 6.32 
accept addresses for any protocol family, since their argument is a pointer to a sockaddr structure, 
which contains the address family. Contrast this to the functions in Figure 6.31, each of which takes a 
32-bit IP address as an argument. These functions are defined in net/if.c.
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Figure 6.32. ifnet utility functions. 

 

 

6.10. Summary 

In this chapter we presented an overview of the IP addressing mechanisms and described interface 
address structures and protocol address structures that are specialized for IP: the in_ifaddr and 
sockaddr_in structures. 

We described how interfaces are configured with IP-specific information through the ifconfig 
program and the ioctl interface commands. 

Finally, we summarized several utility functions that manipulate IP addresses and search the interface 
data structures. 

Exercises 

6.1 Why do you think sin_addr in the sockaddr_in structure was originally defined 
as a structure? 
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6.2 ifunit ("sl0") returns a pointer to which structure in Figure 6.5? 

6.3 Why is the IP address duplicated in ac_ipaddr when it is already contained in an 
ifaddr structure on the interface’s address list? 

6.4 Why do you think IP interface addresses are accessed through a UDP socket and not a raw 
IP socket? 

6.5 Why does in_socktrim change sin_len to match the length of the mask instead 
of using the standard length of a sockaddr_in structure? 

6.6 What happens when the connection request segment from a telnet 127.0.0.2 
command is erroneously forwarded by a Net/2 system and is eventually recognized and 
accepted by a system along the default route? 
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Chapter 7. Domains and Protocols 

7.1. Introduction 

In this chapter we describe the Net/3 data structures that support the concurrent operation of multiple 
network protocols. We’ll use the Internet protocols to illustrate the construction and initialization of 
these data structures at system initialization time. This chapter presents the necessary background 
material for our discussion of the IP protocol processing layer, which begins in Chapter 8. 

Net/3 groups related protocols into a domain, and identifies each domain with a protocol family 
constant. Net/3 also groups protocols by the addressing method they employ. Recall from Figure 3.19 
that address families also have identifying constants. Currently every protocol within a domain uses 
the same type of address and every address type is used by a single domain. As a result, a domain can 
be uniquely identified by its protocol family or address family constant. Figure 7.1 lists the protocols 
and constants that we discuss. 

Figure 7.1. Common protocol and address family constants. 

 

 

PF_LOCAL and AF_LOCAL are the primary identifiers for protocols that support communication 
between processes on the same host and are part of the POSIX.12 standard. Before Net/3, PF_UNIX 
and AF_UNIX identified these protocols. The UNIX constants remain for backward compatibility 
and are used by Net/3 and in this text. 

The PF_UNIX domain supports interprocess communication on a single Unix host. See [Stevens 
1990] for details. The PF_ROUTE domain supports communication between a process and the 
routing facilities in the kernel (Chapter 18). We reference the PF_OSI protocols occasionally, as 
some features of Net/3 exist only to support the OSI protocols, but do not discuss them in any detail. 
Most of our discussions are about the PF_INET protocols. 

7.2. Code Introduction 

Two headers and two C files are covered in this chapter. Figure 7.2 describes the four files. 

Figure 7.2. Files discussed in this chapter. 
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Global Variables

Figure 7.3 describes several important global data structures and system parameters that are described 
in this chapter and referenced throughout Net/3. 

Figure 7.3. Global variables introduced in this chapter. 

 

 
 

Statistics

No statistics are collected by the code described in this chapter, but Figure 7.4 shows the statistics 
table allocated and initialized by the ip_init function. The only way to look at this table is with a 
kernel debugger. 

Figure 7.4. Statistics collected in this chapter. 

 

 

7.3. domain Structure 

A protocol domain is represented by a domain structure shown in Figure 7.5. 

Figure 7.5. The domain structure definition. 

 

 183



ptg11539634

 

42-57

dom_family is one of the address family constants (e.g., AF_INET) and specifies the 
addressing employed by the protocols in the domain. dom_name is a text name for the domain (e.g., 
"internet"). 

The dom_name member is not accessed by any part of the Net/3 kernel, but the 
fstat(1) program uses dom_name when it formats socket information. 

dom_init points to the function that initializes the domain. dom_externalize and 
dom_dispose point to functions that manage access rights sent across a communication path 
within the domain. The Unix domain implements this feature to pass file descriptors between 
processes. The Internet domain does not implement access rights. 

dom_protosw and dom_protoswNPROTOSW point to the start and end of an array of 
protosw structures. dom_next points to the next domain in a linked list of domains supported 
by the kernel. The linked list of all domains is accessed through the global pointer domains.

The next three members, dom_rtattach, dom_rtoffset, and dom_maxrtkey, 
hold routing information for the domain. They are described in Chapter 18. 

Figure 7.6 shows an example domains list. 

Figure 7.6. domains list. 

 

7.4. protosw Structure 

At compile time, Net/3 allocates and initializes a protosw structure for each protocol in the kernel 
and groups the structures for all protocols within a single domain into an array. Each domain 
structure references the appropriate array of protosw structures. A kernel may provide multiple 
interfaces to the same protocol by providing multiple protosw entries. For example, in Section 7.5 
we describe three different entries for the IP protocol. 
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Figure 7.7. The protosw structure definition. 

 

 

57-61

The first four members in the structure identify and characterize the protocol. pr_type specifies 
the communication semantics of the protocol. Figure 7.8 lists the possible values for pr_type and 
the corresponding Internet protocols. 

Figure 7.8. pr_type specifies the protocol's semantics. 

 

 

pr_domain points to the associated domain structure, pr_protocol numbers the protocol 
within the domain, and pr_flags specifies additional characteristics of the protocol. Figure 7.9 
lists the possible values for pr_flags.

Figure 7.9. pr_flags values. 
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If PR_ADDR is supported by a protocol, PR_ATOMIC must also be supported. 
PR_ADDR and PR_CONNREQUIRED are mutually exclusive. 

When PR_WANTRCVD is set, the socket layer notifies the protocol layer when it 
has passed data from the socket receive buffer to a process (i.e., when more space 
becomes available in the receive buffer). 

PR_RIGHTS indicates that access right control messages can be passed across the 
connection. Access rights require additional support within the kernel to ensure 
proper cleanup if the receiving process does not consume the messages. Only the 
Unix domain supports access rights, where they are used to pass descriptors between 
processes. 

Figure 7.10 shows the relationship between the protocol type, the protocol flags, and the protocol 
semantics. 

Figure 7.10. Protocol characteristics and examples. 

 

 

Figure 7.10 does not include the PR_WANTRCVD or PR_RIGHTS flags. 
PR_WANTRCVD is always set for reliable connection-oriented protocols. 

To understand communication semantics of a protosw entry in Net/3, we must consider the 
PR_xxx flags and pr_type together. In Figure 7.10 we have included two columns ("Record 
boundaries?" and "Reliable?") to describe the additional semantics that are implicitly specified by 
pr_type. Figure 7.10 shows three types of reliable protocols: 

Connection-oriented byte stream protocols such as TCP and SPP (from the XNS protocol 
family). These protocols are identified by SOCK_STREAM. 
Connection-oriented stream protocols with record boundaries are specified by 
SOCK_SEQPACKET. Within this type of protocol, PR_ATOMIC indicates whether 
records are implicitly specified by each output request or are explicitly specified by setting 
the MSG_EOR flag on output. TP4 from the OSI protocol family requires explicit record 
boundaries, and SPP assumes implicit record boundaries. 

SPP supports both SOCK_STREAM and SOCK_SEQPACKET 
semantics. 

The third type of reliable protocol provides a connection-oriented service with implicit record 
boundaries and is specified by SOCK_RDM. RDP does not guarantee that records are 
received in the order that they are sent. RDP is described in [Partridge 1987] and specified by 
RFC 1151 [Partridge and Hinden 1990]. 

Two types of unreliable protocols are shown in Figure 7.10: 
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A transport-level datagram protocol, such as UDP, which includes multiplexing and 
checksums, is specified by SOCK_DGRAM. 
A network-level datagram protocol, such as ICMP, which is specified by SOCK_RAW. In 
Net/3, only superuser processes may create a SOCK_RAW socket (Figure 15.18). 

62-68

The next five members are function pointers providing access to the protocol from other protocols. 
pr_input handles incoming data from a lower-level protocol, pr_output handles outgoing 
data from a higher-level protocol, pr_ctlinput handles control information from below, and 
pr_ctloutput handles control information from above. pr_usrreq handles all 
communication requests from a process. 

Figure 7.11. The five main entry points to a protocol. 

 

 

69-75

The remaining five members are utility functions for the protocol. pr_init handles initialization. 
pr_fasttimo and pr_slowtimo are called every 200 ms and 500 ms respectively to 
perform periodic protocol functions, such as updating retransmission timers. pr_drain is called by 
m_reclaim when memory is in short supply (Figure 2.13). It is a request that the protocol release 
as much memory as possible. pr_sysctl provides an interface for the sysctl(8) command, 
a way to modify system-wide parameters, such as enabling packet forwarding or UDP checksum 
calculations. 

7.5. IP domain and protosw Structures 

The domain and protosw structures for all protocols are declared and initialized statically. For 
the Internet protocols, the inetsw array contains the protosw structures. Figure 7.12 
summarizes the protocol information in the inetsw array. Figure 7.13 shows the definition of the 
array and the definition of the domain structure for the Internet protocols. 
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Figure 7.12. Internet domain protocols. 

 

 
Figure 7.13. The Internet domain and protosw structures. 

 

 

39-77

 188

Three protosw structures in the inetsw array provide access to IP. The first, inetsw[0], 
specifies administrative functions for IP and is accessed only by the kernel. The other two entries, 
inetsw[3] and inetsw[6], are identical except for their pr_protocol values and 
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provide a raw interface to IP. inetsw[3] processes any packets that are received for unrecognized 
protocols. inetsw[6] is the default raw protocol, which the pffindproto function (Section 
7.6) returns when no other match is found. 

In releases before Net/3, packets transmitted through inetsw[3] did not have an 
IP header prepended. It was the responsibility of the process to construct the correct 
header. Packets transmitted through inetsw[6] had an IP header prepended by 
the kernel. 4.3BSD Reno introduced the IP_HDRINCL socket option (Section 
32.8), so the distinction between inetsw[3] and inetsw[6] is no longer 
relevant. 

The raw interface allows a process to send and receive IP packets without an intervening transport 
protocol. One use of the raw interface is to implement a transport protocol outside the kernel. Once the 
protocol has stablized, it can be moved into the kernel to improve its performance and availability to 
other processes. Another use is for diagnostic tools such as traceroute, which uses the raw IP 
interface to access IP directly. Chapter 32 discusses the raw IP interface. Figure 7.14 summarizes the 
IP protosw structures. 

Figure 7.14. The IP inetsw entries. 

 

 

78-81

The domain structure for the Internet protocols is shown at the end of Figure 7.13. The Internet 
domain uses AF_INET style addressing, has a text name of "internet", has no initialization 
or control-message functions, and has its protosw structures in the inetsw array. 

The routing initialization function for the Internet protocols is rn_inithead . The maximum number of 
significant bits for an IP address is 32, and the size of an Internet routing key is the size of a 
sockaddr_in structure (16 bytes). 

 189



ptg11539634

domaininit Function

At system initialization time (Figure 3.23), the kernel calls domaininit to link the domain and 
protosw structures. domaininit is shown in Figure 7.15. 

Figure 7.15. domaininit function. 

 

 

37-42

The ADDDOMAIN macro declares and links a single domain structure. For example, 
ADDDOMAIN (unix) expands to 

   extern struct domain unixdomain; 
   unixdomain.dom_next = domains; 
   domains = &unixdomain; 
 

The __CONCAT macro is defined in sys/defs.h and concatenates two 
symbols. For example, __CONCAT (unix, domain) produces 
unixdomain.

43-54
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domaininit constructs the list of domains by calling ADDDOMAIN for each supported domain. 

Since the symbol unix is often predefined by the C preprocessor, Net/3 explicitly 
undefines it here so ADDDOMAIN works correctly. 

Figure 7.16 shows the linked domain and protosw structures in a kernel configured to support 
the Internet, Unix, and OSI protocol families. 

Figure 7.16. The domain list and protosw arrays after initialization. 

 

 

55-61

The two nested for loops locate every domain and protocol in the kernel and call the initialization 
functions dom_init and pr_init if they are defined. For the Internet protocols, the following 
functions are called (Figure 7.13): ip_init, udp_init, tcp_init, igmp_init, 
and rip_init.

62-65

The parameters computed in domaininit control the layout of packets in the mbufs to avoid 
extraneous copying of data. max_linkhdr and max_protohdr are set during protocol 
initialization. domaininit enforces a lower bound of 16 for max_linkhdr. The value of 16 
leaves room for a 14-byte Ethernet header ending on a 4-byte boundary. Figures 7.17 and 7.18 list the 
parameters and typical values. 

Figure 7.17. Parameters used to minimize copying of protocol data. 
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Figure 7.18. Mbuf and associated maximum header lengths. 

 

 

max_protohdr is a soft limit that measures the expected protocol header size. 
In the Internet domain, the IP and TCP headers are usually 20 bytes in length but 
both can be up to 60 bytes. The penalty for exceeding max_protohdr is the 
time required to push back the data to make room for the larger than expected 
protocol header. 

66-68

domaininit initiates pfslowtimo and pffasttimo by calling timeout. The third 
argument specifies when the kernel should call the functions, in this case in 1 clock tick. Both 
functions are shown in Figure 7.19. 

Figure 7.19. pfslowtimo and pffasttimo functions. 

 

 

153-176

These nearly identical functions use two for loops to call the pr_slowtimo or 
pr_fasttimo function for each protocol, if they are defined. The functions schedule themselves 
to be called 500 and 200 ms later by calling timeout, which we described with Figure 3.43. 
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7.6. pffindproto and pffindtype Functions 

The pffindproto and pffindtype functions look up a protocol by number (e.g., 
IPPROTO_TCP) or by type (e.g., SOCK_STREAM). As we’ll see in Chapter 15, these functions 
are called to locate the appropriate protosw entry when a process creates a socket. 

69-84

pffindtype performs a linear search of domains for the specified family and then searches 
the protocols within the domain for the first one of the specified type. 

85-107

pffindproto searches domains exactly as pffindtype does but looks for the family, 
type, and protocol specified by the caller. If pffindproto does not find a (protocol,
type) match within the specified protocol family, and type is SOCK_RAW, and the domain has 
a default raw protocol (pr_protocol equals 0), then pffindproto selects the default raw 
protocol instead of failing completely. For example, a call such as 

Figure 7.20. pffindproto and pffindtype functions. 
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    pffindproto(PF_INET, 27, SOCK_RAW); 
 

returns a pointer to inetsw[6], the default raw IP protocol, since Net/3 does not include support 
for protocol 27. With access to raw IP, a process could implement protocol 27 services on its own 
using the kernel to manage the sending and receiving of the IP packets. 

Protocol 27 is reserved for the Reliable Datagram Protocol (RFC 1151). 

Both functions return a pointer to the protosw structure for the selected protocol, or a null pointer 
if they don’t find a match. 

Example

We’ll see in Section 15.6 that when an application calls 

   socket(PF_INET, SOCK_STREAM, 0);     /* TCP socket */ 
 

pffindtype gets called as 

   pffindtype(PF_INET, SOCK_STREAM); 
 

Figure 7.12 shows that pffindtype will return a pointer to inetsw[2], since TCP is the 
first SOCK_STREAM protocol in the array. Similarly, 

   socket(PF_INET, SOCK_DGRAM, 0);     /* UDP socket */ 
 

leads to 

   pffindtype(PF_INET, SOCK_DGRAM); 
 

which returns a pointer to UDP in inetsw[1].

7.7. pfctlinput Function 

The pfctlinput function issues a control request to every protocol in every domain. It is used 
when an event that may affect every protocol occurs, such as an interface shutdown or routing table 
change. ICMP calls pfctlinput when an ICMP redirect message arrives (Figure 11.14), since 
the redirect can affect all the Internet protocols (e.g., UDP and TCP). 
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Figure 7.21. pfctlinput function. 

 

 

142-152

The two nested for loops locate every protocol in every domain. pfctlinput issues the 
protocol control command specified by cmd by calling each protocol’s pr_ctlinput function. 
For UDP, udp_ctlinput is called and for TCP, tcp_ctlinput is called. 

7.8. IP Initialization 

As shown in Figure 7.13, the Internet domain does not have an initialization function but the 
individual Internet protocols do. For now, we look only at ip_init, the IP initialization function. 
In Chapters 23 and 24 we discuss the UDP and TCP initialization functions. Before we can discuss the 
code, we need to describe the ip_protox array. 

Internet Transport Demultiplexing

A network-level protocol like IP must demultiplex incoming datagrams and deliver them to the 
appropriate transport-level protocols. To do this, the appropriate protosw structure must be derived 
from a protocol number present in the datagram. For the Internet protocols, this is done by the 
ip_protox array. 

The index into the ip_protox array is the protocol value from the IP header (ip_p, Figure 8.8). 
The entry selected is the index of the protocol in the inetsw array that processes the datagram. For 
example, a datagram with a protocol number of 6 is processed by inetsw[2], the TCP protocol. 
The kernel constructs ip_protox during protocol initialization, described in Figure 7.23. 

ip_init Function

The ip_init function is called by domaininit (Figure 7.15) at system initialization time. 

71-78

pffindproto returns a pointer to the raw protocol (inetsw[3], Figure 7.14). Net/3 panics 
if the raw protocol cannot be located, since it is a required part of the kernel. If it is missing, the kernel 
has been misconfigured. IP delivers packets that arrive for an unknown transport protocol to this 
protocol where they may be handled by a process outside the kernel. 
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The next two loops initialize the ip_protox array. The first loop sets each entry in the array to 
pr, the index of the default protocol (3 from Figure 7.22). The second loop examines each protocol 
in inetsw (other than the entries with protocol numbers of 0 or IPPROTO_RAW) and sets the 
matching entry in ip_protox to refer to the appropriate inetsw entry. Therefore, 
pr_protocol in each protosw structure must be the protocol number expected to appear in 
the incoming datagram. 

Figure 7.22. The ip_protox array maps the protocol number to an entry in the inetsw
array. 

 

 

86-92

ip_init initializes the IP reassembly queue, ipq (Section 10.6), seeds ip_id from the system 
clock, and sets the maximum size of the IP input queue (ipintrq) to 50 (ipqmaxlen). ip_id
is set from the system clock to provide a random starting point for datagram identifiers (Section 10.6). 
Finally, ip_init allocates a two-dimensional array, ip_ifmatrix, to count packets routed 
between the interfaces in the system. 

There are many variables within Net/3 that may be modified by a system 
administrator. To allow these variables to be changed at run time and without 
recompiling the kernel, the default value represented by a constant (IFQ_MAXLEN 
in this case) is assigned to a variable (ipqmaxlen) at compile time. A system 
administrator can use a kernel debugger such as adb to change ipqmaxlen and 
reboot the kernel with the new value. If Figure 7.23 used IFQ_MAXLEN directly, it 
would require a recompile of the kernel to change the limit. 
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Figure 7.23. ip_init function. 

 

7.9. sysctl System Call 

The sysctl system call accesses and modifies Net/3 systemwide parameters. The system 
administrator can modify the parameters through the sysctl(8) program. Each parameter is 
identified by a hierarchical list of integers and has an associated type. The prototype for the system 
call is: 

   int sysctl (int *name, u_int namelen, void *old, size_t 
*oldlenp, void *new, size_t newlen);

name points to an array containing namelen integers. The old value is returned in the area pointed to 
by oldp, and the new value is passed in the area pointed to by newp.

Figure 7.24 summarizes the organization of the names related to networking. 
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Figure 7.24. sysctl names. 

 

 

In Figure 7.24, the full name for the IP forwarding flag would be 

CTL_NET, PF_INET, 0, IPCTL_FORWARDING

 

with the four integers stored in an array. 

net_sysctl Function

Each level of the sysctl naming scheme is handled by a different function. Figure 7.25 shows the 
functions that handle the Internet parameters. 
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Figure 7.25. sysctl functions for Internet parameters. 

 

 

The top-level names are processed by sysctl. The network-level names are processed by 
net_sysctl, which dispatches control based on the family and protocol to the pr_sysctl 
function specified in the protocol’s protosw entry. 

sysctl is implemented in the kernel by the _sysctl function, which we do not 
discuss in this text. It contains code to move the sysctl arguments to and from 
the kernel and a switch statement to select the appropriate function to process the 
arguments, in this case net_sysctl.

Figure 7.26 shows the net_sysctl function. 

Figure 7.26. net_sysctl function. 
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108-119

The arguments to net_sysctl are the same as those to the sysctl system call with the 
addition of p, which points to the current process structure. 

120-134

The next two integers in the name are taken to be the protocol family and protocol numbers as 
specified in the domain and protosw structures. If no family is specified, 0 is returned. If a 
family is specified, the for loop searches the domain list for a matching family. ENOPROTOOPT 
is returned if a match is not found. 

135-141

Within a matching domain, the second for loop locates the first matching protocol that has the 
pr_sysctl function defined. When a match is found, the request is passed to the pr_sysctl 
function for the protocol. Notice that name is advanced to pass the remaining integers down to the 
next level. If no matching protocol is found, ENOPROTOOPT is returned. 

Figure 7.27 shows the pr_sysctl functions defined for the Internet protocols. 

Figure 7.27. pr_sysctl functions for the Internet protocol family. 

 

 

In the routing domain, pr_sysctl points to the sysctl_rtable function, which is 
described in Chapter 19. 

7.10. Summary 

We started this chapter by describing the domain and protosw structures that describe and 
group protocols within the Net/3 kernel. We saw that all the protosw structures for a domain are 
allocated in an array at compile time and that inetdomain and the inetsw array describe the 
Internet protocols. We took a closer look at the three inetsw entries that describe the IP protocol: 
one for the kernel’s use and the other two for access to IP by a process. 

At system initialization time domaininit links the domains into the domains list, calls the 
domain and protocol initialization functions, and calls the fast and slow timeout functions. 

The two functions pffindproto and pffindtype search the domain and protocol lists by 
protocol number or type. pfctlinput sends a control command to every protocol. 

Finally we described the IP initialization procedure including transport demultiplexing by the 
ip_protox array. 
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Exercises

7.1 What call to the pffindproto returns a pointer to inetsw[6] ? 
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Chapter 8. IP: Internet Protocol 

8.1. Introduction 

In this chapter we describe the structure of an IP packet and the basic IP processing including input, 
forwarding, and output. We assume that the reader is familiar with the basic operation of the IP 
protocol. For more background on IP, see Chapters 3, 9 and 12 of Volume 1. RFC 791 [Postel 1981a] 
is the official specification for IP. RFC 1122 [Braden 1989a] contains clarifications of RFC 791. 

In Chapter 9 we discuss option processing and in Chapter 10 we discuss fragmentation and 
reassembly. Figure 8.1 illustrates the general organization of the IP layer. 

Figure 8.1. IP layer processing. 

 

 

We saw in Chapter 4 how network interfaces place incoming IP packets on the IP input queue, 
ipintrq, and how they schedule a software interrupt. Since hardware interrupts have a higher 
priority than software interrupts, several packets may be placed on the queue before a software 
interrupt occurs. During software interrupt processing, the ipintr function removes and processes 
packets from ipintrq until the queue is empty. At the final destination, IP reassembles packets 
into datagrams and passes the datagrams directly to the appropriate transport-level protocol by a 
function call. If the packets haven’t reached their final destination, IP passes them to ip_forward 
if the host is configured to act as a router. The transport protocols and ip_forward pass outgoing 
packets to ip_output, which completes the IP header, selects an output interface, and fragments 
the outgoing packet if necessary. The resulting packets are passed to the appropriate network interface 
output function. 

When an error occurs, IP discards the packet and under certain conditions may send an error message 
to the source of the original packet. These messages are part of ICMP (Chapter 11). Net/3 sends ICMP 
error messages by calling icmp_error, which accepts an mbuf containing the erroneous packet, 
the type of error found, and an option code that provides additional information depending on the type 
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of error. In this chapter, we describe why and when IP sends ICMP messages, but we postpone a 
detailed discussion of ICMP itself until Chapter 11. 

8.2. Code Introduction 

Two headers and three C files are discussed in this chapter. 

Figure 8.2. Files discussed in this chapter. 

 

 
 

Global Variables

Several global variables appear in the IP processing code. They are described in Figure 8.3. 

Figure 8.3. Global variables introduced in this chapter. 

 

 
 

Statistics

All the statistics collected by IP are found in the ipstat structure described by Figure 8.4. Figure 
8.4 shows some sample output of these statistics, from the netstat -s command. These statistics 
were collected after the host had been up for 30 days. 
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Figure 8.4. Statistics collected in this chapter. 

 

 
Figure 8.5. Sample IP statistics. 
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The value for ips_noproto is high because it can count ICMP host unreachable 
messages when there is no process ready to receive the messages. See Section 32.5 
for more details. 

SNMP Variables

Figure 8.6 shows the relationship between the SNMP variables in the IP group and the statistics 
collected by Net/3. 

Figure 8.6. Simple SNMP variables in IP group. 

 

 

8.3. IP Packets 

To be accurate while discussing Internet protocol processing, we must define a few terms. Figure 8.7 
illustrates the terms that describe data as it passes through the various Internet layers. 
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Figure 8.7. Frames, packets, fragments, datagrams, and messages. 

 

 

We call the data passed to IP by a transport protocol a message. A message typically contains a 
transport header and application data. UDP is the transport protocol illustrated in Figure 8.7. IP 
prepends its own header to the message to form a datagram. If the datagram is too large for 
transmission on the selected network, IP splits the datagram into several fragments, each of which 
contains its own IP header and a portion of the original datagram. Figure 8.7 shows a datagram split 
into three fragments. 

An IP fragment or an IP datagram small enough to not require fragmentation are called packets when 
presented to the data-link layer for transmission. The data-link layer prepends its own header and 
transmits the resulting frame.

IP concerns itself only with the IP header and does not examine or modify the message itself (other 
than to perform fragmentation). Figure 8.8 shows the structure of the IP header. 

Figure 8.8. IP datagram, including the ip structure names. 

 

 

Figure 8.8 includes the member names of the ip structure (shown in Figure 8.9) through which Net/3 
accesses the IP header. 
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Figure 8.9. ip structure. 

 

 

47-67

Since the physical order of bit fields in memory is machine and compiler dependent, the #ifs ensure 
that the compiler lays out the structure members in the order specified by the IP standard. In this way, 
when Net/3 overlays an ip structure on an IP packet in memory, the structure members access the 
correct bits in the packet. 

The IP header contains the format of the IP packet and its contents along with addressing, routing, and 
fragmentation information. 

The format of an IP packet is specified by ip_v, the version, which is always 4; ip_hl, the 
header length measured in 4-byte units; ip_len, the packet length measured in bytes; ip_p, the 
transport protocol that created the data within the packet; and ip_sum, the checksum that detects 
changes to the header while in transit. 

A standard IP header is 20 bytes long, so ip_hl must be greater than or equal to 5. A value greater 
than 5 indicates that IP options appear just after the standard header. The maximum value of ip_hl 
is 15 (24—1), which allows for up to 40 bytes of options (20+40=60). The maximum length of an IP 
datagram is 65535 (216—1) bytes since ip_len is a 16-bit field. Figure 8.10 illustrates this 
organization. 
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Figure 8.10. Organization of an IP packet with options. 

 

 

Because ip_hl is measured in 4-byte units, IP options must always be padded to a 4-byte boundary. 

8.4. Input Processing: ipintr Function 

In Chapters 3, 4, and 5 we described how our example network interfaces queue incoming datagrams 
for protocol processing: 

1. The Ethernet interface demultiplexes incoming frames with the type field found in the 
Ethernet header (Section 4.3). 

2. The SLIP interface handles only IP packets, so demultiplexing is unnecessary (Section 5.3). 
3. The loopback interface combines output and input processing in the function looutput 

and demultiplexes datagrams with the sa_family member of the destination address 
(Section 5.4). 

In each case, after the interface queues the packet on ipintrq, it schedules a software interrupt 
through schednetisr. When the software interrupt occurs, the kernel calls ipintr if IP 
processing has been scheduled by schednetisr. Before the call to ipintr, the CPU priority 
is changed to splnet.

ipintr Overview

ipintr is a large function that we discuss in four parts:  

(1) verification of incoming packets, 

(2) option processing and forwarding,  

(3) packet reassembly, and  

(4) demultiplexing. 

Packet reassembly occurs in ipintr, but it is complex enough that we discuss it separately in 
Chapter 10. Figure 8.11 shows the overall organization of ipintr.
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Figure 8.11. ipintr function. 

 

 

100-117

The label next marks the start of the main packet processing loop. ipintr removes packets from 
ipintrq and processes them until the queue is empty. If control falls through to the end of the 
function, the goto passes control back to the top of the function at next. ipintr blocks 
incoming packets with splimp so that the network interrupt routines (such as slinput and 
ether_input) don’t run while it accesses the queue. 

332-336

The label bad marks the code that silently discards packets by freeing the associated mbuf and 
returning to the top of the processing loop at next. Throughout ipintr, errors are handled by 
jumping to bad.

Verification

We start with Figure 8.12: dequeueing packets from ipintrq and verifying their contents. 
Damaged or erroneous packets are silently discarded. 
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Figure 8.12. ipintr function. 
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IP version

118-134

If the in_ifaddr list (Section 6.5) is empty, no IP addresses have been assigned to the network 
interfaces, and ipintr must discard all IP packets; without addresses, ipintr can’t determine 
whether the packet is addressed to the system. Normally this is a transient condition occurring during 
system initialization when the interfaces are operating but have not yet been configured. We described 
address assignment in Section 6.6. 

Before ipintr accesses any IP header fields, it must verify that ip_v is 4 (IPVERSION). RFC 
1122 requires an implementation to silently discard packets with unrecognized version numbers. 

Net/2 didn’t check ip_v. Most IP implementations in use today, including Net/2, 
were created after IP version 4 was standardized and have never needed to 
distinguish between packets from different IP versions. Since revisions to IP are now 
in progress, implementations in the near future will have to check ip_v.

IEN 119 [Forgie 1979] and RFC 1190 [Topolcic 1990] describe experimental 
protocols using IP versions 5 and 6. Version 6 has also been selected as the version 
for the next revision to the official IP standard (IPv6). Versions 0 and 15 are 
reserved, and the remaining versions are unassigned. 

In C, the easiest way to process data located in an untyped area of memory is to overlay a structure on 
the area of memory and process the structure members instead of the raw bytes. As described in 
Chapter 2, an mbuf chain stores a logical sequence of bytes, such as an IP packet, into many physical 
mbufs connected to each other on a linked list. Before the overlay technique can be applied to the IP 
packet headers, the header must reside in a contiguous area of memory (i.e., it isn’t split between two 
mbufs). 

135-146

The following steps ensure that the IP header (including options) is in a contiguous area of memory: 

If the data within the first mbuf is smaller than a standard IP header (20 bytes), m_pullup 
relocates the standard header into a contiguous area of memory. 

It is improbable that the link layer would split even the largest (60 bytes) IP 
header into two mbufs necessitating the use of m_pullup as described. 

ip_hl is multiplied by 4 to get the header length in bytes, which is saved in hlen. 

If hlen, the length of the IP packet header in bytes, is less than the length of a standard 
header (20 bytes), it is invalid and the packet is discarded. 

If the entire header is still not in the first mbuf (i.e., the packet contains IP options), 
m_pullup finishes the job. 

Again, this should not be necessary. 

Checksum processing is an important part of all the Internet protocols. Each protocol uses the same 
algorithm (implemented by the function in_cksum) but on different parts of the packet. For IP, the 
checksum protects only the IP header (and options if present). For transport protocols, such as UDP or 
TCP, the checksum covers the data portion of the packet and the transport header. 
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IP checksum

147-150

ipintr stores the checksum computed by in_cksum in the ip_sum field of the header. An 
undamaged header should have a checksum of 0. 

As we’ll see in Section 8.7, ip_sum must be cleared before the checksum on an 
outgoing packet is computed. By storing the result from in_cksum in ip_sum, 
the packet is prepared for forwarding (although the TTL has not been decremented 
yet). The ip_output function does not depend on this behavior; it recomputes 
the checksum for the forwarded packet. 

If the result is nonzero the packet is silently discarded. We discuss in_cksum in more detail in 
Section 8.7. 

Byte ordering

151-160

The Internet standards are careful to specify the byte ordering of multibyte integer values in protocol 
headers. NTOHS converts all the 16-bit values in the IP header from network byte order to host byte 
order: the packet length (ip_len), the datagram identifier (ip_id), and the fragment offset 
(ip_off). NTOHS is a null macro if the two formats are the same. Conversion to host byte 
order here obviates the need to perform a conversion every time Net/3 examines the fields. 

Packet length

161-177

If the logical size of the packet (ip_len) is greater than the amount of data stored in the mbuf chain 
(m_pkthdr.len), some bytes are missing and the packet is dropped. If the mbuf chain is larger 
than the packet, the extra bytes are trimmed. 

A common cause for lost bytes is data arriving on a serial device with little or no 
buffering, such as on many personal computers. The incoming bytes are discarded by 
the device and IP discards the resulting packet. 

These extra bytes may arise, for example, on an Ethernet device when an IP packet is 
smaller than the minimum size required by Ethernet. The frame is transmitted with 
extra bytes that are discarded here. This is one reason why the length of the IP packet 
is stored in the header; IP allows the link layer to pad packets. 

At this point, the complete IP header is available, the logical size and the physical size of the packet 
are the same, and the checksum indicates that the header arrived undamaged. 

To Forward or Not To Forward?

The next section of ipintr, shown in Figure 8.13, calls ip_dooptions (Chapter 9) to 
process IP options and then determines whether or not the packet has reached its final destination. If it 
hasn’t reached its final destination, Net/3 may attempt to forward the packet (if the system is 
configured as a router). If it has reached its final destination, it is passed to the appropriate transport-
level protocol. 
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Figure 8.13. ipintr continued. 
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Option processing

178-186

The source route from the previous packet is discarded by clearing ip_nhops (Section 9.6). If the 
packet header is larger than a default header, it must include options that are processed by 
ip_dooptions. If ip_dooptions returns 0, ipintr should continue processing the 
packet; otherwise ip_dooptions has completed processing of the packet by forwarding or 
discarding it, and ipintr can process the next packet on the input queue. We postpone further 
discussion of option processing until Chapter 9. 

After option processing, ipintr decides whether the packet has reached its final destination by 
comparing ip_dst in the IP header with the IP addresses configured for all the local interfaces. 
ipintr must consider several broadcast addresses, one or more unicast addresses, and any 
multicast addresses that are associated with the interface. 

Final destination?

187-261

ipintr starts by traversing in_ifaddr (Figure 6.5), the list of configured Internet addresses, to 
see if there is a match with the destination address of the packet. A series of comparisons are made for 
each in_ifaddr structure found in the list. There are four general cases to consider: 

an exact match with one of the interface addresses (first row of Figure 8.14), 

Figure 8.14. Comparisons to determine whether or not a packet has reached its final 
destination.

 

a match with the one of the broadcast addresses associated with the receiving interface 
(middle four rows of Figure 8.14), 
a match with one of the multicast groups associated with the receiving interface (Figure 
12.39), or 
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a match with one of the two limited broadcast addresses (last row of Figure 8.14). 

Figure 8.14 illustrates the addresses that would be tested for a packet arriving on the Ethernet interface 
of the host sun in our sample network, excluding multicast addresses, which we discuss in Chapter 
12. 

The tests with ia_subnet, ia_net, and INADDR_ANY are not required as they represent 
obsolete broadcast addresses used by 4.2BSD. Unfortunately, many TCP/IP implementations have 
been derived from 4.2BSD, so it may be important to recognize these old broadcast addresses on some 
networks. 

Forwarding

262-271

If ip_dst does not match any of the addresses, the packet has not reached its final destination. If 
ipforwarding is not set, the packet is discarded. Otherwise, ip_forward attempts to route 
the packet toward its final destination. 

A host may discard packets that arrive on an interface other than the one specified by 
the destination address of the packet. In this case, Net/3 would not search the entire 
in_ifaddr list; only addresses assigned to the receiving interface would be 
considered. RFC 1122 calls this a strong end system model. 

For a multihomed host, it is uncommon for a packet to arrive at an interface that does 
not correspond to the packet’s destination address, unless specific host routes have 
been configured. The host routes force neighboring routers to consider the 
multihomed host as the next-hop router for the packets. The weak end system model 
requires that the host accept these packets. An implementor is free to choose either 
model. Net/3 implements the weak end system model. 

Reassembly and Demultiplexing

Finally, we look at the last section of ipintr (Figure 8.15) where reassembly and demultiplexing 
occur. We have omitted the reassembly code and postpone its discussion until Chapter 10. The 
omitted code sets the pointer ip to null if it could not reassemble a complete datagram. Otherwise, 
ip points to a complete datagram that has reached its final destination. 

Figure 8.15. ipintr continued. 
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Transport demultiplexing

325-332

The protocol specified in the datagram is mapped by ip_p with the ip_protox array (Figure 
7.22) to an index into the inetsw array. ipintr calls the pr_input function from the 
selected protosw structure to process the transport message contained within the datagram. When 
pr_input returns, ipintr proceeds with the next packet on ipintrq.

It is important to notice that transport-level processing for each packet occurs within the processing 
loop of ipintr. There is no queueing of incoming packets between IP and the transport protocols, 
unlike the queueing in SVR4 streams implementations of TCP/IP. 

8.5. Forwarding: ip_forward Function 

A packet arriving at a system other than its final destination needs to be forwarded. ipintr calls 
the function ip_forward, which implements the forwarding algorithm, only when 
ipforwarding is nonzero (Section 6.1) or when the packet includes a source route (Section 9.6). 
When the packet includes a source route, ip_dooptions calls ip_forward with the second 
argument, srcrt, set to 1. 

ip_forward interfaces with the routing tables through a route structure shown in Figure 8.16

Figure 8.16. route structure. 

 

 

46-49

There are only two members in a route structure: ro_rt, a pointer to an rtentry structure; 
and ro_dst, a sockaddr structure, which specifies the destination associated with the route 
entry pointed to by ro_rt. The destination is the key used to find route information in the kernel’s 
routing tables. Chapter 18 has a detailed description of the rtentry structure and the routing 
tables. 

We show ip_forward in two parts. The first part makes sure the system is permitted to forward 
the packet, updates the IP header, and selects a route for the packet. The second part handles ICMP 
redirect messages and passes the packet to ip_output for transmission. 

Is packet eligible for forwarding?

867-871

The first argument to ip_forward is a pointer to an mbuf chain containing the packet to be 
forwarded. If the second argument, srcrt, is nonzero, the packet is being forwarded because of a 
source route option (Section 9.6). 
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879-884

The if statement identifies and discards the following packets: 

link-level broadcasts 

Any network interface driver that supports broadcasts must set the M_BCAST flag for a 
packet received as a broadcast. ether_input (Figure 4.13) sets M_BCAST if the packet 
was addressed to the Ethernet broadcast address. Link-level broadcast packets are never 
forwarded. 

Packets addressed to a unicast IP address but sent as a link-level broadcast 
are prohibited by RFC 1122 and are discarded here. 

loopback packets 

in_canforward returns 0 for packets addressed to the loopback network. These packets 
may have been passed to ip_forward by ipintr because the loopback interface was 
not configured correctly. 

network 0 and class E addresses 

in_canforward returns 0 for these packets. These destination addresses are invalid and 
packets addressed to them should not be circulating in the network since no host will accept 
them. 

class D addresses 

Packets addressed to a class D address should be processed by the multicast forwarding 
function, ip_mforward, not by ip_forward. in_canforward rejects class 
D (multicast) addresses. 

RFC 791 specifies that every system that processes a packet must decrement the time-to-live (TTL) 
field by at least 1 even though TTL is measured in seconds. Because of this requirement, TTL is 
usually considered a bound on the number of hops an IP packet may traverse before being discarded. 
Technically, a router that held a packet for more than 1 second could decrement ip_ttl by more 
than 1. 
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Figure 8.17. ip_forward function: route selection. 

 

 

The question arises: How long is the longest path in the Internet? This metric is 
called the diameter of a network. There is no way to discover the diameter other than 
through empirical methods. A 37-hop path was posted in [Olivier 1994]. 

Decrement TTL

885-890

The packet identifier is converted back to network byte order since it isn’t needed for forwarding and it 
should be in the correct order if ip_forward sends an ICMP error message, which includes the 
invalid IP header. 
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Net/3 neglects to convert ip_len, which ipintr converted to host byte order. 
The authors noted that on big endian machines this does not cause a problem since 
the bytes are never swapped. On little endian machines, such as a 386, this bug 
allows the byte-swapped value to be returned in the IP header within the ICMP error. 
This bug was observed in ICMP packets returned from SVR4 (probably Net/1 code) 
running on a 386 and from AIX 3.2 (4.3BSD Reno code). 

If ip_ttl has reached 1 (IPTTLDEC), an ICMP time exceeded message is returned to the sender 
and the packet is discarded. Otherwise, ip_forward decrements ip_ttl by IPTTLDEC.

A system should never receive an IP datagram with a TTL of 0, but Net/3 generates the correct ICMP 
error if this happens since ip_ttl is examined after the packet is considered for local delivery and 
before it is forwarded. 

Locate next hop

891-907

The IP forwarding algorithm caches the most recent route, in the global route structure 
ipforward_rt, and applies it to the current packet if possible. Research has shown that 
consecutive packets tend to have the same destination address ([Jain and Routhier 1986] and [Mogul 
1991]), so this one-behind cache minimizes the number of routing lookups. If the cache 
(ipforward_rt) is empty or the current packet is to a different destination than the route entry in 
ipforward_rt, the previous route is discarded, ro_dst is initialized to the new destination, 
and rtalloc finds a route to the current packet’s destination. If no route can be found for the 
destination, an ICMP host unreachable error is returned and the packed discarded. 

908-914

Since ip_output discards the packet when an error occurs, m_copy makes a copy of the first 64 
bytes in case ip_forward sends an ICMP error message. ip_forward does not abort if the 
call to m_copy fails. In this case, the error message is not sent. ip_ifmatrix records the 
number of packets routed between interfaces. The counter with the indexes of the receiving and 
sending interfaces is incremented. 

Redirect Messages

A first-hop router returns an ICMP redirect message to the source host when the host incorrectly 
selects the router as the packet’s first-hop destination. The IP networking model assumes that hosts are 
relatively ignorant of the overall internet topology and assigns the responsibility of maintaining 
correct routing tables to routers. A redirect message from a router informs a host that it has selected an 
incorrect route for a packet. We use Figure 8.18 to illustrate redirect messages. 
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Figure 8.18. Router R1 is redirecting host HS to use router R2 to reach HD. 

 

 

Generally, an administrator configures a host to send packets for remote networks to a default router. 
In Figure 8.18, host HS has R1 configured as its default router. When it first attempts to send a packet 
to HD it sends the packet to R1, not knowing that R2 is the appropriate choice. R1 recognizes the 
mistake, forwards the packet to R2, and sends a redirect message back to HS. After receiving the 
redirect, HS updates its routing tables so that the next packet to HD is sent directly to R2. 

RFC 1122 recommends that only routers send redirect messages and that hosts must update their 
routing tables when receiving ICMP redirect messages (Section 11.8). Since Net/3 calls 
ip_forward only when the system is configured as a router, Net/3 follows RFC 1122’s 
recommendations. 

In Figure 8.19, ip_forward determines whether or not it should send a redirect message. 
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Figure 8.19. ip_forward continued. 

 

 
 

Leaving on receiving interface?

915-929

The rules by which a router recognizes redirect situations are complicated. First, redirects are 
applicable only when a packet is received and resent on the same interface (rt_ifp and rcvif). 
Next, the selected route must not have been itself created or modified by an ICMP redirect message 
(RTF_DYNAMIC | RTF_MODIFIED), nor can the route be to the default destination (0.0.0.0). 
This ensures that the system does not propagate routing information for which it is not an authoritative 
source, and that it does not share its default route with other systems. 

Generally, routing protocols use the special destination 0.0.0.0 to locate a default 
route. When a specific route to a destination is not available, the route associated 
with destination 0.0.0.0 directs the packet toward a default router. 

Chapter 18 has more information about default routes. 

The global integer ipsendredirects specifies whether the system has administrative authority 
to send redirects (Section 8.9). By default, ipsendredirects is 1. Redirects are suppressed 
when the system is source routing a packet as indicated by the srcrt argument passed to 
ip_forward, since presumably the source host wanted to override the decisions of the 
intermediate routers. 
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Send redirect?

930-931

This test determines if the packet originated on the local subnet. If the subnet mask bits of the source 
address and the outgoing interface’s address are the same, the addresses are on the same IP network. If 
the source and the outgoing interface are on the same network, then this system should not have 
received the packet, since the source could have sent the packet directly to the correct first-hop router. 
The ICMP redirect message informs the host of the correct first-hop destination. If the packet 
originated on some other subnet, then the previous system was a router and this system does not send 
a redirect; the mistake will be corrected by a routing protocol. 

In any case, routers are required to ignore redirect messages. Despite the 
requirement, Net/3 does not discard redirect messages when ipforwarding is 
set (i.e., when it is configured to be a router). 

Select appropriate router

932-940

The ICMP redirect message contains the address of the correct next system, which is a router’s address 
if the destination host is not on the directly connected network or the host address if the destination 
host is on the directly connected network. 

RFC 792 describes four types of redirect messages:  

(1) network, 

(2) host, 

(3) TOS and network, and 

(4) TOS and host. 

RFC 1009 recommends against sending network redirects at any time because of the impossibility of 
guaranteeing that the host receiving the redirect can determine the appropriate subnet mask for the 
destination network. RFC 1122 recommends that hosts treat network redirects as host redirects to 
avoid this ambiguity. Net/3 sends only host redirects and ignores any TOS considerations. In Figure 
8.20, ipintr passes the packet and any ICMP messages to the link layer. 
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Figure 8.20. ip_forward continued. 

 

 

The redirect messages were standardized before subnetting. In a nonsubnetted 
internet, network redirects are useful but in a subnetted internet they are ambiguous 
since they do not include a subnet mask. 

Forward packet

941-954

 223

At this point, ip_forward has a route for the packet and has determined if an ICMP redirect is 
warranted. ip_output sends the packet to the next hop as specified in the route 
ipforward_rt. The IP_ALLOWBROADCAST flag allows the packet being forwarded to be 
a directed broadcast to a local network. If ip_output succeeds and no redirect message needs to 
be sent, the copy of the first 64 bytes of the packet is discarded and ip_forward returns. 
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Send ICMP error?

955-983

ip_forward may need to send an ICMP message because ip_output failed or a redirect is 
pending. If there is no copy of the original packet (there might have been a buffer shortage at the time 
the copy was attempted), the message can’t be sent and ip_forward returns. If a redirect is 
pending, type and code have been previously set, but if ip_output failed, the switch 
statement sets up the new ICMP type and code values based on the return value from ip_output.
icmp_error sends the message. The ICMP message from a failed ip_output overrides any 
pending redirect message. 

It is important to recognize the significance of the switch statement that handles errors from 
ip_output. It translates local system errors into the appropriate ICMP error message, which is 
returned to the packet’s source. Figure 8.21 summarizes the errors. Chapter 11 describes the ICMP 
messages in more detail. 

Figure 8.21. Errors from ip_output.

 

 

Net/3 always generates the ICMP source quench when ip_output returns 
ENOBUFS. The Router Requirements RFC [Almquist and Kastenholz 1994] 
deprecate the source quench and state that a router should not generate them. 

8.6. Output Processing: ip_output Function 

The IP output code receives packets from two sources: ip_forward and the transport protocols 
(Figure 8.1). It would seem reasonable to expect IP output operations to be accessed by 
inetsw[0].pr_output, but this is not the case. The standard Internet transport protocols 
(ICMP, IGMP, UDP, and TCP) call ip_output directly instead of going through the inetsw 
table. For the standard Internet transport protocols, the generality of the protosw structure is not 
necessary, since the calling functions are not accessing IP in a protocol-independent context. In 
Chapter 20 we’ll see that the protocol-independent routing sockets call pr_output to access IP. 

We describe ip_output in three sections: 

header initialization, 
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route selection, and 
source address selection and fragmentation. 

Header Initialization

The first section of ip_output, shown in Figure 8.22, merges options into the outgoing packet 
and completes the IP header for packets that are passed from the transport protocols (not those from 
ip_forward). 

Figure 8.22. ip_output function. 

 

 

44-59

The arguments to ip_output are: m0, the packet to send; opt, the IP options to include; ro, 
a cached route to the destination; flags, described in Figure 8.23; and imo, a pointer to 
multicast options described in Chapter 12. 
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Figure 8.23. ip_output:flags values. 

 

 

IP_FORWARDING is set by ip_forward and ip_mforward (multicast packet 
forwarding) and prevents ip_output from resetting any of the IP header fields. 

The MSG_DONTROUTE flag to send, sendto, and sendmsg enables 
IP_ROUTETOIF for a single write (Section 16.4) while the SO_DONTROUTE socket option 
enables IP_ROUTETOIF for all writes on a particular socket (Section 8.8). The flag is passed by 
each of the transport protocols to ip_output.

The IP_ALLOWBROADCAST flag can be set by the SO_BROADCAST socket option (Section 
8.8) but is passed only by UDP. The raw IP protocol sets IP_ALLOWBROADCAST by default. 
TCP does not support broadcasts, so IP_ALLOWBROADCAST is not passed by TCP to 
ip_output. There is no per-request flag for broadcasting. 

Construct IP header

60-73

If the caller provides any IP options they are merged with the packet by ip_insertoptions 
(Section 9.8), which returns the new header length. 

We’ll see in Section 8.8 that a process can set the IP_OPTIONS socket option to specify the IP 
options for a socket. The transport layer for the socket (TCP or UDP) always passes these options to 
ip_output.

The IP header of a forwarded packet (IP_FORWARDING) or a packet with a preconstructed header 
(IP_RAWOUTPUT) should not be modified by ip_output. Any other packet (e.g., a UDP or 
TCP packet that originates at this host) needs to have several IP header fields initialized. 
ip_output sets ip_v to 4 (IPVERSION), clears ip_off except for the DF bit, which is left 
as provided by the caller (Chapter 10), and assigns a unique identifier to ip->ip_id from the 
global integer ip_id, which is immediately incremented. Remember that ip_id was seeded 
from the system clock during protocol initialization (Section 7.8). ip_hl is set to the header length 
measured in 32-bit words. 

Most of the remaining fields in the IP header length, offset, TTL, protocol, TOS, and the destination 
address have already been initialized by the transport protocol. The source address may not be set, in 
which case it is selected after a route to the destination has been located (Figure 8.25). 
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Packet already includes header

74-76

For a forwarded packet (or a raw IP packet with a header), the header length (in bytes) is saved in 
hlen for use by the fragmentation algorithm. 

Route Selection

After completing the IP header, the next task for ip_output is to locate a route to the destination. 
This is shown in Figure 8.24. 

Figure 8.24. ip_output continued. 
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Verify cached route

77-99

A cached route may be provided to ip_output as the ro argument. In Chapter 24 we’ll see that 
UDP and TCP maintain a route cache associated with each socket. If a route has not been provided, 
ip_output sets ro to point to the temporary route structure iproute.

If the cached destination is not to the current packet’s destination, the route is discarded and the new 
destination address placed in dst.
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Bypass routing

100-114

A caller can prevent packet routing by setting the IP_ROUTETOIF flag (Section 8.8). If this flag is 
set, ip_output must locate an interface directly connected to the destination network specified in 
the packet. ifa_ifwithdstaddr searches point-to-point interfaces, while in_ifwithnet 
searches all the others. If neither function finds an interface connected to the destination network, 
ENETUNREACH is returned; otherwise, ifp points to the selected interface. 

This option allows routing protocols to bypass the local routing tables and force the 
packets to exit the system by a particular interface. In this way, routing information 
can be exchanged with other routers even when the local routing tables are incorrect. 

Locate route

115-122

If the packet is being routed (IP_ROUTETOIF is off) and there is no cached route, rtalloc 
locates a route to the address specified by dst. ip_output returns EHOSTUNREACH if 
rtalloc fails to find a route. If ip_forward called ip_output, EHOSTUNREACH is 
converted to an ICMP error. If a transport protocol called ip_output, the error is passed back to 
the process (Figure 8.21). 

123-128

ia is set to point to an address (the ifaddr structure) of the selected interface and ifp points to 
the interface’s ifnet structure. If the next hop is not the packet’s final destination, dst is changed 
to point to the next-hop router instead of the packet’s final destination. The destination address within 
the IP header remains unchanged, but the interface layer must deliver the packet to dst, the next-
hop router. 

Source Address Selection and Fragmentation

The final section of ip_output, shown in Figure 8.25, ensures that the IP header has a valid 
source address and then passes the packet to the interface associated with the route. If the packet is 
larger than the interface’s MTU, it must be fragmented and transmitted in pieces. As we did with the 
reassembly code, we omit the fragmentation code here and postpone discussion of it until Chapter 10. 
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Figure 8.25. ip_output continued. 

 

 

 
 

Select source address

212-239

If ip_src has not been specified, then ip_output selects ia, the IP address of the outgoing 
interface, as the source address. This couldn’t be done earlier when the other IP header fields were 
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filled in because a route hadn’t been selected yet. Forwarded packets always have a source address, but 
packets that originate at the local host may not if the sending process has not explicitly selected one. 

If the destination IP address is a broadcast address, the interface must support broadcasting 
(IFF_BROADCAST, Figure 3.7), the caller must explicitly enable broadcasting 
(IP_ALLOWBROADCAST, Figure 8.23), and the packet must be small enough to be sent without 
fragmentation. 

This last test is a policy decision. Nothing in the IP protocol specification explicitly 
prohibits the fragmentation of broadcast packets. By requiring the packet to fit within 
the MTU of the interface, however, there is an increased chance that the broadcast 
packet will be received at every interface, because there is a better chance of 
receiving one undamaged packet than of receiving two or more undamaged packets. 

If any of these conditions are not met, the packet is dropped and EADDRNOTAVAIL, EACCES, 
or EMSGSIZE is returned to the caller. Otherwise, M_BCAST is set on the outgoing packet, which 
tells the interface output function to send the packet as a link-level broadcast. In Section 21.10 we’ll 
see that arpresolve translates the IP broadcast address to the Ethernet broadcast address. 

If the destination address is not a broadcast address, ip_output clears M_BCAST.

If M_BCAST were not cleared, the reply to a request packet that arrived as a 
broadcast might be accidentally returned as a broadcast. We’ll see in Chapter 11 that 
ICMP replies are constructed within the request packet in this way as are TCP RST 
packets (Section 26.9). 

Send packet

240-252

If the packet is small enough for the selected interface, ip_len and ip_off are converted to 
network byte order, the IP checksum is computed with in_cksum (Section 8.7), and the packet is 
passed to the if_output function of the selected interface. 

Fragment packet

253-338

Larger packets must be fragmented before they can be sent. We have omitted that code here and 
describe it in Chapter 10 instead. 

Cleanup

339-346

A reference count is maintained for the route entries. Recall that ip_output may use a temporary 
route structure (iproute) if the argument ro is null. If necessary, RTFREE releases the route 
entry within iproute and decrements the reference count. The code at bad discards the current 
packet before returning. 

Reference counting is a memory management technique. The programmer must 
count the number of external references to a data structure; when the count returns to 
0, the memory can be safely returned to the free pool. Reference counting requires 
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some discipline by the programmer, who must explicitly increase and decrease the 
reference count when appropriate. 

8.7. Internet Checksum: in_cksum Function 

Two operations dominate the time required to process packets: copying the data and computing 
checksums ([Kay and Pasquale 1993]). The flexible nature of the mbuf data structure is the primary 
method of reducing copy operations in Net/3. Efficient computing of checksums is harder since it is 
very hardware dependent. Net/3 contains several implementations of in_cksum.

Figure 8.26. in_cksum versions in Net/3. 

 

 

Even the portable C implementation has been optimized considerably. RFC 1071 [Braden, Borman, 
and Partridge 1988] and RFC 1141 [Mallory and Kullberg 1990] discuss the design and 
implementation of the Internet checksum function. RFC 1141 has been updated by RFC 1624 
[Rijsinghani 1994]. From RFC 1071: 

1. Adjacent bytes to be checksummed are paired to form 16-bit integers, and the one’s 
complement sum of these 16-bit integers is formed. 

2. To generate a checksum, the checksum field itself is cleared, the 16-bit one’s complement 
sum is computed over the bytes concerned, and the one’s complement of this sum is placed in 
the checksum field. 

3. To verify a checksum, the one’s complement sum is computed over the same set of bytes, 
including the checksum field. If the result is all 1 bits (-0 in one’s complement arithmetic, as 
explained below), the check succeeds. 

Briefly, when addition is performed on integers in one’s complement representation, the result is 
obtained by summing the two integers and adding any carry bit to the result to obtain the final sum. In 
one’s complement arithmetic the negative of a number is formed by complementing each bit. There 
are two representations of 0 in one’s complement arithmetic: all 0 bits, and all 1 bits. A more detailed 
discussion of one’s complement representations and arithmetic can be found in [Mano 1982]. 

The checksum algorithm computes the value to place in the checksum field of the IP header before 
sending the packet. To compute this value, the checksum field in the header is set to 0 and the one’s 
complement sum on the entire header (including options) is computed. The header is processed as an 
array of 16-bit integers. Let’s call the result of this computation a. Since the checksum field is 
explicitly set to 0, a is also the sum of all the IP header fields except the checksum. The one’s 
complement of a, denoted -a, is placed in the checksum field and the packet is sent. 

If no bits are altered in transit, the computed checksum at the destination should be the complement of 
(a+-a). The sum (a+-a) in one’s complement arithmetic is -0 (all 1 bits) and its complement is 0 (all 0 
bits). So the computed checksum of an undamaged packet at the destination should always be 0. This 
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is what we saw in Figure 8.12. The following C code (which is not part of Net/3) is a naive 
implementation of this algorithm: 

Figure 8.27. A naive implementation of the IP checksum calculation. 

 

 

1-16

The only performance enhancement here is to accumulate the carry bits in the high-order 16 bits of 
sum. The accumulated carries are added to the low-order 16 bits when the loop terminates, until no 
more carries occur. RFC 1071 calls this deferred carries. This technique is useful on machines that 
don’t have an add-with-carry instruction or when detecting a carry is expensive. 

Now we show the portable C version from Net/3. It utilizes the deferred carry technique and works 
with packets stored in an mbuf chain. 

42-140

Our naive checksum implementation assumed that all the bytes to be checksummed were in a 
contiguous buffer instead of in mbuf chains. This version of the checksum calculation handles the 
mbufs correctly using the same underlying algorithm: 16-bit words are summed in a 32-bit integer 
with the carries deferred. For mbufs with an odd number of bytes, the extra byte is saved and paired 
with the first byte of the next mbuf. Since unaligned access to 16-bit words is invalid or incurs a 
severe performance penalty on most architectures, a misaligned byte is saved and in_cksum 
continues adding with the next aligned word. in_cksum is careful to byte swap the sum when this 
occurs to ensure that even-numbered and odd-numbered data bytes are collected in separate sum bytes 
as required by the checksum algorithm. 

Loop unrolling

93-115

The three while loops in the function add 16 words, 4 words, and 1 word to the sum during each 
iteration. The unrolled loops reduce the loop overhead and can be considerably faster than a 
straightforward loop on some architectures. The price is increased code size and complexity. 
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Figure 8.28. An optimized portable C implementation of the IP checksum calculation. 
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More Optimizations

RFC 1071 mentions two optimizations that don’t appear in Net/3: a combined copy-with-checksum 
operation and incremental checksum updates. Merging the copy and checksum operations is not as 
important for the IP header checksum as it is for the TCP and UDP checksums, which cover many 
more bytes. This merged operation is discussed in Section 23.12. [Partridge and Pink 1993] report that 
an inline version of the IP header checksum is faster than calling the more general in_cksum 
function and can be done in six to eight assembler instructions (for the standard 20-byte IP header). 

The design of the checksum algorithm allows a packet to be changed and the checksum updated 
without reexamining all the bytes. RFC 1071 contains a brief discussion of this topic. RFCs 1141 and 
1624 contain more detailed discussions. A typical use of this technique occurs during packet 
forwarding. In the common case, when a packet has no options, only the TTL field changes during 
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forwarding. The checksum in this case can be recomputed by a single addition with an end-around 
carry. 

In addition to being more efficient, an incremental checksum can help detect headers corrupted by 
buggy software. A corrupted header is detected by the next system if the checksum is computed 
incrementally, but if it is recomputed from scratch, the checksum incorporates the erroneous bytes and 
the corrupted header is not detected by the next system. The end-to-end checksum used by UDP or 
TCP detects the error at the final destination. We’ll see in Chapters 23 and 25 that the UDP and TCP 
checksums incorporate several parts of the IP header. 

For an example of the checksum function that utilizes hardware add-with-carry instructions to 
compute the checksum 32 bits at a time, see the VAX implementation of in_cksum in the file 
sys/vax/vax/in_cksum.c.

8.8. setsockopt and getsockopt System Calls 

Net/3 provides access to several networking features through the setsockopt and 
getsockopt system calls. These system calls support a generic interface used by a process to 
access features of a networking protocol that aren’t supported by the standard system calls. The 
prototypes for these two calls are: 

    int setsockopt (int s, int level, int optname, const 
void *optval, int optlen);

    int getsockopt (int s, int level, int optname, void 
*optval, int *optlen);

        
 

Most socket options affect only the socket on which they are issued. Compare this to sysctl 
parameters, which affect the entire system. The socket options associated with multicasting are a 
notable exception and are described in Chapter 12. 

setsockopt and getsockopt set and get options at all levels of the communication stack. 
Net/3 processes options according to the protocol associated with s and the identifier specified by 
level. Figure 8.29 lists possible values for level within the protocols that we discuss. 

Figure 8.29. setsockopt and getsockopt arguments. 
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We describe the implementation of the setsockopt and getsockopt system calls in Chapter 
17, but we discuss the implementation of individual options within the appropriate chapters. In this 
chapter, we cover the options that provide access to IP features. 

Throughout the text we summarize socket options as shown in Figure 8.30. This figure shows the 
options for the IPPROTO_IP level. The option appears in the first column, the data type of the 
variable pointed to by optval appears in the second column, and the third column shows the function 
that processes the option. 

Figure 8.30. Socket options: IPPROTO_IP level for SOCK_RAW, SOCK_DGRAM, or 
SOCK_STREAM sockets. 

 

 

Figure 8.31 shows the overall organization of the ip_ctloutput function, which handles most 
of the IPPROTO_IP options. In Section 32.8 we show the additional IPPROTO_IP options that 
work with SOCK_RAW sockets. 
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Figure 8.31. ip_ctloutput function: overview. 

 

 

431-447

ip_ctloutput's first argument, op, is either PRCO_SETOPT or PRCO_GETOPT. The 
second argument, so, points to the socket on which the request was issued. level must be 
IPPROTO_IP. optname is the option to change or to retrieve, and mp points indirectly to an 
mbuf that contains the related data for the option. m is initialized to point to the mbuf referenced by 
*mp.

448-500

 238

If an unrecognized option is specified in the call to setsockopt (and therefore to the 
PRCO_SETOPT case of the switch), ip_ctloutput releases any mbuf passed by the caller 
and returns EINVAL.
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501-553

Unrecognized options passed to getsockopt result in ip_ctloutput returning 
ENOPROTOOPT. In this case, the caller releases the mbuf. 

PRCO_SETOPT Processing

The processing for PRCO_SETOPT is shown in Figure 8.32. 

Figure 8.32. ip_ctloutput function: PRCO_SETOPT processing. 

 

 

450-451

IP_OPTIONS is processed by ip_pcbopts (Figure 9.32). 

452-484

The IP_TOS, IP_TTL, IP_RECVOPTS, IP_RECVRETOPTS, and 
IP_RECVDSTADDR options all expect an integer to be available in the mbuf pointed to by m. The 
integer is stored in optval and then used to change the ip_tos or ip_ttl values associated 
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with the socket or to set or clear the INP_RECVOPTS, INP_RECVRETOPTS, or 
INP_RECVDSTADDR flags associated with the socket. The macro OPTSET sets (or clears) the 
specified bit if optval is nonzero (or 0). 

Figure 8.30 showed that IP_RECVOPTS and IP_RECVRETOPTS were not 
implemented. In Chapter 23, we’ll see that the settings of these options are ignored by 
UDP. 

PRCO_GETOPT Processing

Figure 8.33 shows the code that retrieves the IP options when PRCO_GETOPT is specified. 

Figure 8.33. ip_ctloutput function: PRCO_GETOPT processing. 

 

 

503-538

For IP_OPTIONS, ip_ctloutput returns an mbuf containing a copy of the options 
associated with the socket. For the remaining options, ip_ctloutput returns the value of 
ip_tos, ip_ttl, or the state of the flag associated with the option. The value is returned in 
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the mbuf pointed to by m. The macro OPTBIT returns 1 (or 0) if bit is on (or off) in 
inp_flags.

Notice that the IP options are stored in the protocol control block (inp, Chapter 22) associated with 
the socket. 

8.9. ip_sysctl Function 

Figure 7.27 showed that the ip_sysctl function is called when the protocol and family identifiers 
are 0 in a call to sysctl. Figure 8.34 shows the three parameters supported by ip_sysctl.

Figure 8.34. ip_sysctl parameters. 

 

 

Figure 8.35 shows the ip_sysctl function. 

Figure 8.35. ip_sysctl function. 

 

 

984-995

Since ip_sysctl does not forward sysctl requests to any other functions, there can be only 
one remaining component in name. If not, ENOTDIR is returned. 
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996-1008

The switch statement selects the appropriate call to sysctl_int, which accesses or modifies 
ipforwarding, ipsendredirects, or ip_defttl. EOPNOTSUPP is returned 
for unrecognized options. 

8.10. Summary 

IP is a best-effort datagram service that provides the delivery mechanism for all other Internet 
protocols. The standard IP header is 20 bytes long, but may be followed by up to 40 bytes of options. 
IP can split large datagrams into fragments to be transmitted and reassembles the fragments at the 
final destination. Option processing is discussed in Chapter 9, and fragmentation and reassembly is 
discussed in Chapter 10. 

ipintr ensures that IP headers have arrived undamaged and determines if they have arrived at their 
final destination by comparing the destination address to the IP addresses of the system’s interfaces 
and to several broadcast addresses. ipintr passes datagrams that have reached their final 
destination to the transport protocol specified within the packet. If the system is configured as a router, 
datagrams that have not reached their final destination are sent to ip_forward for routing toward 
their final destination. Packets have a limited lifetime. If the TTL field drops to 0, the packet is 
dropped by ip_forward.

The Internet checksum function is used by many of the Internet protocols and implemented by 
in_cksum in Net/3. The IP checksum covers only the header (and options), not the data, which 
must be protected by checksums at the transport protocol level. As one of the most time-consuming 
operations in IP, the checksum function is often optimized for each platform. 

Exercises

8.1 Should IP accept broadcast packets when there are no IP addresses assigned to any 
interfaces? 

8.2 Modify ip_forward and ip_output to do an incremental update of the IP 
checksum when a packet without options is being forwarded. 

8.3 Why is it necessary to check for a link-level broadcast (M_BCAST flag in an mbuf) and 
for an IP-level broadcast (in_canforward) when rejecting packets for forwarding? 
When would a packet arrive as a link-level broadcast but with an IP unicast destination? 

8.4 Why isn’t an error message returned to the sender when an IP packet arrives with 
checksum errors? 

8.5 Assume that a process on a multihomed host has selected an explicit source address for its 
outgoing packets. Furthermore, assume that the packet’s destination is reached through an 
interface other than the one selected as the packet’s source address. What happens when 
the first-hop router discovers that the packets should be going through a different router? 
Is a redirect message sent to the host? 

8.6 A new host is attached to a subnetted network and is configured to perform routing 
(ipforwarding equals 1) but its network interface has not been assigned a subnet 
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mask. What happens when this host receives a subnet broadcast packet? 

8.7 Why is it necessary to decrement ip_ttl after testing it (versus before) in Figure 8.17?  

8.8 What would happen if two routers each considered the other the best next-hop destination 
for a packet? 

8.9 Which addresses would not be checked in Figure 8.14 for a packet arriving at the SLIP 
interface? Would any additional addresses be checked that aren’t listed in Figure 8.14? 

8.10 ip_forward converts the fragment id from host byte order to network byte order 
before calling icmp_error. Why does it not also convert the fragment offset? 
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Chapter 9. IP Option Processing

9.1. Introduction 

Recall from Chapter 8 that the IP input function (ipintr) processes options after it verifies the 
packet’s format (checksum, length, etc.) and before it determines whether the packet has reached its 
final destination. This implies that a packet’s options are processed by every router it encounters and 
by the final destination host. 

RFCs 791 and 1122 specify the IP options and processing rules. This chapter describes the format and 
processing of most IP options. We’ll also show how a transport protocol can specify the IP options to 
be included in an IP datagram. 

An IP packet can include optional fields that are processed before the packet is forwarded or accepted 
by a system. An IP implementation can handle options in any order; for Net/3, it is the order in which 
the options appear in the packet. Figure 9.1 shows that up to 40 bytes of options may follow the 
standard IP header. 

Figure 9.1. An IP header may contain 0 to 40 bytes of IP options. 

 

9.2. Code Introduction 

Two headers describe the data structures for IP options. Option processing code is found in two C 
files. Figure 9.2 lists the relevant files. 

Figure 9.2. Files discussed in this chapter. 

 

 
 

Global Variables

The two global variables described in Figure 9.3 support the reversal of source routes. 
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Figure 9.3. Global variables introduced in this chapter. 

 

 
 

Statistics

The only statistic updated by the options processing code is ips_badoptions from the 
ipstat structure, which Figure 8.4 described. 

9.3. Option Format 

The IP option field may contain 0 or more individual options. The two types of options, single-byte 
and multibyte, are illustrated in Figure 9.4. 

Figure 9.4. The organization of single-byte and multibyte IP options. 

 

 

All options start with a 1-byte type field. In multibyte options, the type field is followed immediately 
by a len field, and the remaining bytes are the data. The first byte of the data field for many options is 
a 1-byte offset field, which points to a byte within the data field. The len byte covers the type, len, and 
data fields in its count. The type is further divided into three internal fields: a 1-bit copied flag, a 2-bit 
class field, and a 5-bit number field. Figure 9.5 lists the currently defined IP options. The first two 
options are single-byte options; the remainder are multibyte options. 

Figure 9.5. IP options defined by RFC 791. 
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The first column shows the Net/3 constant for the option, followed by the decimal and binary values 
of the type in columns 2 and 3, and the expected length of the option in column 4. The Net/3 column 
shows those options that are implemented in Net/3 by ip_dooptions. IP must silently ignore 
any option it does not understand. We don’t describe the options that are not implemented in Net/3: 
security and stream ID. The stream ID option is obsolete and the security options are used primarily 
by the U.S. military. See RFC 791 for more information. 

Net/3 examines the copied flag when it fragments a packet with options (Section 10.4). The flag 
indicates whether the individual option should be copied into the IP header of the fragments. The class
field groups related options as described in Figure 9.6. All the options in Figure 9.5 have a class of 0 
except for the timestamp option, which has a class of 2. 

Figure 9.6. The class field within an IP option. 

 

9.4. ip_dooptions Function 

In Figure 8.13 we saw that ipintr calls ip_dooptions just before it checks the destination 
address of the packet. ip_dooptions is passed a pointer, m, to a packet and processes the 
options it knows about. If ip_dooptions forwards the packet, as can happen with the LSRR and 
SSRR options, or discards the packet because of an error, it returns 1. If it doesn’t forward the packet, 
ip_dooptions returns 0 and ipintr continues processing the packet. 

ip_dooptions is a long function, so we show it in parts. The first part initializes a for loop to 
process each option in the header. 

When processing an individual option, cp points to the first byte of the option. Figure 9.7 illustrates 
how the type, length, and, when applicable, the offset fields are accessed with constant offsets from 
cp.

Figure 9.7. Access to IP option fields is by constant offsets. 

 

 

The RFCs refer to the offset field as a pointer, which is slightly more descriptive than the term offset. 
The value of offset is the index (starting with type at index 1) of a byte within the option, and not a 0-
based offset from type. The minimum value for offset is 4 (IPOPT_MINOFF), which points to the 
first byte of the data field in a multibyte option. 
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Figure 9.8 shows the overall organization of the ip_dooptions function. 

Figure 9.8. ip_dooptions function. 

 

 

553-566

ip_dooptions initializes the ICMP error type, type, to ICMP_PARAMPROB, which is a 
generic value for any error that does not have a specific error type of its own. For 
ICMP_PARAMPROB, code is the offset within the packet of the erroneous byte. This is the 
default ICMP error message; some options change these values. 

C Language Note: Line 565 contains another example of pointer arithmetic. When a 
constant is added to a pointer, the constant is first multiplied by the size of the object 
pointed to. In this case, ip points to an ip structure with a size of 20 bytes, so 
ip+1 points to the next ip structure following the IP header. Since 
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ip_dooptions wants the address of the byte after the IP header, the cast 
converts the resulting pointer to a pointer to an unsigned byte (u_char). Therefore 
cp points to the first byte beyond the standard IP header, which is the first byte of 
the IP options. 

EOL and NOP processing

567-582

The for loop processes each option in the order it appears in the packet. An EOL option terminates 
the loop, as does an invalid option length (i.e., the option length indicates that the option data extends 
beyond the IP header). A NOP option is skipped when it appears. The default case for the 
switch statement implements the requirement that a system ignore unknown options. 

The following sections describe each of the options handled within the switch statement. If 
ip_dooptions processes all the options in the packet without finding an error, control falls 
through to the code after the switch.

Source route forwarding

719-724

If the packet needs to be forwarded, forward is set by the SSRR or LSRR option processing code. 
The packet is passed to ip_forward with a 1 as the second argument to specify that the packet is 
source routed. 

Recall from Section 8.5 that ICMP redirects are not generated for source-routed 
packets this is the reason for the second argument to ip_forward.

ip_dooptions returns 1 if the packet has been forwarded. If the packet does not include a source 
route, 0 is returned to ipintr to indicate that the datagram needs further processing. Note that 
source route forwarding occurs whether the system is configured as a router (ipforwarding 
equals 1) or not. 

This is a somewhat controversial policy, but is mandated by RFC 1122. RFC 1127 
[Braden 1989c] describes this as an open issue. 

Error handling

725-730

If an error occurs within the switch, ip_dooptions jumps to bad. The IP header length 
is subtracted from the packet length since icmp_error assumes the header length is not included 
in the packet length. icmp_error sends the appropriate error message, and ip_dooptions 
returns 1 to prevent ipintr from processing the discarded packet. 

The following sections describe each of the options that are processed by Net/3. 
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9.5. Record Route Option 

The record route option causes the route taken by a packet to be recorded within the packet as it 
traverses an internet. The size of the option is fixed by the source host when it constructs the option 
and must be large enough to hold all the expected addresses. Recall that only 40 bytes of options may 
appear in an IP packet. The record route option has 3 bytes of overhead followed by a list of addresses 
(4 bytes each). If it is the only option, up to 9 (3 + 4 x 9 = 39) addresses may appear. Once the 
allocated space in the option has been filled, the packet is forwarded as usual but no more addresses 
are recorded by the intermediate systems. 

Figure 9.9 illustrates the format of a record route option and Figure 9.10 shows the source code. 

Figure 9.9. The record route option. n must be 9.

 

 
Figure 9.10. ip_dooptions function: record route option processing. 

 

 

647-657

If the option offset is too small, ip_dooptions sends an ICMP parameter problem error. The 
variable code is set to the byte offset of the invalid option offset within the packet, and the ICMP 
parameter problem error has this code value when the error is generated at the label bad (Figure 
9.8). If there is no space in the option for additional addresses, the option is ignored and processing 
continues with the next option. 
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Record address

658-673

If ip_dst is one of the systems addresses (the packet has arrived at its destination), the address of 
the receiving interface is recorded in the option; otherwise the address of the outgoing interface as 
provided by ip_rtaddr is recorded. (The INA and SA macros are defined in Figure 9.15.) The 
offset is updated to point to the next available address position in the option. If ip_rtaddr can’t 
find a route to the destination, an ICMP host unreachable error is sent. 

Section 7.3 of Volume 1 contains examples of the record route option. 

ip_rtaddr Function

The ip_rtaddr function consults a route cache and, if necessary, the complete routing tables to 
locate a route to a given IP address. It returns a pointer to the in_ifaddr structure associated with 
the outgoing interface for the route. The function is shown in Figure 9.11. 

Figure 9.11. ip_rtaddr function: locate outgoing interface. 

 

 
 

Check IP forwarding cache

735-741

If the route cache is empty, or if dest, the only argument to ip_rtaddr, does not match the 
destination in the route cache, the routing tables must be consulted to select an outgoing interface. 
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Locate route

742-750

The old route (if any) is discarded and the new destination address is stored in *sin (which is the 
ro_dst member of the forwarding cache), rtalloc searches the routing tables for a route to the 
destination. 

Return route information

751-754

If no route is available, a null pointer is returned. Otherwise, a pointer to the interface address 
structure associated with the selected route is returned. 

9.6. Source and Record Route Options 

Normally a packet is forwarded along a path chosen by the intermediate routers. The source and 
record route options allow the source host to specify an explicit path to the destination that overrides 
routing decisions of the intermediate routers. Furthermore, the route is recorded as the packet travels 
toward its destination. 

A strict route includes the address of every intermediate router between the source and destination; a 
loose route specifies only some of the intermediate routers. Routers are free to choose any path 
between two systems listed in a loose route, whereas no intermediate routers are allowed between the 
systems listed in a strict route. We’ll use Figure 9.12 to illustrate source route processing. 

Figure 9.12. Source route example. 

 

 

A, B, and C are routers and HS and HD are the source and destination hosts. Since each interface has 
its own IP address, we see that router A has three addresses: A1, A2, and A3. Similarly, routers B and C 
have multiple addresses. Figure 9.13 shows the format of the source and record route options. 

Figure 9.13. The loose and strict source routing options. 
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The source and destination addresses in the IP header and the offset and address list in the option 
specify the route and the packet’s current location within the route. Figure 9.14 shows how this 
information changes as the packet follows the loose source route from HS to A to B to C to HD. The 
loose source route specified by the process are the four IP addresses: A3, B1, C1, and HD. Each row 
represents the state of the packet when sent by the system shown in the first column. The last line 
shows the packet as received by HD. Figure 9.15 shows the relevant code. 

Figure 9.14. The source route option is modified as a packet traverses the route. 
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Figure 9.15. ip_dooptions function: LSRR and SSRR option processing. 
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The ¥ marks the position of offset relative to the addresses within the route. Notice that the address of 
the outgoing interface is placed in the option by each system. In particular, the original route specified 
A3 as the first-hop destination but the output interface, A2, was recorded in the route. In this way, the 
route taken by the packet is recorded in the option. This recorded route should be reversed by the 
destination system and attached to any reply packets so that they follow the same path as the initial 
packet but in the reverse direction. 

Except for UDP, Net/3 reverses a received source route when responding. 

583-612

Net/3 sends an ICMP parameter problem error with the appropriate value of code if the option offset 
is smaller than 4 (IPOPT_MINOFF). If the destination address of the packet does not match one of 
the local addresses and the option is a strict source route (IPOPT_SSRR), an ICMP source route 
failure error is sent. If a local address isn’t listed in the route, the previous system sent the packet to the 
wrong host. This isn’t an error for a loose source route (IPOPT_LSRR); it means IP must forward 
the packet toward the destination. 

End of source route

613-620

Decrementing off converts it to a byte offset from the start of the option. If ip_dst in the IP 
header is one of the local addresses and off points beyond the end of the source route, there are no 
more addresses in the source route and the packet has reached its final destination. save_rte 
makes a copy of the route in the static structure ip_srcrt and saves the number of addresses in 
the route in the global ip_nhops (Figure 9.18). 

ip_srcrt is declared as an external static structure since it is only accessed by 
the functions declared in ip_input.c.

Update packet for next hop

621-637

If ip_dst is one of the local addresses and offset points to an address within the option, this 
system is an intermediate system specified in the source route and the packet has not reached its final 
destination. During strict routing, the next system must be on a directly connected network. 
ifa_ifwithdst and ifa_ifwithnet locate a route to the next system by searching the 
configured interfaces for a matching destination address (a point-to-point interface) or a matching 
network address (a broadcast interface). During loose routing, ip_rtaddr (Figure 9.11) locates 
the route to the next system by querying the routing tables. If no interface or route is found for the 
next system, an ICMP source route failure error is sent. 

638-644

If an interface or a route is located, ip_dooptions sets ip_dst to the IP address pointed to by 
off. Within the source route option, the intermediate address is replaced with the address of the 
outgoing interface, and the offset is incremented to point to the next address in the route. 
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Multicast destinations

645-646

If the new destination address is not a multicast address, setting forward to 1 indicates that the 
packet should be forwarded after ip_dooptions processes all the options instead of returning 
the packet to ipintr.

Multicast addresses within a source route enable two multicast routers to communicate through 
intermediate routers that don’t support multicasting. Chapter 14 describes this technique in more 
detail. 

Section 8.5 of Volume 1 contains more examples of the source route options. 

save_rte Function

RFC 1122 requires that the route recorded in a packet be made available to the transport protocol at 
the final destination. The transport protocols must reverse the route and attach it to any reply packets. 
The function save_rte, shown in Figure 9.18, saves source routes in an ip_srcrt structure, 
shown in Figure 9.16

Figure 9.16. ip_srcrt structure. 

 

 

The declaration of route is incorrect, though the error is benign. It should be 

    struct in_addr route[(MAX_IPOPTLEN - 3)/ 
sizeof (struct in_addr)];

 

The discussion with Figures 9.26 and 9.27 covers this in more detail. 

57-63

This code defines the ip_srcrt structure and declares the static variable ip_srcrt. Only two 
functions access ip_srcrt: save_rte, which copies the source route from an incoming 
packet into ip_srcrt; and ip_srcroute, which creates a reversed source route from 
ip_srcrt. Figure 9.17 illustrates source route processing. 
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Figure 9.17. Processing of reversed source routes. 

 

 
Figure 9.18. save_rte function. 

 

 

759-771

ip_dooptions calls save_rte when a source routed packet has reached its final destination, 
option is a pointer to a packet’s source route option, and dst is ip_src from the packet’s 
header (i.e., the destination of the return route, HS from Figure 9.12). If the option length is larger 
than the ip_srcrt structure, save_rte returns immediately. 

This would never happen, as the ip_srcrt structure is larger than the largest 
option length (40 bytes). 

save_rte copies the option into ip_srcrt, computes and saves the number of hops in the 
source route in ip_nhops, and saves the destination of the return route in dst.

ip_srcroute Function

When responding to a packet, ICMP and the standard transport protocols must reverse any source 
route that the packet carried. The reversed source route is constructed from the saved route by 
ip_srcroute, which is shown in Figure 9.19. 
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Figure 9.19. ip_srcroute function. 

 

 

777-783

ip_srcroute reverses the route saved in the ip_srcrt structure and returns the result 
formatted as an ipoption structure (Figure 9.26). If ip_nhops is 0, there is no saved route, so 
ip_srcroute returns a null pointer. 

Recall that in Figure 8.13, ipintr cleared ip_nhops when a valid packet 
arrives. The transport protocols must call ip_srcroute and save the reversed 
route themselves before the next packet arrives. As noted earlier, this is OK since the 
transport layer (TCP or UDP) is called by ipintr for each packet, before the next 
packet on IP’s input queue is processed. 
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Allocate mbuf for source route

784-790

If ip_nhops is nonzero, ip_srcroute allocates an mbuf and sets m_len large enough to 
include the first-hop destination, the option header information (OPTSIZ), and the reversed route. If 
the allocation fails, a null pointer is returned as if there were no source route available. 

791-804

p is initialized to point to the end of the incoming route, and ip_srcroute copies the last 
recorded address to the front of the mbuf where it becomes the outgoing first-hop destination for the 
reversed route. Then the function copies a NOP option (Exercise 9.4) and the source route information 
into the mbuf. 

805-818

The while loop copies the remaining IP addresses from the source route into the mbuf in reverse 
order. The last address in the route is set to the source address from the incoming packet, which 
save_rte placed in ip_srcrt.dst. A pointer to the mbuf is returned. Figure 9.20 
illustrates the construction of the reversed route with the route from Figure 9.12. 

Figure 9.20. ip_srcroute reverses the route in ip_srcrt.

 

 

9.7. Timestamp Option 

The timestamp option causes each system to record its notion of the current time within the option as 
the packet traverses an internet. The time is expected to be in milliseconds since midnight UTC, and is 
recorded in a 32-bit field. 

If the system does not keep accurate UTC (within a few minutes) or the time is not updated at least 15 
times per second, it is not considered a standard time. A nonstandard time must have the high-order bit 
of the timestamp field set. 

There are three types of timestamp options, which Net/3 accesses through the ip_timestamp 
structure shown in Figure 9.22. 

114-133
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As in the ip structure (Figure 8.10), #ifs ensure that the bit fields access the correct bits in the 
option. Figure 9.21 lists the three types of timestamp options specified by ipt_flg.

Figure 9.21. Possible values for ipt_flg.

 

 

The originating host must construct the timestamp option with a data area large enough to hold all 
expected timestamps and addresses. For a timestamp option with an ipt_flg of 3, the originating 
host fills in the addresses of the systems at which a timestamp should be recorded when it constructs 
the option. Figure 9.23 shows the organization of the three timestamp options. 

Figure 9.22. ip_timestamp structure and constants. 

 

 
Figure 9.23. The three timestamp options (ipt_omitted).
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Because only 40 bytes are available for IP options, the timestamp options are limited to nine 
timestamps (ipt_flg equals 0) or four pairs of addresses and timestamps (ipt_flg equals 1 or 
3). Figure 9.24 shows the processing for the three different timestamp option types. 

Figure 9.24. ip_dooptions function: timestamp option processing. 

 

 

674-684

ip_dooptions sends an ICMP parameter problem error if the option length is less than 5 bytes 
(the minimum size of a timestamp option). The oflw field counts the number of systems unable to 
register timestamps because the data area of the option was full, oflw is incremented if the data area 
is full, and when it itself overflows at 16 (it is a 4-bit field), an ICMP parameter problem error is sent. 

 260



ptg11539634

 261

Timestamp only

685-687

For a timestamp option with an ipt_flg of 0 (IPOPT_TS_TSONLY), all the work is done after 
the switch.

Timestamp and address

688-700

For a timestamp option with an ipt_flg of 1 (IPOPT_TS_TSANDADDR), the address of the 
receiving interface is recorded (if room remains in the data area), and the option pointer is advanced. 
Because Net/3 supports multiple IP addresses on a single interface, ip_dooptions calls 
ifaof_ifpforaddr to select the address that best matches the original destination address of 
the packet (i.e., the destination before any source routing has occurred). If there is no match, the 
timestamp option is skipped. (INA and SA were defined in Figure 9.15.) 

Timestamp at prespecified addresses

701-710

If ipt_flg is 3 (IPOPT_TS_PRESPEC), ifa_ifwithaddr determines if the next 
address specified in the option matches one of the system’s addresses. If not, this option requires no 
processing at this system; the continue forces ip_dooptions to proceed to the next option. 
If the next address matches one of the system’s addresses, the option pointer is advanced to the next 
position and control continues after the switch.

Insert timestamp

711-713

Invalid ipt_flg values are caught at default where control jumps to bad.

714-719

The timestamps are placed in the option by the code that follows the switch statement, iptime 
returns the number of milliseconds since midnight UTC. ip_dooptions records the timestamp 
and increments the option offset to the next position. 

iptime Function

Figure 9.25 shows the implementation of iptime.
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Figure 9.25. iptime function. 

 

 

458-466

microtime returns the time since midnight January 1, 1970, UTC, in a timeval structure. The 
number of milliseconds since midnight is computed using atv and returned in network byte order. 

Section 7.4 of Volume 1 provides several timestamp option examples. 

9.8. ip_insertoptions Function 

We saw in Section 8.6 that the ip_output function accepts a packet and options. When the 
function is called from ip_forward, the options are already part of the packet so 
ip_forward always passes a null option pointer to ip_output. The transport protocols, 
however, may pass options to ip_output where they are merged with the packet by 
ip_insertoptions (called by ip_output in Figure 8.22). 

ip_insertoptions expects the options to be formatted in an ipoption structure, shown in 
Figure 9.26. 

Figure 9.26. ipoption structure. 

 

 

92-95

The structure has only two members: ipopt_dst, which contains the first-hop destination if the 
option list contains a source route, and ipopt_list, which is an array of at most 40 
(MAX_IPOPTLEN) bytes of options formatted as we have described in this chapter. If the option 
list does not include a source route, ipopt_dst is all 0s. 

Note that the ip_srcrt structure (Figure 9.16) and the mbuf returned by ip_srcroute 
(Figure 9.19) both conform to the format specified by the ipoption structure. Figure 9.27 
compares the ip_srcrt and ipoption structures. 

 262



ptg11539634

The ip_srcrt structure is 4 bytes larger than the ipoption structure. The last 
entry in the route array (route[9]) is never filled because it would make the 
source route option 44 bytes long, larger than the IP header can accommodate 
(Figure 9.16). 

Figure 9.27. The ip_srcrt and ipoption structures. 

 

 

The ip_insertoptions function is shown in Figure 9.28. 

Figure 9.28. ip_insertoptions function. 
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352-364

ip_insertoptions has three arguments: m, the outgoing packet; opt, the options 
formatted in an ipoption structure; and phlen, a pointer to an integer where the new header 
length (after options are inserted) is returned. If the size of packet with the options exceeds the 
maximum packet size of 65,535 (IP_MAXPACKET) bytes, the options are silently discarded. 
ip_output does not expect ip_insertoptions ever to fail, so there is no way to report 
the error. Fortunately, few applications attempt to send a maximally sized datagram, let alone one with 
options. 

365-366

If ipopt_dst.s_addr specifies a nonzero address, then the options include a source route and 
ip_dst in the packet’s header is replaced with the first-hop destination from the source route. 

In Section 26.2 we’ll see that TCP calls MGETHDR to allocate a separate mbuf for the IP and TCP 
headers. Figure 9.29 shows the mbuf organization for a TCP segment before the code in lines 367 to 
378 is executed. 

Figure 9.29. ip_insertoptions function: TCP segment. 
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If the options to be inserted occupy more than 16 bytes, the test on line 367 is true and MGETHDR is 
called to allocate an additional mbuf. Figure 9.30 shows the organization of the mbufs after the 
options have been copied into the new mbuf. 

Figure 9.30. ip_insertoptions function: TCP segment, after options have been copied. 

 

 

367-378

If the packet header is stored in a cluster, or the first mbuf does not have room for the options, 
ip_insertoptions allocates a new packet header mbuf, initializes its length, trims the IP 
header from the old mbuf, and moves the header from the old mbuf to the new mbuf. 

As described in Section 23.6, UDP uses M_PREPEND to place the UDP and IP headers at the end of 
an mbuf, separate from the data. This is illustrated in Figure 9.31. 
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Figure 9.31. ip_insertoptions function: UDP datagram. 

 

 

Because the headers are located at the end of the mbuf, there is always room for IP options in the 
mbuf and the condition on line 367 is always false for UDP. 

379-384

If the packet has room at the beginning of the mbuf’s data area for the options, m_data and m_len 
are adjusted to contain optlen more bytes, and the current IP header is moved by ovbcopy 
(which can handle overlapping source and destinations) to leave room for the options. 

385-390

ip_insertoptions can now copy the ipopt_list member of the ipoption structure 
directly into the mbuf just after the IP header. ip_insertoptions stores the new header length 
in *phlen, adjusts the datagram length (ip_len), and returns a pointer to the packet header 
mbuf. 

9.9. ip_pcbopts Function 

The ip_pcbopts function converts the list of IP options provided with the IP_OPTIONS 
socket option into the form expected by ip_output: an ipoption structure. 
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Figure 9.32. ip_pcbopts function. 
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559-562

The first argument, pcbopt, references the pointer to the current list of options. The function 
replaces this pointer with a pointer to the new list of options constructed from options specified in the 
mbuf chain pointed to by the second argument, m. The option list prepared by the process to be 
included with the IP_OPTIONS socket option looks like a standard list of IP options except for the 
format of the LSRR and SSRR options. For these options, the first-hop destination is included as the 
first address in the route. Figure 9.14 shows that the first-hop destination appears as the destination 
address in the outgoing packet, not as the first address in the route. 

Discard previous options

563-580

Any previous options are discarded by m_free and *pcbopt is cleared. If the process passed an 
empty mbuf or didn’t pass an mbuf at all, the function returns immediately without installing any new 
options. 
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If the new list of options is not padded to a 4-byte boundary, ip_pcbopts jumps to bad, 
discards the list and returns EINVAL.

The remainder of the function rearranges the list to look like an ipoption structure. Figure 9.33 
illustrates this process. 

Figure 9.33. ip_pcbopts option list processing. 

 

 
 

Make room for first-hop destination

581-592

If there is room in the mbuf, all the data is shifted by 4 bytes (the size of an in_addr structure) 
toward the end of the mbuf. ovbcopy performs the copy. bzero clears the 4 bytes at the start of 
the mbuf. 

Scan option list

593-606

The for loop scans the option list looking for LSRR and SSRR options. For multibyte options, the 
loop also verifies that the length of the option is reasonable. 

Rearrange LSRR or SSRR option

607-638

When the loop locates a LSRR or SSRR option, it decrements the mbuf size, the loop index, and the 
option length by 4, since the first address in the option will be removed and shifted to the front of the 
mbuf. 

bcopy moves the first address and ovbcopy shifts the remainder of the options by 4 bytes to fill 
the gap left by the first address. 
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Cleanup

639-646

After the loop, the size of the option list (including the first-hop address) must be no more than 44 
(MAX_IPOPTLEN+4) bytes. A larger list does not fit in the IP packet header. The list is saved in 
*pcbopt and the function returns. 

9.10. Limitations 

Options are rarely present in IP datagrams other than those created by administrative and diagnostic 
tools. Volume 1 discusses two of the more common tools, ping and traceroute. It is difficult 
to write applications that utilize IP options. The programming interfaces are poorly documented and 
not well standardized. Most vendor supplied applications, such as Telnet and FTP, do not provide a 
way for a user to specify options such as a source route. 

The usefulness of the record route, timestamp, and source route options in a large internet is limited by 
the maximum size of an IP header. Most routes contain more hops than can be represented in the 40 
option bytes. When multiple options appear in the same packet, the available space is almost useless. 
IPv6 addresses this problem with a more flexible option header design. 

During fragmentation, IP copies only some options into the noninitial fragments, since the options in 
noninitial fragments are discarded during reassembly. Only options from the initial fragment are made 
available to the transport protocol at the destination (Section 10.6). But some, such as source route, 
must be copied to each fragment, even if they are discarded in noninitial fragments at the destination. 

9.11. Summary 

In this chapter we showed the format and processing of IP options. We didn’t cover the security and 
stream ID options since they are not implemented in Net/3. 

We saw that the size of multibyte options is fixed by the source host when it constructs the option. 
The usefulness of IP options is severely limited by the small maximum option header size of 40 bytes. 

The source route options require the most support. Incoming source routes are saved by save_rte 
and reversed by ip_srcroute. A host that does not normally forward packets may forward 
source routed packets, but RFC 1122 requires this capability to be disabled by default. Net/3 does not 
have a switch for this feature and always forwards source routed packets. 

Finally, we saw how options are merged into an outgoing packet by ip_insertoptions.

Exercises

9.1 What would happen if a packet contained two different source route options? 

9.2 Some commercial routers can be configured to discard packets based on their IP 
destination address. In this way, a machine or group of machines can be isolated from the 
larger internet beyond the router. Describe how source routed packets can bypass this 
mechanism. Assume that there is at least one host within the network that the router is not 
blocking, and that it forwards source routed datagrams. 
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9.3 Some hosts may not be configured with a default route. In general, this prevents 
communication with the host since the host can’t route to destinations outside its directly 
connected networks. Describe how a source route can enable communication with this 
type of host. 

9.4 Why is a NOP used in the ip_srcrt structure in Figure 9.16? 

9.5 Can a nonstandard time value be confused with a standard time value in the timestamp 
options? 

9.6 ip_dooptions saves the destination address of the packet in dest before 
processing any options (Figure 9.8). Why? 
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Chapter 10. IP Fragmentation and Reassembly

10.1. Introduction 

In this chapter we describe the IP fragmentation and reassembly processing that we postponed in 
Chapter 8. 

IP has an important capability of being able to fragment a packet when it is too large to be transmitted 
by the selected hardware interface. The oversized packet is split into two or more IP fragments, each 
of which is small enough to be transmitted on the selected network. Fragments may be further split by 
routers farther along the path to the final destination. Thus, at the destination host, an IP datagram can 
be contained in a single IP packet or, if it was fragmented in transit, it can arrive in multiple IP 
packets. Because individual fragments may take different paths to the destination host, only the 
destination host has a chance to see all the fragments. Thus only the destination host can reassemble 
the fragments into a complete datagram to be delivered to the appropriate transport protocol. 

Figure 8.5 shows that 0.3% (72, 786/27, 881, 978) of the packets received were fragments and 0.12% 
(260, 484/(29, 447, 726—796, 084)) of the datagrams sent were fragmented. On 
world.std.com, 9.5% of the packets received were fragments. world has more NFS 
activity, which is a common source of IP fragmentation. 

Three fields in the IP header implement fragmentation and reassembly: the identification field 
(ip_id), the flags field (the 3 high-order bits of ip_off), and the offset field (the 13 low-order 
bits of ip_off). The flags field is composed of three 1-bit flags. Bit 0 is reserved and must be 0, bit 
1 is the "don’t fragment" (DF) flag, and bit 2 is the "more fragments" (MF) flag. In Net/3, the flag and 
offset fields are combined and accessed by ip_off, as shown in Figure 10.1. 

Figure 10.1. ip_off controls fragmentation of an IP packet. 

 

 

Net/3 accesses the DF and MF bits by masking ip_off with IP_DF and IP_MF respectively. An 
IP implementation must allow an application to request that the DF bit be set in an outgoing datagram. 

Net/3 does not provide application-level control over the DF bit when using UDP or 
TCP. 

A process may construct and send its own IP headers with the raw IP interface 
(Chapter 32). The DF bit may be set by the transport layers directly such as when 
TCP performs path MTU discovery.

The remaining 13 bits of ip_off specify the fragment’s position within the original datagram, 
measured in 8-byte units. Accordingly, every fragment except the last must contain a multiple of 8 
bytes of data so that the following fragment starts on an 8-byte boundary. Figure 10.2 illustrates the 
relationship between the byte offset within the original datagram and the fragment offset (low-order 
13 bits of ip_off) in the fragment’s IP header. 
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Figure 10.2. Fragmentation of a 65535-byte datagram. 

 

 

Figure 10.2 shows a maximally sized IP datagram divided into 8190 fragments. Each fragment 
contains 8 bytes except the last, which contains only 3 bytes. We also show the MF bit set in all the 
fragments except the last. This is an unrealistic example, but it illustrates several implementation 
issues. 

The numbers above the original datagram are the byte offsets for the data portion of the datagram. 
The fragment offset (ip_off) is computed from the start of the data portion of the datagram. It is 
impossible for a fragment to include a byte beyond offset 65514 since the reassembled datagram 
would be larger than 65535 bytes t he maximum value of the ip_len field. This restricts the 
maximum value of ip_off to 8189 (8189 x 8 = 65512), which leaves room for 3 bytes in the last 
fragment. If IP options are present, the offset must be smaller still. 

Because an IP internet is connectionless, fragments from one datagram may be interleaved with those 
from another at the destination. ip_id uniquely identifies the fragments of a particular datagram. 
The source system sets ip_id in each datagram to a unique value for all datagrams using the same 
source (ip_src), destination (ip_dst), and protocol (ip_p) values for the lifetime of the 
datagram on the internet. 

To summarize, ip_id identifies the fragments of a particular datagram, ip_off positions the 
fragment within the original datagram, and the MF bit marks every fragment except the last. 

10.2. Code Introduction 

The reassembly data structures appear in a single header. Reassembly and fragmentation processing is 
found in two C files. The three files are listed in Figure 10.3. 
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Figure 10.3. Files discussed in this chapter. 

 

 
 

Global Variables

Only one global variable, ipq, is described in this chapter. 

Figure 10.4. Global variable introduced in this chapter. 

 

 
 

Statistics

The statistics modified by the fragmentation and reassembly code are shown in Figure 10.5. They are 
a subset of the statistics included in the ipstat structure described by Figure 8.4. 

Figure 10.5. Statistics collected in this chapter. 

 

 

10.3. Fragmentation 

We now return to ip_output and describe the fragmentation code. Recall from Figure 8.25 that if 
a packet fits within the MTU of the selected outgoing interface, it is transmitted in a single link-level 
frame. Otherwise the packet must be fragmented and transmitted in multiple frames. A packet may be 
a complete datagram or it may itself be a fragment that was created by a previous system. We describe 
the fragmentation code in three parts: 

determine fragment size (Figure 10.6), 
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Figure 10.6. ip_output function: determine fragment size. 

 

construct fragment list (Figure 10.7), and 
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Figure 10.7. ip_output function: construct fragment list. 

 

 276

construct initial fragment and send fragments (Figure 10.8). 
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Figure 10.8. ip_output function: send fragments. 

 

253-261

The fragmentation algorithm is straightforward, but the implementation is complicated by the 
manipulation of the mbuf structures and chains. If fragmentation is prohibited by the DF bit, 
ip_output discards the packet and returns EMSGSIZE. If the datagram was generated on this 
host, a transport protocol passes the error back to the process, but if the datagram is being forwarded, 
ip_forward generates an ICMP destination unreachable error with an indication that the packet 
could not be forwarded without fragmentation (Figure 8.21). 

Net/3 does not implement the path MTU discovery algorithms used to probe the path to a destination 
and discover the largest transmission unit supported by all the intervening networks. Sections 11.8 and 
24.2 of Volume 1 describe path MTU discovery for UDP and TCP. 

262-266

len, the number of data bytes in each fragment, is computed as the MTU of the interface less the 
size of the packet’s header and then rounded down to an 8-byte boundary by clearing the low-order 3 
bits (& ~7). If the MTU is so small that each fragment contains less than 8 bytes, ip_output 
returns EMSGSIZE.

Each new fragment contains an IP header, some of the options from the original packet, and at most 
len data bytes. 

The code in Figure 10.7, which is the start of a C compound statement, constructs the list of fragments 
starting with the second fragment. The original packet is converted into the initial fragment after the 
list is created (Figure 10.8). 

267-269
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The extra block allows mhlen, firstlen, and mnext to be declared closer to their use in 
the function. These variables are in scope until the end of the block and hide any similarly named 
variables outside the block. 

270-276

Since the original mbuf chain becomes the first fragment, the for loop starts with the offset of the 
second fragment: hlen + len. For each fragment ip_output takes the following actions: 

277-284 

Allocate a new packet mbuf and adjust its m_data pointer to leave room for a 16-byte link-
layer header (max_linkhdr). If ip_output didn’t do this, the network interface 
driver would have to allocate an additional mbuf to hold the link header or move the data. 
Both are time-consuming tasks that are easily avoided here. 

285-290 

Copy the IP header and IP options from the original packet into the new packet. The former is 
copied with a structure assignment. ip_optcopy copies only those options that get 
copied into each fragment (Section 10.4). 

291-297 

Set the offset field (ip_off) for the fragment including the MF bit. If MF is set in the 
original packet, then MF is set in all the fragments. If MF is not set in the original packet, 
then MF is set for every fragment except the last. 

298 

Set the length of this fragment accounting for a shorter header (ip_optcopy may not 
have copied all the options) and a shorter data area for the last fragment. The length is stored 
in network byte order. 

299-305 

Copy the data from the original packet into this fragment. m_copy allocates additional 
mbufs if necessary. If m_copy fails, ENOBUFS is posted. Any mbufs already allocated are 
discarded at sendorfree.

306-314 

Adjust the mbuf packet header of the newly created fragment to have the correct total length, 
clear the new fragment’s interface pointer, convert ip_off to network byte order, compute 
the checksum for the new fragment, and link the fragment to the previous fragment through 
m_nextpkt.

In Figure 10.8, ip_output constructs the initial fragment and then passes each fragment to the 
interface layer. 

315-325
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The original packet is converted into the first fragment by trimming the extra data from its end, setting 
the MF bit, converting ip_len and ip_off to network byte order, and computing the new 
checksum. All the IP options are retained in this fragment. At the destination host, only the IP options 
from the first fragment of a datagram are retained when the datagram is reassembled (Figure 10.28). 
Some options, such as source routing, must be copied into each fragment even though the option is 
discarded during reassembly. 

326-338

At this point, ip_output has either a complete list of fragments or an error has occurred and the 
partial list of fragments must be discarded. The for loop traverses the list either sending or 
discarding fragments according to error. Any error encountered while sending fragments causes 
the remaining fragments to be discarded. 

10.4. ip_optcopy Function 

During fragmentation, ip_optcopy (Figure 10.9) copies the options from the incoming packet (if 
the packet is being forwarded) or from the original datagram (if the datagram is locally generated) into 
the outgoing fragments. 

Figure 10.9. ip_optcopy function. 

 

 

395-422
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The arguments to ip_optcopy are: ip, a pointer to the IP header of the outgoing packet; and 
jp, a pointer to the IP header of the newly created fragment. ip_optcopy initializes cp and dp 
to point to the first option byte in each packet and advances cp and dp as it processes each option. 
The first for loop copies a single option during each iteration stopping when it encounters an EOL 
option or when it has examined all the options. NOP options are copied to preserve any alignment 
constraints in the subsequent options. 

The Net/2 release discarded NOP options. 

If IPOPT_COPIED indicates that the copied bit is on, ip_optcopy copies the option to the 
new fragment. Figure 9.5 shows which options have the copied bit set. If an option length is too large, 
it is truncated; ip_dooptions should have already discovered this type of error. 

423-426

The second for loop pads the option list out to a 4-byte boundary. This is required, since the packet’s 
header length (ip_hlen) is measured in 4-byte units. It also ensures that the transport header that 
follows is aligned on a 4-byte boundary. This improves performance since many transport protocols 
are designed so that 32-bit header fields are aligned on 32-bit boundaries if the transport header starts 
on a 32-bit boundary. This arrangement increases performance on CPUs that have difficulty accessing 
unaligned 32-bit words. 

Figure 10.10 illustrates the operation of ip_optcopy.

Figure 10.10. Not all options are copied during fragmentation. 

 

 

In Figure 10.10 we see that ip_optcopy does not copy the timestamp option (its copied bit is 0) 
but does copy the LSRR option (its copied bit is 1). ip_optcopy has also added a single EOL 
option to pad the new options to a 4-byte boundary. 

10.5. Reassembly 

Now that we have described the fragmentation of a datagram (or of a fragment), we return to 
ipintr and the reassembly process. In Figure 8.15 we omitted the reassembly code from ipintr 
and postponed its discussion. ipintr can pass only entire datagrams up to the transport layer for 
processing. Fragments that are received by ipintr are passed to ip_reass, which attempts to 
reassemble fragments into complete datagrams. The code from ipintr is shown in Figure 10.11. 
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Figure 10.11. ipintr function: fragment processing. 

 

 

 

271-279

Recall that ip_off contains the DF bit, the MF bit, and the fragment offset. The DF bit is masked 
out and if either the MF bit or fragment offset is nonzero, the packet is a fragment that must be 
reassembled. If both are zero, the packet is a complete datagram, the reassembly code is skipped and 
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 282

the else clause at the end of Figure 10.11 is executed, which excludes the header length from the 
total datagram length. 

280-286

m_pullup moves data in an external cluster into the data area of the mbuf. Recall that the SLIP 
interface (Section 5.3) may return an entire IP packet in an external cluster if it does not fit in a single 
mbuf. Also m_devget can return the entire packet in a cluster (Section 2.6). Before the mtod 
macros will work (Section 2.6), m_pullup must move the IP header from the cluster into the data 
area of an mbuf. 

287-297

Net/3 keeps incomplete datagrams on the global doubly linked list, ipq. The name is somewhat 
confusing since the data structure isn’t a queue. That is, insertions and deletions can occur anywhere in 
the list, not just at the ends. We’ll use the term list to emphasize this fact. 

ipintr performs a linear search of the list to locate the appropriate datagram for the current 
fragment. Remember that fragments are uniquely identified by the 4-tuple: {ip_id, ip_src,
ip_dst, ip_p}. Each entry in ipq is a list of fragments and fp points to the appropriate list if 
ipintr finds a match. 

Net/3 uses linear searches to access many of its data structures. While simple, this 
method can become a bottleneck in hosts supporting large numbers of network 
connections. 

298-303

At found, the packet is modified by ipintr to facilitate reassembly: 

304 

ipintr changes ip_len to exclude the standard IP header and any options. We must 
keep this in mind to avoid confusion with the standard interpretation of ip_len, which 
includes the standard header, options, and data. ip_len is also changed if the reassembly 
code is skipped because this is not a fragment. 

305-307 

ipintr copies the MF flag into the low-order bit of ipf_mff, which overlays 
ip_tos (&= ~1 clears the low-order bit only). Notice that ip must be cast to a pointer to 
an ipasfrag structure before ipf_mff is a valid member. Section 10.6 and Figure 
10.14 describe the ipasfrag structure. 

Although RFC 1122 requires the IP layer to provide a mechanism that enables the transport 
layer to set ip_tos for every outgoing datagram, it only recommends that the IP layer pass 
ip_tos values to the transport layer at the destination host. Since the low-order bit of the 
TOS field must always be 0, it is available to hold the MF bit while ip_off (where the MF 
bit is normally found) is used by the reassembly algorithm. 

ip_off can now be accessed as a 16-bit offset instead of 3 flag bits and a 13-bit offset. 
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308 

ip_off is multiplied by 8 to convert from 8-byte to 1-byte units. 

ipf_mff and ip_off determine if ipintr should attempt reassembly. Figure 10.12 describes 
the different cases and the corresponding actions. Remember that fp points to the list of fragments 
the system has previously received for the datagram. Most of the work is done by ip_reass.

Figure 10.12. IP fragment processing in ipintr and ip_reass.

 

 

309-322

If ip_reass is able to assemble a complete datagram by combining the current fragment with 
previously received fragments, it returns a pointer to the reassembled datagram. If reassembly is not 
possible, ip_reass saves the fragment and ipintr jumps to next to process the next packet 
(Figure 8.12). 

323-324

This else branch is taken when a complete datagram arrives and ip_hlen is modified as 
described earlier. This is the normal flow, since most received datagrams are not fragments. 

If a complete datagram is available after reassembly processing, it is passed up to the appropriate 
transport protocol by ipintr (Figure 8.15): 

    (*inetsw[ip_protox[ip->ip_p]].pr_input) (m, hlen); 

10.6. ip_reass Function 

ipintr passes ip_reass a fragment to be processed, and a pointer to the matching reassembly 
header from ipq. ip_reass attempts to assemble and return a complete datagram or links the 
fragment into the datagram’s reassembly list for reassembly when the remaining fragments arrive. The 
head of each reassembly list is an ipq structure, show in Figure 10.13. 
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Figure 10.13. ipq structure. 

 

 

52-60

The four fields required to identify a datagram’s fragments, ip_id, ip_p, ip_src, and 
ip_dst, are kept in the ipq structure at the head of each reassembly list. Net/3 constructs the list 
of datagrams with next and prev and the list of fragments with ipq_next and ipq_prev.

The IP header of incoming IP packets is converted to an ipasfrag structure (Figure 10.14) before 
it is placed on a reassembly list. 

Figure 10.14. ipasfrag structure. 

 

 

66-86

ip_reass collects fragments for a particular datagram on a circular doubly linked list joined by 
the ipf_next and ipf_prev members. These pointers overlay the source and destination 
addresses in the IP header. The ipf_mff member overlays ip_tos from the ip structure. The 
other members are the same. 

Figure 10.15 illustrates the relationship between the fragment header list (ipq) and the fragments 
(ipasfrag). 
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Figure 10.15. The fragment header list, ipq, and fragments. 

 

 

Down the left side of Figure 10.15 is the list of reassembly headers. The first node in the list is the 
global ipq structure, ipq. It never has a fragment list associated with it. The ipq list is a doubly 
linked list used to support fast insertions and deletions. The next and prev pointers reference the 
next or previous ipq structure, which we have shown by terminating the arrows at the corners of the 
structures. 

Each ipq structure is the head node of a circular doubly linked list of ipasfrag structures. 
Incoming fragments are placed on these fragment lists ordered by their fragment offset. We’ve 
highlighted the pointers for these lists in Figure 10.15. 

Figure 10.15 still does not show all the complexity of the reassembly structures. The reassembly code 
is difficult to follow because it relies so heavily on casting pointers to three different structures on the 
underlying mbuf. We’ve seen this technique already, for example, when an ip structure overlays the 
data portion of an mbuf. 

Figure 10.16 illustrates the relationship between an mbuf, an ipq structure, an ipasfrag 
structure, and an ip structure. 
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Figure 10.16. An area of memory can be accessed through multiple structures. 

 

 

A lot of information is contained within Figure 10.16: 

All the structures are located within the data area of an mbuf. 
The ipq list consists of ipq structures joined by next and prev. Within the structure, 
the four fields that uniquely identify an IP datagram are saved (shaded in Figure 10.16). 
Each ipq structure is treated as an ipasfrag structure when accessed as the head of a 
linked list of fragments. The fragments are joined by ipf_next and ipf_prev, which 
overlay the ipq structures’ ipq_next and ipq_prev members. 
Each ipasfrag structure overlays the ip structure from the incoming fragment. The data 
that arrived with the fragment follows the structure in the mbuf. The members that have a 
different meaning in the ipasfrag structure than they do in the ip structure are shaded. 

Figure 10.15 showed the physical connections between the reassembly structures and Figure 10.16 
illustrated the overlay technique used by ip_reass. In Figure 10.17 we show the reassembly 
structures from a logical point of view: this figure shows the reassembly of three datagrams and the 
relationship between the ipq list and the ipasfrag structures. 

Figure 10.17. Reassembly of three IP datagrams. 

 

 

The head of each reassembly list contains the id, protocol, source, and destination address of the 
original datagram. Only the ip_id field is shown in the figure. Each fragment list is ordered by the 
offset field, the fragment is labeled with MF if the MF bit is set, and missing fragments appear as 
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shaded boxes. The numbers within each fragment show the starting and ending byte offset for the 
fragment relative to the data portion of the original datagram, not to the IP header of the original 
datagram. 

The example is constructed to show three UDP datagrams with no IP options and 1024 bytes of data 
each. The total length of each datagram is 1052 (20 + 8 + 1024) bytes, which is well within the 1500-
byte MTU of an Ethernet. The datagrams encounter a SLIP link on the way to the destination, and the 
router at that link fragments the datagrams to fit within a typical 296-byte SLIP MTU. Each datagram 
arrives as four fragments. The first fragment contain a standard 20-byte IP header, the 8-byte UDP 
header, and 264 bytes of data. The second and third fragments contain a 20-byte IP header and 272 
bytes of data. The last fragment has a 20-byte header and 216 bytes of data (1032 = 272 x 3 + 216). 

In Figure 10.17, datagram 5 is missing a single fragment containing bytes 272 through 543. Datagram 
6 is missing the first fragment, bytes 0 through 271, and the end of the datagram starting at offset 816. 
Datagram 7 is missing the first three fragments, bytes 0 through 815. 

Figure 10.18 lists ip_reass. Remember that ipintr calls ip_reass when an IP fragment 
has arrived for this host, and after any options have been processed. 

Figure 10.18. ip_reass function: datagram reassembly. 

 

 

343-358

When ip_reass is called, ip points to the fragment and fp either points to the matching ipq 
structure or is null. 
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Since reassembly involves only the data portion of each fragment, ip_reass adjusts m_data 
and m_len from the mbuf containing the fragment to exclude the IP header in each fragment. 

465-469

When an error occurs during reassembly, the function jumps to dropfrag, which increments 
ips_fragdropped, discards the fragment, and returns a null pointer. 

Dropping fragments usually incurs a serious performance penalty at the transport layer since the entire 
datagram must be retransmitted. TCP is careful to avoid fragmentation, but a UDP application must 
take steps to avoid fragmentation on its own. [Kent and Mogul 1987] explain why fragmentation 
should be avoided. 

All IP implementations must to be able to reassemble a datagram of up to 576 bytes. There is no 
general way to determine the size of the largest datagram that can be reassembled by a remote host. 
We’ll see in Section 27.5 that TCP has a mechanism to determine the size of the maximum datagram 
that can be processed by the remote host. UDP has no such mechanism, so many UDP-based protocols 
(e.g., RIP, TFTP, BOOTP, SNMP, and DNS) are designed around the 576-byte limit. 

We’ll show the reassembly code in seven parts, starting with Figure 10.19. 

Figure 10.19. ip_reass function: create reassembly list. 

 

 
 

Create reassembly list

359-366

When fp is null, ip_reass creates a reassembly list with the first fragment of the new datagram. 
It allocates an mbuf to hold the head of the new list (an ipq structure), and calls insque to insert 
the structure in the list of reassembly lists. 

Figure 10.20 lists the functions that manipulate the datagram and fragment lists. 
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Figure 10.20. Queueing functions used by ip_reass.

 

 

The functions insque and remque are defined in machdep.c for the 386 
version of Net/3. Each machine has its own machdep.c file in which customized 
versions of kernel functions are defined, typically to improve performance. This file 
also contains architecture-dependent functions such as the interrupt handler support, 
cpu and device configuration, and memory management functions. 

insque and remque exist primarily to maintain the kernel’s run queue. Net/3 
can use them for the datagram reassembly list because both lists have next and 
previous pointers as the first two members of their respective node structures. These 
functions work for any similarly structured list, although the compiler may issue 
some warnings. This is yet another example of accessing memory through two 
different structures. 

In all the kernel structures the next pointer always precedes the previous pointer 
(Figure 10.14, for example). This is because the insque and remque functions 
were first implemented on the VAX using the insque and remque hardware 
instructions, which require this ordering of the forward and backward pointers. 

The fragment lists are not joined with the first two members of the ipasfrag 
structures (Figure 10.14) so Net/3 calls ip_enq and ip_deq instead of 
insque and remque.

Reassembly timeout

367

The time-to-live field (ipq_ttl) is required by RFC 1122 and limits the time Net/3 waits for 
fragments to complete a datagram. It is different from the TTL field in the IP header, which limits the 
amount of time a packet circulates in the internet. The IP header TTL field is reused as the reassembly 
timeout since the header TTL is not needed once the fragment arrives at its final destination. 

In Net/3, the initial value of the reassembly timeout is 60 (IPFRAGTTL). Since ipq_ttl is 
decremented every time the kernel calls ip_slowtimo and the kernel calls ip_slowtimo 
every 500 ms, the system discards an IP reassembly list if it hasn’t assembled a complete IP datagram 
within 30 seconds of receiving any one of the datagram’s fragments. The reassembly timer starts 
ticking on the first call to ip_slowtimo after the list is created. 
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RFC 1122 recommends that the reassembly time be between 60 and 120 seconds and that an ICMP 
time exceeded error be sent to the source host if the timer expires and the first fragment of the 
datagram has been received. The header and options of the other fragments are always discarded 
during reassembly and an ICMP error must contain the first 64 bits of the erroneous datagram (or less 
if the datagram was shorter than 8 bytes). So, if the kernel hasn’t received fragment 0, it can’t send an 
ICMP message. 

Net/3’s timer is a bit too short and Net/3 neglects to send the ICMP message when a 
fragment is discarded. The requirement to return the first 64 bits of the datagram 
ensures that the first portion of the transport header is included, which allows the 
error message to be returned to the application that generated it. Note that TCP and 
UDP purposely put their port numbers in the first 8 bytes of their headers for this 
reason. 

Datagram identifiers

368-375

ip_reass saves ip_p, ip_id, ip_src, and ip_dst in the ipq structure allocated 
for this datagram, points the ipq_next and ipq_prev pointers to the ipq structure (i.e., it 
constructs a circular list with one node), points q at this structure, and jumps to insert (Figure 
10.25) where it inserts the first fragment, ip, into the new reassembly list. 

The next part of ip_reass, shown in Figure 10.21, is executed when fp is not null and locates 
the correct position in the existing list for the new fragment. 

Figure 10.21. ip_reass function: find position in reassembly list. 

 

 

376-381

Since fp is not null, the for loop searches the datagram’s fragment list to locate a fragment with an 
offset greater than ip_off.

The byte ranges contained within fragments may overlap at the destination. This can happen when a 
transport-layer protocol retransmits a datagram that gets sent along a route different from the one 
followed by the original datagram. The fragmentation pattern may also be different resulting in 
overlaps at the destination. The transport protocol must be able to force IP to use the original ID field 
in order for the datagram to be recognized as a retransmission at the destination. 

Net/3 does not provide a mechanism for a transport protocol to ensure that IP ID 
fields are reused on a retransmitted datagram. ip_output always assigns a new 
value by incrementing the global integer ip_id when preparing a new datagram 
(Figure 8.22). Nevertheless, a Net/3 system could receive overlapping fragments 
from a system that lets the transport layer retransmit IP datagrams with the same ID 
field. 
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Figure 10.22 illustrates the different ways in which the fragment may overlap with existing fragments. 
The fragments are numbered according to the order in which they arrive at the destination host. The 
reassembled fragment is shown at the bottom of Figure 10.22 The shaded areas of the fragments are 
the duplicate bytes that are discarded. 

Figure 10.22. The byte range of fragments may overlap at the destination. 

 

 

In the following discussion, an earlier fragment is a fragment that previously arrived at the host. 

The code in Figure 10.23 trims or discards incoming fragments. 

Figure 10.23. ip_reass function: trim incoming packet. 

 

 

382-396

ip_reass discards bytes that overlap the end of an earlier fragment by trimming the new fragment 
(the front of fragment 5 in Figure 10.22) or discarding the new fragment (fragment 6) if all its bytes 
arrived in an earlier fragment (fragment 4). 

The code in Figure 10.24 trims or discards existing fragments. 
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Figure 10.24. ip_reass function: trim existing packets. 

 

 

397-412

If the current fragment partially overlaps the front of an earlier fragment, the duplicate data is trimmed 
from the earlier fragment (the front of fragment 2 in Figure 10.22). Any earlier fragments that are 
completely overlapped by the arriving fragment are discarded (fragment 3). 

In Figure 10.25, the incoming fragment is inserted into the reassembly list. 

Figure 10.25. ip_reass function: insert packet. 

 

 

413-426

After trimming, ip_enq inserts the fragment into the list and the list is scanned to determine if all 
the fragments have arrived. If any fragment is missing, or the last fragment in the list has ipf_mff 
set, ip_reass returns 0 and waits for more fragments. 

When the current fragment completes a datagram, the entire list is converted to an mbuf chain by the 
code shown in Figure 10.26. 

 292



ptg11539634

Figure 10.26. ip_reass function: reassemble datagram. 

 

 

427-440

If all the fragments for the datagram have been received, the while loop reconstructs the datagram 
from the fragments with m_cat.

Figure 10.27 shows the relationships between mbufs and the ipq structure for a datagram composed 
of three fragments. 

Figure 10.27. m_cat reassembles the fragments within mbufs. 
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The darkest areas in the figure mark the data portions of a packet and the lighter shaded areas mark the 
unused portions of the mbufs. We show three fragments each contained in a chain of two mbufs; a 
packet header, and a cluster. The m_data pointer in the first mbuf of each fragment points to the 
packet data, not the packet header. Therefore, the mbuf chain constructed by m_cat includes only 
the data portion of the fragments. 

This is the typical scenario when a fragment contains more than 208 bytes of data (Section 2.6). The 
"frag" portion of the mbufs is the IP header from the fragment. The m_data pointer of the first mbuf 
in each chain points beyond "opts" because of the code in Figure 10.18. 

Figure 10.28 shows the reassembled datagram using the mbufs from all the fragments. Notice that the 
IP header and options from fragments 2 and 3 are not included in the reassembled datagram. 

Figure 10.28. The reassembled datagram. 

 

 

The header of the first fragment is still being used as an ipasfrag structure. It is restored to a 
valid IP datagram header by the code shown in Figure 10.29. 
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Figure 10.29. ip_reass function: datagram reassembly. 

 

 
 

Reconstruct datagram header

441-456

ip_reass points ip to the first fragment in the list and changes the ipasfrag structure back 
to an ip structure by restoring the length of the datagram to ip_len, the source address to 
ip_src, the destination address to ip_dst; and by clearing the low-order bit in ipf_mff. 
(Recall from Figure 10.14 that ipf_mff in the ipasfrag structure overlays ipf_tos in the 
ip structure.) 

ip_reass removes the entire packet from the reassembly list with remque, discards the ipq 
structure that was the head of the list, and adjusts m_len and m_data in the first mbuf to include 
the previously hidden IP header and options from the first fragment. 

Compute packet length

457-464

The code here is always executed, since the first mbuf for the datagram is always a packet header. The 
for loop computes the number of data bytes in the mbuf chain and saves the value in 
m_pkthdr.len.

The purpose of the copied bit in the option type field should be clear now. Since the only options 
retained at the destination are those that appear in the first fragment, only options that control 
processing of the packet as it travels toward its destination are copied. Options that collect information 
while in transit are not copied, since the information collected is discarded at the destination when the 
packet is reassembled. 
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10.7. ip_slowtimo Function 

As shown in Section 7.4, each protocol in Net/3 may specify a function to be called every 500 ms. For 
IP, that function is ip_slowtimo, shown in Figure 10.30, which times out the fragments on the 
reassembly list. 

Figure 10.30. ip_slowtimo function. 

 

 

515-534

ip_slowtimo traverses the list of partial datagrams and decrements the reassembly TTL field. 
ip_freef is called if the field drops to 0 to discard the fragments associated with the datagram. 
ip_slowtimo runs at splnet to prevent the lists from being modified by incoming packets. 

ip_freef is shown in Figure 10.31. 

Figure 10.31. ip_freef function. 

 

 

 296

470-486



ptg11539634

ip_freef removes and releases every fragment on the list pointed to by fp and then releases the 
list itself. 

ip_drain Function

In Figure 7.14 we showed that IP defines ip_drain as the function to be called when the kernel 
needs additional memory. This usually occurs during mbuf allocation, which we described with Figure 
2.13. ip_drain is shown in Figure 10.32. 

Figure 10.32. ip_drain function. 

 

 

538-545

The simplest way for IP to release memory is to discard all the IP fragments on the reassembly list. 
For IP fragments that belong to a TCP segment, TCP eventually retransmits the data. IP fragments that 
belong to a UDP datagram are lost and UDP-based protocols must handle this at the application layer. 

10.8. Summary 

In this chapter we showed how ip_output splits an outgoing datagram into fragments if it is too 
large to be transmitted on the selected network. Since fragments may themselves be fragmented as 
they travel toward their final destination and may take multiple paths, only the destination host can 
reassemble the original datagram. 

ip_reass accepts incoming fragments and attempts to reassemble datagrams. If it is successful, 
the datagram is passed back to ipintr and then to the appropriate transport protocol. Every IP 
implementation must reassemble datagrams of up to 576 bytes. The only limit for Net/3 is the number 
of mbufs that are available. ip_slowtimo discards incomplete datagrams when all their 
fragments haven’t been received within a reasonable amount of time. 

Exercises

10.1 Modify ip_slowtimo to send an ICMP time exceeded message when it discards an 
incomplete datagram (Figure 11.1). 

10.2 The recorded route in a fragmented datagram may be different in each fragment. When a 
datagram is reassembled at the destination host, which return route is available to the 
transport protocols? 

10.3 Draw a picture showing the mbufs involved in the ipq structure and its associated 
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fragment list for the fragment with an ID of 7 in Figure 10.17. 

10.4 [Auerbach 1994] suggests that after fragmenting a datagram, the last fragment should be 
sent first. If the receiving system gets that last fragment first, it can use the offset to 
allocate an appropriately sized reassembly buffer for the datagram. Modify ip_output 
to send the last fragment first.  

[Auerbach 1994] notes that some commercial TCP/IP 
implementations have been known to crash if they receive the 
last fragment first. 

10.5 Use the statistics in Figure 8.5 to answer the following questions. What is the average 
number of fragments per reassembled datagram? What is the average number of fragments 
created when an outgoing datagram is fragmented? 

10.6 What happens to a packet when the reserved bit in ip_off is set? 
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Chapter 11. ICMP: Internet Control Message Protocol 

11.1. Introduction 

ICMP communicates error and administrative messages between IP systems and is an integral and 
required part of any IP implementation. The specification for ICMP appears in RFC 792 [Postel 
1981b]. RFC 950 [Mogul and Postel 1985] and RFC 1256 [Deering 1991a] define additional ICMP 
message types. RFC 1122 [Braden 1989a] also provides important details on ICMP. 

ICMP has its own transport protocol number (1) allowing ICMP messages to be carried within an IP 
datagram. Application programs can send and receive ICMP messages directly through the raw IP 
interface discussed in Chapter 32. 

We can divide the ICMP messages into two classes: errors and queries. Query messages are defined in 
pairs: a request and its reply. ICMP error messages always include the IP header (and options) along 
with at least the first 8 bytes of the data from the initial fragment of the IP datagram that caused the 
error. The standard assumes that the 8 bytes includes any demultiplexing information from the 
transport protocol header of the original packet, which allows a transport protocol to deliver an ICMP 
error to the correct process. 

TCP and UDP port numbers appear within the first 8 bytes of their respective 
headers. 

Figure 11.1 shows all the currently defined ICMP messages. The messages above the double line are 
ICMP requests and replies; those below the double line are ICMP errors. 
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Figure 11.1. ICMP message types and codes. 

 

 

Figures 11.1 and 11.2 contain a lot of information: 
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Figure 11.2. ICMP message types and codes (continued). 

 

 

The PRC_ column shows the mapping between the ICMP messages and the protocol-
independent error codes processed by Net/3 (Section 11.6). This column is blank for requests 
and replies, since no error is generated in that case. If this column is blank for an ICMP error, 
the code is not recognized by Net/3 and the error message is silently discarded. 
Figure 11.3 shows where we discuss each of the functions listed in Figure 11.2. 

 301



ptg11539634

Figure 11.3. Functions called during ICMP input processing. 

 

The icmp_input column shows the function called by icmp_input for each ICMP 
message. 
The UDP column shows the functions that process ICMP messages for UDP sockets. 
The TCP column shows the functions that process ICMP messages for TCP sockets. Note that 
ICMP source quench errors are handled by tcp_quench, not tcp_notify. 
If the errno column is blank, the kernel does not report the ICMP message to the process. 
The last line in the tables shows that unrecognized ICMP messages are delivered to the raw IP 
protocol where they may be received by processes that have arranged to receive ICMP 
messages. 

In Net/3, ICMP is implemented as a transport-layer protocol above IP and does not generate errors or 
requests; it formats and sends these messages on behalf of the other protocols. ICMP passes incoming 
errors and replies to the appropriate transport protocol or to processes that are waiting for ICMP 
messages. On the other hand, ICMP responds to most incoming ICMP requests with an appropriate 
ICMP reply. Figure 11.4 summarizes this information. 

Figure 11.4. ICMP message processing. 

 

 

11.2. Code Introduction 

The two files listed in Figure 11.5 contain the ICMP data structures, statistics, and processing code 
described in this chapter. 

Figure 11.5. Files discussed in this chapter. 
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Global Variables

The global variables shown in Figure 11.6 are introduced in this chapter. 

Figure 11.6. Global variables introduced in this chapter. 

 

 
 

Statistics

Statistics are collected by the members of the icmpstat structure shown in Figure 11.7. 

Figure 11.7. Statistics collected in this chapter. 

 

 

We’ll see where these counters are incremented as we proceed through the code. 

Figure 11.8 shows some sample output of these statistics, from the netstat -s command. 
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Figure 11.8. Sample ICMP statistics. 

 

 
 

SNMP Variables

Figure 11.9 shows the relationship between the variables in the SNMP ICMP group and the statistics 
collected by Net/3. 

Figure 11.9. Simple SNMP variables in ICMP group. 
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icmpInMsgs is the sum of the counts in the icps_inhist array and icmpInErrors, 
and icmpOutMsgs is the sum of the counts in the icps_outhist array and 
icmpOutErrors.

11.3. icmp Structure 

Net/3 accesses an ICMP message through the icmp structure shown in Figure 11.10. 

Figure 11.10. icmp structure. 

 

 

42-45
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icmp_type identifies the particular message, and icmp_code further specifies the message 
(the first column of Figure 11.1). icmp_cksum is computed with the same algorithm as the IP 
header checksum and protects the entire ICMP message (not just the header as with IP). 

46-79

The unions icmp_hun (header union) and icmp_dun (data union) access the various ICMP 
messages according to icmp_type and icmp_code. Every ICMP message uses 
icmp_hun; only some utilize icmp_dun. Unused fields must be set to 0. 

80-86

As we have seen with other nested structures (e.g., mbuf, le_softc, and ether_arp) the 
#define macros simplify access to structure members. 

Figure 11.11 shows the overall structure of an ICMP message and reiterates that an ICMP message is 
encapsulated within an IP datagram. We show the specific structure of each message when we 
encounter it in the code. 

Figure 11.11. An ICMP message (icmp_omitted).

 

 

11.4. ICMP protosw Structure 

The protosw structure in inetsw[4] (Figure 7.13) describes ICMP and supports both kernel 
and process access to the protocol. We show this structure in Figure 11.12. Within the kernel, 
incoming ICMP messages are processed by icmp_input. Outgoing ICMP messages generated 
by processes are handled by rip_output. The three functions beginning with rip_ are 
described in Chapter 32. 
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Figure 11.12. ICMP inetsw entry. 

 

 

11.5. Input Processing: icmp_input Function 

Recall that ipintr demultiplexes datagrams based on the transport protocol number, ip_p, in 
the IP header. For ICMP messages, ip_p is 1, and through ip_protox, it selects 
inetsw[4].

Figure 11.13. An ip_p value of 1 selects inetsw[4].

 

 

The IP layer calls icmp_input indirectly through the pr_input function of inetsw[4] 
when an ICMP message arrives (Figure 8.15). 

We’ll see in icmp_input that each ICMP message may be processed up to three times: by 
icmp_input, by the transport protocol associated with the IP packet within an ICMP error 
message, and by a process that registers interest in receiving ICMP messages. Figure 11.14 shows the 
overall organization of ICMP input processing. 
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Figure 11.14. ICMP input processing. 

 

 

We discuss icmp_input in five sections: (1) verification of the received message, (2) ICMP error 
messages, (3) ICMP requests messages, (4) ICMP redirect messages, (5) ICMP reply messages. 
Figure 11.15 shows the first portion of the icmp_input function. 
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Figure 11.15. icmp_input function. 
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Static structures

131-134

These four structures are statically allocated to avoid the delays of dynamic allocation every time 
icmp_input is called and to minimize the size of the stack since icmp_input is called at 
interrupt time when the stack size is limited. icmp_input uses these structures as temporary 
variables. 

The naming of icmpsrc is misleading since icmp_input uses it as a 
temporary sockaddr_in variable and it never contains a source address. In the 
Net/2 version of icmp_input, the source address of the message was copied to 
icmpsrc at the end of the function before the message was delivered to the raw IP 
mechanism by the raw_input function. Net/3 calls rip_input, which 
expects only a pointer to the packet, instead of raw_input. Despite this change, 
icmpsrc retains its name from Net/2. 

Validate message

135-139

icmp_input expects a pointer to the datagram containing the received ICMP message (m) and the 
length of the datagram’s IP header in bytes (hlen). Figure 11.16 lists several constants and a macro 
that simplify the detection of invalid ICMP messages in icmp_input.

Figure 11.16. Constants and a macro referenced by ICMP to validate messages. 

 

 

140-160

icmp_input pulls the size of the ICMP message from ip_len and stores it in icmplen. 
Remember from Chapter 8 that ipintr excludes the length of the header from ip_len. If the 
message is too short to be a valid ICMP message, icps_tooshort is incremented and the 
message discarded. If the ICMP header and the IP header are not contiguous in the first mbuf, 
m_pullup ensures that the ICMP header and the IP header of any enclosed IP packet are in a single 
mbuf. 
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Verify checksum

161-170

icmp_input hides the IP header in the mbuf and verifies the ICMP checksum with 
in_cksum. If the message is damaged, icps_checksum is incremented and the message 
discarded. 

Verify type

171-175

If the message type (icmp_type) is out of the recognized range, icmp_input jumps around 
the switch to raw (Section 11.9). If it is in the recognized range, icmp_input duplicates 
icmp_code and the switch processes the message according to icmp_type.

After the processing within the ICMP switch statement, icmp_input sends ICMP messages to 
rip_input where they are distributed to processes that are prepared to receive ICMP messages. 
The only messages that are not passed to rip_input are damaged messages (length or checksum 
errors) and ICMP request messages, which are handled exclusively by the kernel. In both cases, 
icmp_input returns immediately, skipping the code at raw.

Raw ICMP input

317-325

icmp_input passes the incoming message to rip_input, which distributes it to listening 
processes based on the protocol and the source and destination addresses within the message (Chapter 
32). 

The raw IP mechanism allows a process to send and to receive ICMP messages directly, which is 
desirable for several reasons: 

New ICMP messages can be handled by a process without having to modify the kernel (e.g., 
router advertisement, Figure 11.28). 
Utilities for sending ICMP requests and processing the replies can be implemented as a 
process instead of as a kernel module (ping and traceroute). 
A process can augment the kernel processing of a message. This is common with the ICMP 
redirect messages that are passed to a routing daemon after the kernel has updated its routing 
tables. 

11.6. Error Processing 

We first consider the ICMP error messages. A host receives these messages when a datagram that it 
sent cannot successfully be delivered to its destination. The intended destination host or an 
intermediate router generates the error message and returns it to the originating system. Figure 11.17 
illustrates the format of the various ICMP error messages. 
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Figure 11.17. ICMP error messages (icmp_omitted).

 

 

The code in Figure 11.18 is from the switch shown in Figure 11.15. 

Figure 11.18. icmp_input function: error messages. 
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176-216

The processing of ICMP errors is minimal since responsibility for responding to ICMP errors lies 
primarily with the transport protocols. icmp_input maps icmp_type and icmp_code to a 
set of protocol-independent error codes represented by the PRC_ constants. There is an implied 
ordering of the PRC_ constants that matches the ICMP code values. This explains why code is 
incremented by a PRC_ constant. 

If the type and code are recognized, icmp_input jumps to deliver. If the type and code are 
not recognized, icmp_input jumps to badcode.

217-225

If the message length is incorrect for the error being reported, icps_badlen is incremented and 
the message discarded. Net/3 always discards invalid ICMP messages, without generating an ICMP 
error about the invalid message. This prevent an infinite sequence of error messages from forming 
between two faulty implementations. 

226-231

icmp_input calls the pr_ctlinput function of the transport protocol that created the 
original IP datagram by demultiplexing the incoming packets to the correct transport protocol based 
on ip_p from the original datagram. pr_ctlinput (if it is defined for the protocol) is passed 
the error code (code), the destination of the original IP datagram (icmpsrc), and a pointer to the 
invalid datagram (icmp_ip). We discuss these errors with Figures 23.31 and 27.12. 

232-234
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icps_badcode is incremented and control breaks out of the switch statement. 

Figure 11.19. The protocol-independent error codes. 

 

 

While the PRC_ constants are ostensibly protocol independent, they are primarily 
based on the Internet protocols. This results in some loss of specificity when a 
protocol outside the Internet domain maps its errors to the PRC_ constants. 

11.7. Request Processing 

Net/3 responds to properly formatted ICMP request messages but passes invalid ICMP request 
messages to rip_input. We show in Chapter 32 how ICMP request messages may be generated 
by an application process. 

Most ICMP request messages received by Net/3 generate a reply message, except the router 
advertisement message. To avoid allocation of a new mbuf for the reply, icmp_input converts 
the mbuf containing the incoming request to the reply and returns it to the sender. We discuss each 
request separately. 

Echo Query: ICMP_ECHO and ICMP_ECHOREPLY

For all its simplicity, an ICMP echo request and reply is arguably the single most powerful diagnostic 
tool available to a network administrator. Sending an ICMP echo request is called pinging a host, a 
reference to the ping program that most systems provide for manually sending ICMP echo requests. 
Chapter 7 of Volume 1 discusses ping in detail. 

The program ping is named after sonar pings used to locate objects by listening for the echo 
generated as the ping is reflected by the other objects. Volume 1 incorrectly described the name as 
standing for Packet InterNet Groper. 
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Figure 11.20 shows the structure of an ICMP echo and reply message. 

Figure 11.20. ICMP echo request and reply. 

 

 

icmp_code is always 0. icmp_id and icmp_seq are set by the sender of the request and 
returned without modification in the reply. The source system can match requests and replies with 
these fields. Any data that arrives in icmp_data is also reflected. Figure 11.21 shows the ICMP 
echo processing and also the common code in icmp_input that implements the reflection of 
ICMP requests. 

Figure 11.21. icmp_input function: echo request and reply. 

 

 

235-237

icmp_input converts an echo request into an echo reply by changing icmp_type to 
ICMP_ECHOREPLY and jumping to reflect to send the reply. 

277-282

After constructing the reply for each ICMP request, icmp_input executes the code at 
reflect. The correct datagram length is restored, the number of requests and the type of ICMP 
messages are counted in icps_reflect and icps_outhist[], and icmp_reflect 
(Section 11.12) sends the reply back to the requestor. 
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Timestamp Query: ICMP_TSTAMP and ICMP_TSTAMPREPLY

The ICMP timestamp message is illustrated in Figure 11.22. 

Figure 11.22. ICMP timestamp request and reply. 

 

 

icmp_code is always 0. icmp_id and icmp_seq serve the same purpose as those in the 
ICMP echo messages. The sender of the request sets icmp_otime (the time the request 
originated); icmp_rtime (the time the request was received) and icmp_ttime (the time the 
reply was transmitted) are set by the sender of the reply. All times are in milliseconds since midnight 
UTC; the high-order bit is set if the time value is recorded in nonstandard units, as with the IP 
timestamp option. 

Figure 11.23 shows the code that implements the timestamp messages. 

Figure 11.23. icmp_input function: timestamp request and reply. 

 

 

238-246

icmp_input responds to an ICMP timestamp request by changing icmp_type to 
ICMP_TSTAMPREPLY, recording the current time in icmp_rtime and icmp_ttime, 
and jumping to reflect to send the reply. 

It is difficult to set icmp_rtime and icmp_ttime accurately. When the system executes this 
code, the message may have already waited on the IP input queue to be processed and 
icmp_rtime is set too late. Likewise, the datagram still requires processing and may be delayed 
in the transmit queue of the network interface so icmp_ttime is set too early here. To set the 

 316



ptg11539634

timestamps closer to the true receive and transmit times would require modifying the interface drivers 
for every network to understand ICMP messages (Exercise 11.8). 

Address Mask Query: ICMP_MASKREQ and ICMP_MASKREPLY

The ICMP address mask request and reply are illustrated in Figure 11.24. 

Figure 11.24. ICMP address request and reply. 

 

 

RFC 950 [Mogul and Postel 1985] added the address mask messages to the original ICMP 
specification. They enable a system to discover the subnet mask in use on a network. 

RFC 1122 forbids sending mask replies unless a system has been explicitly configured as an 
authoritative agent for address masks. This prevents a system from sharing an incorrect address mask 
with every system that sends a request. Without administrative authority to respond, a system should 
ignore address mask requests. 

If the global integer icmpmaskrepl is nonzero, Net/3 responds to address mask requests. The 
default value is 0 and can be changed by icmp_sysctl through the sysctl(8) program 
(Section 11.14). 

In Net/2 systems there was no mechanism to control the reply to address mask 
requests. As a result, it is very important to configure Net/2 interfaces with the 
correct address mask; the information is shared with any system on the network that 
sends an address mask request. 

The address mask message processing is shown in Figure 11.25. 
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Figure 11.25. icmp_input function: address mask request and reply. 

 

 

247-256

If the system is not configured to respond to mask requests, or if the request is too short, this code 
breaks out of the switch and passes the message to rip_input (Figure 11.15). 

Net/3 fails to increment icps_badlen here. It does increment 
icps_badlen for all other ICMP length errors. 

Select subnet mask

257-267

If the request was sent to 0.0.0.0 or 255.255.255.255, the source address is saved in icmpdst where 
it is used by ifaof_ifpforaddr to locate the in_ifaddr structure on the same network as 
the source address. If the source address is 0.0.0.0 or 255.255.255.255, ifaof_ifpforaddr 
returns a pointer to the first IP address associated with the receiving interface. 

The default case (for unicast or directed broadcasts) saves the destination address for 
ifaof_ifpforaddr.
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Convert to reply

269-270

The request is converted into a reply by changing icmp_type and by copying the selected subnet 
mask, ia_sockmask, into icmp_mask.

Select destination address

271-276

If the source address of the request is all 0s ("this host on this net," which can be used only as a source 
address during bootstrap, RFC 1122), then the source does not know its own address and Net/3 must 
broadcast the reply so the source system can receive the message. In this case, the destination for the 
reply is ia_broadaddr or ia_dstaddr if the receiving interface is on a broadcast or point-
to-point network, respectively. icmp_input puts the destination address for the reply in 
ip_src since the code at reflect (Figure 11.21) calls icmp_reflect, which reverses the 
source and destination addresses. The addresses of a unicast request remain unchanged. 

Information Query: ICMP_IREQ and ICMP_IREQREPLY

The ICMP information messages are obsolete. They were intended to allow a host to discover the 
number of an attached IP network by broadcasting a request with 0s in the network portion of the 
source and destination address fields. A host responding to the request would return a message with 
the appropriate network numbers filled in. Some other method was required for a host to discover the 
host portion of the address. 

RFC 1122 recommends that a host not implement the ICMP information messages because RARP 
(RFC 903 [Finlayson et al. 1984]), and BOOTP (RFC 951 [Croft and Gilmore 1985]) are better suited 
for discovering addresses. A new protocol, the Dynamic Host Configuration Protocol (DHCP), 
described in RFC 1541 [Droms 1993], will probably replace and augment the capabilities of BOOTP. 
It is currently a proposed standard. 

Net/2 did respond to ICMP information request messages, but Net/3 passes them on 
to rip_input.

Router Discovery: icmp_routeradvert and 
icmp_routersolicit

RFC 1256 defines the ICMP router discovery messages. The Net/3 kernel does not process these 
messages directly but instead passes them, by rip_input, to a user-level daemon, which sends 
and responds to the messages. 

Section 9.6 of Volume 1 discusses the design and operation of these messages. 

11.8. Redirect Processing 

Figure 11.26 shows the format of ICMP redirect messages. 
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Figure 11.26. ICMP redirect message. 

 

 

The last case to discuss in icmp_input is ICMP_REDIRECT. As discussed in Section 8.5, 
a redirect message arrives when a packet is sent to the wrong router. The router forwards the packet to 
the correct router and sends back a ICMP redirect message, which the system incorporates into its 
routing tables. 

Figure 11.27 shows the code executed by icmp_input to process redirect messages. 

Figure 11.27. icmp_input function: redirect messages. 

 

 
 

Validate

283-290

icmp_input jumps to badcode (Figure 11.18, line 232) if the redirect message includes an 
unrecognized ICMP code, and drops out of the switch if the message has an invalid length or if the 
enclosed IP packet has an invalid header length. Figure 11.16 showed that 36 
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(ICMP_ADVLENMIN) is the minimum size of an ICMP error message, and ICMP_ADVLEN 
(icp) is the minimum size of an ICMP error message including any IP options that may be in the 
packet pointed to by icp.

291-300

icmp_input assigns to the static structures icmpgw, icmpdst, and icmpsrc, the 
source address of the redirect message (the gateway that sent the message), the recommended router 
for the original packet (the first-hop destination), and the final destination of the original packet. 

Here, icmpsrc does not contain a source address it is a convenient location for 
holding the destination address instead of declaring another sockaddr structure. 

Update routes

301-306

Net/3 follows RFC 1122 recommendations and treats a network redirect and a host redirect 
identically. The redirect information is passed to rtredirect, which updates the routing tables. 
The redirected destination (saved in icmpsrc) is passed to pfctlinput, which informs all the 
protocol domains about the redirect (Section 7.7). This gives the protocols an opportunity to invalidate 
any route caches to the destination. 

According to RFC 1122, network redirects should be treated as host redirects since 
they may provide incorrect routing information when the destination network is 
subnetted. In fact, RFC 1009 requires routers not to send network redirects when the 
network is subnetted. Unfortunately, many routers violate this requirement. Net/3 
never sends network redirects. 

ICMP redirect messages are a fundamental part of the IP routing architecture. While classified as an 
error message, redirect messages appear during normal operations on any network with more than a 
single router. Chapter 18 covers IP routing issues in more detail. 

11.9. Reply Processing 

The kernel does not process any of the ICMP reply messages. ICMP requests are generated by 
processes, never by the kernel, so the kernel passes any replies that it receives to processes waiting for 
ICMP messages. In addition, the ICMP router discovery messages are passed to rip_input.
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Figure 11.28. icmp_input function: reply messages. 

 

 

307-322

No actions are required by the kernel for ICMP reply messages, so execution continues after the 
switch statement at raw. Note that the default case for the switch statement 
(unrecognized ICMP messages) also passes control to the code at raw.

11.10. Output Processing 

Outgoing ICMP messages are generated in several ways. We saw in Chapter 8 that IP calls 
icmp_error to generate and send ICMP error messages. ICMP reply messages are sent by 
icmp_reflect, and it is possible for a process to generate ICMP messages through the raw 
ICMP protocol. Figure 11.29 shows how these functions relate to ICMP output processing. 

Figure 11.29. ICMP output processing. 

 

 322



ptg11539634

 

11.11. icmp_error Function 

The icmp_error function constructs an ICMP error message at the request of IP or the transport 
protocols and passes it to icmp_reflect, where it is returned to the source of the invalid 
datagram. The function is shown in three parts: 

validate the message (Figure 11.30), 
construct the header (Figure 11.32), and 
include the original datagram (Figure 11.33). 

Figure 11.30. icmp_error function: validation. 

 

 

46-57

The arguments are: n, a pointer to an mbuf chain containing the invalid datagram; type and 
code, the ICMP error type and code values; dest, the next-hop router address included in ICMP 
redirect messages; and destifp, a pointer to the outgoing interface for the original IP packet. 
mtod converts the mbuf pointer n to oip, a pointer to the ip structure in the mbuf. The length in 
bytes of the original IP header is kept in oiplen.

58-75

All ICMP errors except redirect messages are counted in icps_error. Net/3 does not consider 
redirect messages as errors and icps_error is not an SNMP variable. 
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icmp_error discards the invalid datagram, oip, and does not send an error message if: 

some bits of ip_off, except those represented by IP_MF and IP_DF, are nonzero 
(Exercise 11.10). This indicates that oip is not the first fragment of a datagram and that 
ICMP must not generate error messages for trailing fragments of a datagram. 
the invalid datagram is itself an ICMP error message. ICMP_INFOTYPE returns true if 
icmp_type is an ICMP request or response type and false if it is an error type. This rule 
avoids creating an infinite sequence of errors about errors. 

Net/3 does not consider ICMP redirect messages errors, although RFC 1122 
does. 

the datagram arrived as a link-layer broadcast or multicast (indicated by the M_BCAST and 
M_MCAST flags). 

ICMP error messages must not be sent in two other circumstances: 

The datagram was sent to an IP broadcast or IP multicast address. 
The datagram’s source address is not a unicast IP address (i.e., the source address is a 0 
address, a loopback address, a broadcast address, a multicast address, or a class E address) 

Net/3 fails to check for the first case. The second case is addressed by the icmp_reflect 
function (Section 11.12). 

Interestingly, the Deering multicast extensions to Net/2 do discard datagrams of the 
first type. Since the Net/3 multicast code was derived from the Deering multicast 
extensions, it appears the test was removed. 

These restrictions attempt to prevent a single broadcast datagram with an error from triggering ICMP 
error messages from every host on the network. These broadcast storms can disrupt communication 
on a network for an extended period of time as all the hosts attempt to send an error message 
simultaneously. 

These rules apply to ICMP error messages but not to ICMP replies. As RFCs 1122 and 1127 discuss, 
responding to broadcast requests is allowed but neither recommended nor discouraged. Net/3 responds 
only to broadcast requests with a unicast source address, since ip_output will drop ICMP 
messages returned to a broadcast address (Figure 11.39). 

Figure 11.31 illustrates the construction of an ICMP error message. 
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Figure 11.31. The construction of an ICMP error message. 

 

 

The code in Figure 11.32 builds the error message. 

Figure 11.32. icmp_error function: message header construction. 

 

 

76-106

icmp_error constructs the ICMP message header in the following way: 

 325



ptg11539634

m_gethdr allocates a new packet header mbuf. MH_ALIGN positions the mbuf’s data 
pointer so that the ICMP header, the IP header (and options) of the invalid datagram, and up 
to 8 bytes of the invalid datagram’s data are located at the end of the mbuf. 
icmp_type, icmp_code, icmp_gwaddr (for redirects), icmp_pptr (for 
parameter problems), and icmp_nextmtu (for the fragmentation required message) are 
initialized. The icmp_nextmtu field implements the extension to the fragmentation 
required message described in RFC 1191. Section 24.2 of Volume 1 describes the path MTU 
discovery algorithm, which relies on this message. 

Once the ICMP header has been constructed, a portion of the original datagram must be attached to 
the header, as shown in Figure 11.33. 

Figure 11.33. icmp_error function: including the original datagram. 

 

 

107-125

The IP header, options, and data (a total of icmplen bytes) are copied from the invalid datagram 
into the ICMP error message. Also, the header length is added back into the invalid datagram’s 
ip_len.

In udp_usrreq, UDP also adds the header length back into the invalid datagram’s ip_len. 
The result is an ICMP message with an incorrect datagram length in the IP header of the invalid 
packet. The authors found that many systems based on Net/2 code have this bug. Net/1 systems do not 
have this problem. 

Since MH_ALIGN located the ICMP message at the end of the mbuf, there should be enough room 
to prepend an IP header at the front. The IP header (excluding options) is copied from the invalid 
datagram to the front of the ICMP message. 
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The Net/2 release included a bug in this portion of the code: the last bcopy in the function moved 
oiplen bytes, which includes the options from the invalid datagram. Only the standard header 
without options should be copied. 
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The IP header is completed by restoring the correct datagram length (ip_len), header length 
(ip_hl), and protocol (ip_p), and clearing the TOS field (ip_tos). 

RFCs 792 and 1122 recommend that the TOS field be set to 0 for ICMP messages. 

126-129

The completed message is passed to icmp_reflect, where it is sent back to the source host. 
The invalid datagram is discarded. 

11.12. icmp_reflect Function 

icmp_reflect sends ICMP replies and errors back to the source of the request or back to the 
source of the invalid datagram. It is important to remember that icmp_reflect reverses the 
source and destination addresses in the datagram before sending it. The rules regarding source and 
destination addresses of ICMP messages are complex. Figure 11.34 summarizes the actions of several 
functions in this area. 

Figure 11.34. ICMP discard and address summary. 

 

 

We describe the icmp_reflect function in three parts: source and destination address selection, 
option construction, and assembly and transmission. Figure 11.35 shows the first part of the function. 

 327



ptg11539634

Figure 11.35. icmp_reflect function: address selection. 

 

 
 

Set destination address

329-345

icmp_reflect starts by making a copy of ip_dst and moving ip_src, the source of the 
request or error datagram, to ip_dst. icmp_error and icmp_reflect ensure that 
ip_src is a valid destination address for the error message. ip_output discards any packets 
sent to a broadcast address. 
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 329

Select source address

346-371

icmp_reflect selects a source address for the message by searching in_ifaddr for the 
interface with a unicast or broadcast address matching the destination address of the original 
datagram. On a multihomed host, the matching interface may not be the interface on which the 
datagram was received. If there is no match, the in_ifaddr structure of the receiving interface is 
selected or, failing that (the interface may not be configured for IP), the first address in 
in_ifaddr. The function sets ip_src to the selected address and changes ip_ttl to 255 
(MAXTTL) because the error is a new datagram. 

RFC 1700 recommends that the TTL field of all IP packets be set to 64. Many systems, however, set 
the TTL of ICMP messages to 255 nowadays. 

There is a tradeoff associated with TTL values. A small TTL prevents a packet from circulating in a 
routing loop but may not allow a packet to reach a site far (many hops) away. A large TTL allows 
packets to reach distant hosts but lets packets circulate in routing loops for a longer period of time. 

RFC 1122 requires that source route options, and recommends that record route and timestamp 
options, from an incoming echo request or timestamp request, be attached to a reply. The source route 
must be reversed in the process. RFC 1122 is silent on how these options should be handled on other 
types of ICMP replies. Net/3 applies these rules to the address mask request, since it calls 
icmp_reflect (Figure 11.21) after constructing the address mask reply. 

The next section of code (Figure 11.36) constructs the options for the ICMP message. 
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Figure 11.36. icmp_reflect function: option construction. 

 

 
 

Get reversed source route

372-385

If the incoming datagram did not contain options, control passes to line 430 (Figure 11.37). The error 
messages that icmp_error sends to icmp_reflect never have IP options, and so the 
following code applies only to ICMP requests that are converted to replies and passed directly to 
icmp_reflect.
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Figure 11.37. icmp_reflect function: final assembly. 

 

 

cp points to the start of the options for the reply. ip_srcroute reverses and returns any source 
route option saved when ipintr processed the datagram. If ip_srcroute returns 0, the 
request did not contain a source route option so icmp_reflect allocates and initializes an mbuf 
to serve as an empty ipoption structure. 

Add record route and timestamp options

386-416

If opts points to an mbuf, the for loop searches the options from the original IP header and 
appends the record route and timestamp options to the source route returned by ip_srcroute.

The options in the original header must be removed before the ICMP message can be sent. This is 
done by the code shown in Figure 11.37. 

Remove original options

417-429

icmp_reflect removes the options from the original request by moving the ICMP message up 
to the end of the IP header. This is shown in Figure 11.38. The new options, which are in the mbuf 
pointed to by opts, are reinserted by ip_output.
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Figure 11.38. icmp_reflect: removal of options. 

 

 
 

Send message and cleanup

430-435

The broadcast and multicast flags are explicitly cleared before passing the message and options to 
icmp_send, after which the mbuf containing the options is released. 

11.13. icmp_send Function 

icmp_send (Figure 11.39) processes all outgoing ICMP messages and computes the ICMP 
checksum before passing them to the IP layer. 

Figure 11.39. icmp_send function. 

 

 

440-457

As it does when checking the ICMP checksum in icmp_input, Net/3 adjusts the mbuf data 
pointer and length to hide the IP header and lets in_cksum look only at the ICMP message. The 
computed checksum is placed in the header at icmp_cksum and the datagram and any options are 
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passed to ip_output. The ICMP layer does not maintain a route cache, so icmp_send passes 
a null pointer to ip_output instead of a route entry as the third argument. icmp_send also 
does not pass any control flags to ip_output (the fourth argument). In particular, 
IP_ALLOWBROADCAST isn’t passed, so ip_output discards any ICMP messages with a 
broadcast destination address (i.e., the original datagram arrived with an invalid source address). 

11.14. icmp_sysctl Function 

The icmp_sysctl function for IP supports the single option listed in Figure 11.40. The system 
administrator can modify the option through the sysctl(8) program. 

Figure 11.40. icmp_sysctl parameters. 

 

 

Figure 11.41 shows the icmp_sysctl function. 

Figure 11.41. icmp_sysctl function. 

 

 

467-478

ENOTDIR is returned if the required ICMP sysctl name is missing. 

479-486

There are no options below the ICMP level, so this function calls sysctl_int to modify 
icmpmaskrepl or returns ENOPROTOOPT if the option is not recognized. 
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11.15. Summary 

The ICMP protocol is implemented as a transport layer above IP, but it is tightly integrated with the IP 
layer. We’ve seen that the kernel responds directly to ICMP request messages but passes errors and 
replies to the appropriate transport protocol or application program for processing. The kernel makes 
immediate changes to the routing tables when an ICMP redirect message arrives but also passes 
redirects to any waiting processes, typically a routing daemon. 

In Sections 23.9 and 27.6 we’ll see how the UDP and TCP protocols respond to ICMP error messages, 
and in Chapter 32 we’ll see how a process can generate ICMP requests. 

Exercises

11.1 What is the source address of an ICMP address mask reply message generated by a request 
with a destination address of 0.0.0.0? 

11.2 Describe how a link-level broadcast of a packet with a forged unicast source address can 
interfere with the operation of another host on the network. 

11.3 RFC 1122 suggests that a host should discard an ICMP redirect message if the new first-
hop router is on a different subnet from the old first-hop router or if the message came 
from a router other than the current first-hop router for the final destination included in the 
message. Why should this advice be followed? 

11.4 If the ICMP information request is obsolete, why does icmp_input pass it to 
rip_input instead of discarding it? 

11.5 We pointed out that Net/3 does not convert the offset and length field of an IP packet to 
network byte order before including the packet in an ICMP error message. Why is this 
inconsequential in the case of the IP offset field? 

11.6 Describe a situation in which ifaof_ifpforaddr from Figure 11.25 returns a null 
pointer. 

11.7 What happens to data included after the timestamps in a timestamp query? 

11.8 Implement the following changes to improve the ICMP timestamp code:  

Add a timestamp field to the mbuf packet header. Have the device drivers record the exact 
time a packet is received in this field and have the ICMP timestamp code copy the value 
into the icmp_rtime field. 

On output, have the ICMP timestamp code store the byte offset of where in the packet to 
store the current time in the timestamp field. Modify a device driver to insert the time-
stamp right before sending the packet. 

11.9 Modify icmp_error to return up to 64 bytes (as does Solaris 2.x) of the original 
datagram in ICMP error messages. 
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11.10 In Figure 11.30, what happens to a packet that has the high-order bit of ip_off set? 

11.11 Why is the return value from ip_output discarded in Figure 11.39? 
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Chapter 12. IP Multicasting 

12.1. Introduction 

Recall from Chapter 8 that class D IP addresses (224.0.0.0 to 239.255.255.255) do not identify 
individual interfaces in an internet but instead identify groups of interfaces. For this reason, class D 
addresses are called multicast groups. A datagram with a class D destination address is delivered to 
every interface in an internet that has joined the corresponding multicast group. 

Experimental applications on the Internet that take advantage of multicasting include audio and video 
conferencing applications, resource discovery tools, and shared whiteboards. 

Group membership is determined dynamically as interfaces join and leave groups based on requests 
from processes running on each system. Since group membership is relative to an interface, it is 
possible for a multihomed host have different group membership lists for each interface. We’ll refer to 
group membership on a particular interface as an {interface, group} pair. 

Group membership on a single network is communicated between systems by the IGMP protocol 
(Chapter 13). Multicast routers propagate group membership information using multicast routing 
protocols (Chapter 14), such as DVMRP (Distance Vector Multicast Routing Protocol). A standard IP 
router may support multicast routing, or multicast routing may be handled by a router dedicated to that 
purpose. 

Networks such as Ethernet, token ring, and FDDI directly support hardware multicasting. In Net/3, if 
an interface supports multicasting, the IFF_MULTICAST bit is on in if_flags in the 
interface’s ifnet structure (Figure 3.7). We’ll use Ethernet to illustrate hardware-supported IP 
multicasting, since Ethernet is in widespread use and Net/3 includes sample Ethernet drivers. 
Multicast services are trivially implemented on point-to-point networks such as SLIP and the loopback 
interface. 

IP multicasting services may not be available on a particular interface if the local network does not 
support hardware-level multicast. RFC 1122 does not prevent the interface layer from providing a 
software-level multicast service as long as it is transparent to IP. 

RFC 1112 [Deering 1989] describes the host requirements for IP multicasting. There are three levels 
of conformance: 

Level 
0 

The host cannot send or receive IP multicasts.  
 
Such a host should silently discard any packets it receives with a class D destination address. 

Level 
1 

The host can send but cannot receive IP multicasts.  
 
A host is not required to join an IP multicast group before sending a datagram to the group. A 
multicast datagram is sent in the same way as a unicast datagram except the destination 
address is the IP multicast group. The network drivers must recognize this and multicast the 
datagram on the local network. 

Level 
2 

The host can send and receive IP multicasts.  
 
To receive IP multicasts, the host must be able to join and leave multicast groups and must 
support IGMP for exchanging group membership information on at least one interface. A 
multihomed host may support multicasting on a subset of its interfaces. 
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Net/3 meets the level 2 host requirements and can additionally act as a multicast router. As with 
unicast IP routing, we assume that the system we are describing is a multicast router and we include 
the Net/3 multicast routing code in our presentation. 

Well-Known IP Multicast Groups 

As with UDP and TCP port numbers, the Internet Assigned Numbers Authority (IANA) maintains a 
list of registered IP multicast groups. The current list can be found in RFC 1700. For more information 
about the IANA, see RFC 1700. Figure 12.1 shows only some of the well-known groups. 

Figure 12.1. Some registered IP multicast groups. 

 

 

The first 256 groups (224.0.0.0 to 224.0.0.255) are reserved for protocols that implement IP unicast 
and multicast routing mechanisms. Datagrams sent to any of these groups are not forwarded beyond 
the local network by multicast routers, regardless of the TTL value in the IP header. 

RFC 1075 places this requirement only on the 224.0.0.0 and 224.0.0.1 groups but 
mrouted, the most common multicast routing implementation, restricts the 
remaining groups as described here. Group 224.0.0.0 
(INADDR_UNSPEC_GROUP) is reserved and group 224.0.0.255 
(INADDR_MAX_LOCAL_GROUP) marks the last local multicast group. 

Every level-2 conforming system is required to join the 224.0.0.1 
(INADDR_ALLHOSTS_GROUP) group on all multicast interfaces at system initialization time 
(Figure 6.17) and remain a member of the group until the system is shut down. There is no multicast 
group that corresponds to every interface on an internet. 

Imagine if your voice-mail system had the option of sending a message to every 
voice mailbox in your company. Maybe you have such an option. Do you find it 
useful? Does it scale to larger companies? Can anyone send to the "all-mailbox" 
group, or is it restricted? 

Unicast and multicast routers may join group 224.0.0.2 to communicate with each other. The ICMP 
router solicitation message and router advertisement messages may be sent to 224.0.0.2 (the all-
routers group) and 224.0.0.1 (the all-hosts group), respectively, instead of to the limited broadcast 
address (255.255.255.255). 

The 224.0.0.4 group supports communication between multicast routers that implement DVMRP. 
Other groups within the local multicast group range are similarly assigned for other routing protocols. 
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Beyond the first 256 groups, the remaining groups (224.0.1.0-239.255.255.255) are assigned to 
various multicast application protocols or remain unassigned. Figure 12.1 lists two examples, the 
Network Time Protocol (224.0.1.1), and SGI-Dogfight (224.0.1.2). 

Throughout this chapter, we note that multicast packets are sent and received by the transport layer on 
a host. While the multicasting code is not aware of the specific transport protocol that sends and 
receives multicast datagrams, the only Internet transport protocol that supports multicasting is UDP. 

12.2. Code Introduction 

The basic multicasting code discussed in this chapter is contained within the same files as the standard 
IP code. Figure 12.2 lists the files that we examine. 

Figure 12.2. Files discussed in this chapter. 

 

 
 

Global Variables 

Three new global variables are introduced in this chapter: 

Figure 12.3. Global variables introduced in this chapter. 

 

 
 

Statistics

The code in this chapter updates a few of the counters maintained in the global ipstat structure. 

Figure 12.4. Multicast processing statistics. 
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Link-level multicast statistics are collected in the ifnet structure (Figure 4.5) and may include 
multicasting of protocols other than IP. 

12.3. Ethernet Multicast Addresses 

An efficient implementation of IP multicasting requires IP to take advantage of hardware-level 
multicasting, without which each IP datagram would have to be broadcast to the network and every 
host would have to examine each datagram and discard those not intended for the host. The hardware 
filters unwanted datagrams before they reach the IP layer. 

For the hardware filter to work, the network interface must convert the IP multicast group destination 
to a link-layer multicast address recognized by the network hardware. On point-to-point networks, 
such as SLIP and the loopback interface, the mapping is implicit since there is only one possible 
destination. On other networks, such as Ethernet, an explicit mapping function is required. The 
standard mapping for Ethernet applies to any network that employs 802.3 addressing. 

Figure 4.12 illustrated the difference between a Ethernet unicast and multicast address: if the low-
order bit of the high-order byte of the Ethernet address is a 1, it is a multicast address; otherwise it is a 
unicast address. Unicast Ethernet addresses are assigned by the interface’s manufacturer, but multicast 
addresses are assigned dynamically by network protocols. 

IP to Ethernet Multicast Address Mapping 

Because Ethernet supports multiple protocols, a method to allocate the multicast addresses and 
prevent conflicts is needed. Ethernet addresses allocation is administered by the IEEE. A block of 
Ethernet multicast addresses is assigned to the IANA by the IEEE to support IP multicasting. The 
addresses in the block all start with 01:00:5e.

The block of Ethernet unicast addresses starting with 00:00:5e is also assigned 
to the IANA but remains reserved for future use. 

Figure 12.5 illustrates the construction of an Ethernet multicast address from a class D IP address. 

Figure 12.5. Mapping between IP and Ethernet addresses. 

 

 

The mapping illustrated by Figure 12.5 is a many-to-one mapping. The high-order 9 bits of the class D 
IP address are not used when constructing the Ethernet address. 32 IP multicast groups map to a single 
Ethernet multicast address (Exercise 12.3). In Section 12.14 we’ll see how this affects input 
processing. Figure 12.6 shows the macro that implements this mapping in Net/3. 
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Figure 12.6. ETHER_MAP_IP_MULTICAST macro. 

 

 
 

IP to Ethernet multicast mapping 

61-71

ETHER_MAP_IP_MULTICAST implements the mapping shown in Figure 12.5. ipaddr 
points to the class D multicast address, and the matching Ethernet address is constructed in 
enaddr, an array of 6 bytes. The first 3 bytes of the Ethernet multicast address are 
0x01,0x00, and 0x5e followed by a 0 bit and then the low-order 23 bits of the class D IP 
address. 

12.4. ether_multi Structure 

For each Ethernet interface, Net/3 maintains a list of Ethernet multicast address ranges to be received 
by the hardware. This list defines the multicast filtering to be implemented by the device. Because 
most Ethernet devices are limited in the number of addresses they can selectively receive, the IP layer 
must be prepared to discard datagrams that pass through the hardware filter. Each address range is 
stored in an ether_multi structure: 

Figure 12.7. ether_multi structure. 

 

 
 

Ethernet multicast addresses 

147-153

enm_addrlo and enm_addrhi specify a range of Ethernet multicast addresses that should be 
received. A single Ethernet address is specified when enm_addrlo and enm_addrhi are the 
same. The entire list of ether_multi structures is attached to the arpcom structure of each 
Ethernet interface (Figure 3.26). Ethernet multicasting is independent of ARP usin g the arpcom 
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structure is a matter of convenience, since the structure is already included in every Ethernet interface 
structure. 

We’ll see that the start and end of the ranges are always the same since there is no 
way in Net/3 for a process to specify an address range. 

enm_ac points back to the arpcom structure of the associated interface and enm_refcount 
tracks the usage of the ether_multi structure. When the reference count drops to 0, the structure 
is released. enm_next joins the ether_multi structures for a single interface into a linked 
list. Figure 12.8 shows a list of three ether_multi structures attached to le_softc[0], the 
ifnet structure for our sample Ethernet interface. 

Figure 12.8. The LANCE interface with three ether_multi structures. 

 

 

In Figure 12.8 we see that: 

The interface has joined three groups. Most likely they are: 224.0.0.1 (all-hosts), 224.0.0.2 
(all-routers), and 224.0.1.2 (SGI-dogfight). Because the Ethernet to IP mapping is a one-to-
many mapping, we cannot determine the exact IP multicast groups by examining the resulting 
Ethernet multicast addresses. The interface may have joined 225.0.0.1, 225.0.0.2, and 
226.0.1.2, for example. 
The most recently joined group appears at the front of the list. 
The enm_ac back-pointer makes it easy to find the beginning of the list and to release an 
ether_multi structure, without having to implement a doubly linked list. 
The ether_multi structures apply to Ethernet devices only. Other multicast devices 
may have a different multicast implementation. 

The ETHER_LOOKUP_MULTI macro, shown in Figure 12.9, searches an ether_multi list 
for a range of addresses. 
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Figure 12.9. ETHER_LOOKUP_MULTI macro. 

 

 
 

Ethernet multicast lookups 

166-177

addrlo and addrhi specify the search range and ac points to the arpcom structure 
containing the list to search. The for loop performs a linear search, stopping at the end of the list or 
when enm_addrlo and enm_addrhi both match the supplied addrlo and addrhi 
addresses. When the loop terminates, enm is null or points to a matching ether_multi 
structure. 

12.5. Ethernet Multicast Reception 

After this section, this chapter discusses only IP multicasting, but it is possible in Net/3 to configure 
the system to receive any Ethernet multicast packet. Although not useful with the IP protocols, other 
protocol families within the kernel might be prepared to receive these multicasts. Explicit multicast 
configuration is done by issuing the ioctl commands shown in Figure 12.10. 

Figure 12.10. Multicast ioctl commands. 

 

 

These two commands are passed by ifioctl (Figure 12.11) directly to the device driver for the 
interface specified in the ifreq structure (Figure 6.12). 

Figure 12.11. ifioctl function: multicast commands. 
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440-446

If the process does not have superuser privileges, or if the interface does not have an if_ioctl 
function, ifioctl returns an error; otherwise the request is passed directly to the device driver. 

12.6. in_multi Structure 

The Ethernet multicast data structures described in Section 12.4 are not specific to IP; they must 
support multicast activity by any of the protocol families supported by the kernel. At the network 
level, IP maintains a list of IP multicast groups associated with each interface. 

As a matter of implementation convenience, the IP multicast list is attached to the in_ifaddr 
structure associated with the interface. Recall from Section 6.5 that this structure contains the unicast 
address for the interface. There is no relationship between the unicast address and the attached 
multicast group list other than that they both are associated with the same interface. 

This is an artifact of the Net/3 implementation. It is possible for an implementation to 
support IP multicast groups on an interface that does not accept IP unicast packets. 

Each IP multicast {interface, group} pair is described by an in_multi structure shown in Figure 
12.12. 

Figure 12.12. in_multi structure. 

 

 
 

IP multicast addresses 

111-118

inm_addr is a class D multicast address (e.g., 224.0.0.1, the all-hosts group). inm_ifp points 
back to the ifnet structure of the associated interface and inm_ia points back to the interface’s 
in_ifaddr structure. 

An in_multi structure exists only if at least one process on the system has notified the kernel that 
it wants to receive multicast datagrams for a particular {interface, group} pair. Since multiple 
processes may elect to receive datagrams sent to a particular pair, inm_refcount keeps track of 
the number of references to the pair. When no more processes are interested in the pair, 
inm_refcount drops to 0 and the structure is released. This action may cause an associated 
ether_multi structure to be released if its reference count also drops to 0. 
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inm_timer is part of the IGMP protocol implementation described in Chapter 13. Finally, 
inm_next points to the next in_multi structure in the list. 

Figure 12.13 illustrates the relationship between an interface, its IP unicast address, and its IP 
multicast group list using the le_softc[0] sample interface. 

Figure 12.13. An IP multicast group list for the le interface. 

 

 

We’ve omitted the corresponding ether_multi structures for clarity (but see Figure 12.34). If the 
system had two Ethernet cards, the second card would be managed through le_softc[1] and 
would have its own multicast group list attached to its arpcom structure. The macro 
IN_LOOKUP_MULTI (Figure 12.14) searches the IP multicast list for a particular multicast group. 

Figure 12.14. IN_LOOKUP_MULTI macro. 
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IP multicast lookups 

131-146

IN_LOOKUP_MULTI looks for the multicast group addr in the multicast group list associated 
with interface ifp. IFP_TO_IA searches the Internet address list, in_ifaddr, for the 
in_ifaddr structure associated with the interface identified by ifp. If IFP_TO_IA finds an 
interface, the for loop searches its IP multicast list. After the loop, inm is null or points to the 
matching in_multi structure. 

12.7. ip_moptions Structure 

The ip_moptions structure contains the multicast options through which the transport layer 
controls multicast output processing. For example, the UDP call to ip_output is: 

    error = ip_output(m, inp->inp_options, &inp->inp_route,
                      inp->inp_socket->so_options & 
(SO_DONTROUTE|SO_BROADCAST),
                      inp->inp_moptions);

        
 

In Chapter 22 we’ll see that inp points to an Internet protocol control block (PCB) and that UDP 
associates a PCB with each socket created by a process. Within the PCB, inp_moptions is a 
pointer to an ip_moptions structure. From this we see that a different ip_moptions 
structure may be passed to ip_output for each outgoing datagram. Figure 12.15 shows the 
definition of the ip_moptions structure. 

Figure 12.15. ip_moptions structure. 

 

 
 

Multicast options 

100-106

ip_output routes outgoing multicast datagrams through the interface pointed to by 
imo_multicast_ifp or, if imo_multicast_ifp is null, through the default interface 
for the destination multicast group (Chapter 14). 
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imo_multicast_ttl specifies the initial IP TTL value for outgoing multicasts. The default is 
1, which causes multicast datagrams to remain on the local network. 

If imo_multicast_loop is 0, the multicast datagram is not looped back and delivered to the 
transmitting interface even if the interface is a member of the multicast group. If 
imo_multicast_loop is 1, the multicast datagram is looped back to the transmitting interface 
if the interface is a member of the multicast group. 

Finally, the integer imo_num_memberships and the array imo_membership maintain 
the list of {interface, group} pairs associated with the structure. Changes to the list are communicated 
to IP, which announces membership changes on the locally attached network. Each entry in the 
imo_membership array is a pointer to an in_multi structure attached to the in_ifaddr 
structure of the appropriate interface. 

12.8. Multicast Socket Options 

Several IP-level socket options, shown in Figure 12.16, provide process-level access to 
ip_moptions structures. 

Figure 12.16. Multicast socket options. 

 

 

In Figure 8.31 we looked at the overall structure of the ip_ctloutput function. Figure 12.17 
shows the cases relevant to changing and retrieving multicast options. 
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Figure 12.17. ip_ctloutput function: multicast options. 

 

 

486-491 539-549

All the multicast options are handled through the ip_setmoptions and ip_getmoptions 
functions. The ip_moptions structure passed by reference to ip_getmoptions or to 
ip_setmoptions is the one associated with the socket on which the ioctl command was 
issued. 

The error code returned when an option is not recognized is different for the get and 
set cases. ENOPROTOOPT is the more reasonable choice. 

12.9. Multicast TTL Values 

 347

Multicast TTL values are difficult to understand because they have two purposes. The primary 
purpose of the TTL value, as with all IP packets, is to limit the lifetime of the packet within an internet 
and prevent it from circulating indefinitely. The second purpose is to contain packets within a region 
of the internet specified by administrative boundaries. This administrative region is specified in 
subjective terms such as "this site," "this company," or "this state," and is relative to the starting point 
of the packet. The region associated with a multicast packet is called its scope.
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The standard implementation of RFC 1112 multicasting merges the two concepts of lifetime and 
scope into the single TTL value in the IP header. In addition to discarding packets when the IP TTL 
drops to 0, multicast routers associate with each interface a TTL threshold that limits multicast 
transmission on that interface. A packet must have a TTL greater than or equal to the interface’s 
threshold value for it to be transmitted on the interface. Because of this, a multicast packet may be 
dropped even before its TTL value reaches 0. 

Threshold values are assigned by an administrator when configuring a multicast router. These values 
define the scope of multicast packets. The significance of an initial TTL value for multicast datagrams 
is defined by the threshold policy used by the administrator and the distance between the source of the 
datagram and the multicast interfaces. 

Figure 12.18 shows the recommended TTL values for various applications as well as recommended 
threshold values. 

Figure 12.18. TTL values for IP multicast datagrams. 

 

 

The first column lists the starting value of ip_ttl in the IP header. The second column illustrates 
an application specific use of threshold values ([Casner 1993]). The third column lists the 
recommended scopes to associate with the TTL values. 

For example, an interface that communicates to a network outside the local site would be configured 
with a multicast threshold of 32. The TTL field of any datagram that start with a TTL of 32 (or less) is 
less than 32 when it reaches this interface (there is at least one hop between the source and the router) 
and is discarded before the router forwards it to the external network even if the TTL is still greater 
than 0. 

A multicast datagram that starts with a TTL of 128 would pass through site interfaces with a threshold 
of 32 (as long as it reached the interface within 128 - 32 = 96 hops) but would be discarded by 
intercontinental interfaces with a threshold of 128. 

The MBONE 
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A subset of routers on the Internet supports IP multicast routing. This multicast backbone is called the 
MBONE, which is described in [Casner 1993]. It exists to support experimentation with IP 
multicasting in particular with audio and video data streams. In the MBONE, threshold values limit 
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how far various data streams propagate. In Figure 12.18, we see that local event video packets always 
start with a TTL of 31. An interface with a threshold of 32 always blocks local event video. At the 
other end of the scale, IETF channel 1 low-rate audio is restricted only by the inherent IP TTL 
maximum of 255 hops. It propagates through the entire MBONE. An administrator of a multicast 
router within the MBONE can select a threshold value to accept or discard MBONE data streams 
selectively. 

Expanding-Ring Search 

Another use of the multicast TTL is to probe the internet for a resource by varying the initial TTL 
value of the probe datagram. This technique is called an expanding-ring search ([Boggs 1982]). A 
datagram with an initial TTL of 0 reaches only a resource on the local system associated with the 
outgoing interface. A TTL of 1 reaches the resource if it exists on the local subnet. A TTL of 2 
reaches resources within two hops of the source. An application increases the TTL exponentially to 
probe a large internet quickly. 

RFC 1546 [Partridge, Mendez, and Milliken 1993] describes a related service called 
anycasting. As proposed, anycasting relies on a distinguished set of IP addresses to 
represent groups of hosts much like multicasting. Unlike multicast addresses, the 
network is expected to propagate an anycast packet until it is received by at least one 
host. This simplifies the implementation of an application, which no longer needs to 
perform expanding-ring searches. 

12.10. ip_setmoptions Function 

The bulk of the ip_setmoptions function consists of a switch statement to handle each 
option. Figure 12.19 shows the beginning and end of ip_setmoptions. The body of the 
switch is discussed in the following sections. 
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Figure 12.19. ip_setmoptions function. 

 

 

650-664

The first argument, optname, indicates which multicast option is being changed. The second 
argument, imop, references a pointer to an ip_moptions structure. If *imop is nonnull, 
ip_setmoptions modifies the structure it points to. Otherwise, ip_setmoptions 
allocates a new ip_moptions structure and saves its address in *imop. If no memory is 
available, ip_setmoptions returns ENOBUFS immediately. Any subsequent errors that occur 
are posted in error, which is returned to the caller at the end of the function. The third argument, 
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m, points to an mbuf that contains the data for the option to be changed (second column of Figure 
12.16). 

Construct the defaults 

665-679

When a new ip_moptions structure is allocated, ip_setmoptions initializes the default 
multicast interface pointer to null, initializes the default TTL to 1 
(IP_DEFAULT_MULTICAST_TTL), enables the loopback of multicast datagrams, and clears 
the group membership list. With these defaults, ip_output selects an outgoing interface by 
consulting the routing tables, multicasts are kept on the local network, and the system receives its own 
multicast transmissions if the outgoing interface is a member of the destination group. 

Process options 

680-860

The body of ip_setmoptions consists of a switch statement with a case for each option. 
The default case (for unknown options) sets error to EOPNOTSUPP.

Discard structure if defaults are OK 

861-872

After the switch statement, ip_setmoptions examines the ip_moptions structure. If 
all the multicast options match their respective default values, the structure is unnecessary and is 
released. ip_setmoptions returns 0 or the posted error code. 

Selecting an Explicit Multicast Interface: IP_MULTICAST_IF

When optname is IP_MULTICAST_IF, the mbuf passed to ip_setmoptions contains 
the unicast address of a multicast interface, which specifies the particular interface for multicasts sent 
on this socket. Figure 12.20 shows the code for this option. 
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Figure 12.20. ip_setmoptions function: selecting a multicast output interface. 

 

 
 

Validation

681-698

If no mbuf has been provided or the data within the mbuf is not the size of an in_addr structure, 
ip_setmoptions posts an EINVAL error; otherwise the data is copied into addr. If the 
interface address is INADDR_ANY, any previously selected interface is discarded. Subsequent 
multicasts with this ip_moptions structure are routed according to their destination group 
instead of through an explicitly named interface (Figure 12.40). 

Select the default interface 

699-710

If addr contains an address, INADDR_TO_IFP locates the matching interface. If a match can’t 
be found or the interface does not support multicasting, EADDRNOTAVAIL is posted. Otherwise, 
ifp, the matching interface, becomes the multicast interface for output requests associated with this 
ip_moptions structure. 
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Selecting an Explicit Multicast TTL: IP_MULTICAST_TTL

When optname is IP_MULTICAST_TTL, the mbuf is expected to contain a single byte 
specifying the IP TTL for outgoing multicasts. This TTL is inserted by ip_output into every 
multicast datagram sent on the associated socket. Figure 12.21 shows the code for this option. 

Figure 12.21. ip_setmoptions function: selecting an explicit multicast TTL. 

 

 
 

Validate and select the default TTL 

711-720

If the mbuf contains a single byte of data, it is copied into imo_multicast_ttl. Otherwise, 
EINVAL is posted. 

Selecting Multicast Loopbacks: IP_MULTICAST_LOOP

In general, multicast applications come in two forms: 

An application with one sender per system and multiple remote receivers. In this 
configuration only one local process is sending datagrams to the group so there is no need to 
loopback outgoing multicasts. Examples include a multicast routing daemon and 
conferencing systems. 
An application with multiple senders and receivers on a system. Datagrams must be looped 
back so that each process receives the transmissions of the other senders on the system. 

The IP_MULTICAST_LOOP option (Figure 12.22) selects the loopback policy associated with an 
ip_moptions structure. 

Figure 12.22. ip_setmoptions function: selecting multicast loopbacks. 
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Validate and select the loopback policy 

721-732

If m is null, does not contain 1 byte of data, or the byte is not 0 or 1, EINVAL is posted. Otherwise, 
the byte is copied into imo_multicast_loop. A 0 indicates that datagrams should not be 
looped back, and a 1 enables the loopback mechanism. 

Figure 12.23 shows the relationship between, the maximum scope of a multicast datagram, 
imo_multicast_ttl, and imo_multicast_loop.

Figure 12.23. Loopback and TTL effects on multicast scope. 

 

 

Figure 12.23 shows that the set of interfaces that may receive a multicast packet depends on what the 
loopback policy is for the transmission and what TTL value is specified in the packet. A packet may 
be received on an interface if the hardware receives its own transmissions, regardless of the loopback 
policy. A datagram may be routed through the network and arrive on another interface attached to the 
system (Exercise 12.6). If the sending system is itself a multicast router, outgoing packets may be 
forwarded to the other interfaces, but they will only be accepted for input processing on one interface 
(Chapter 14). 

12.11. Joining an IP Multicast Group 

Other than the IP all-hosts group, which the kernel automatically joins (Figure 6.17), membership in a 
group is driven by explicit requests from processes on the system. The process of joining (or leaving) 
a multicast group is more involved than the other multicast options. The in_multi list for an 
interface must be modified as well as any link-layer multicast structures such as the 
ether_multi list we described for Ethernet. 

The data passed in the mbuf when optname is IP_ADD_MEMBERSHIP is an ip_mreq 
structure shown in Figure 12.24. 

Figure 12.24. ip_mreq structure. 
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148-151

imr_multiaddr specifies the multicast group and imr_interface identifies the interface 
by its associated unicast IP address. The ip_mreq structure specifies the {interface, group} pair for 
membership changes. 

Figure 12.25 illustrates the functions involved with joining and leaving a multicast group associated 
with our example Ethernet interface. 

Figure 12.25. Joining and leaving a multicast group. 

 

 

We start by describing the changes to the ip_moptions structure in the 
IP_ADD_MEMBERSHIP case in ip_setmoptions (Figure 12.26). Then we follow the 
request down through the IP layer, the Ethernet driver, and to the physical device i n our case, the 
LANCE Ethernet card. 
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Figure 12.26. ip_setmoptions function: joining a multicast group. 
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Validation

733-746

ip_setmoptions starts by validating the request. If no mbuf was passed, if it is not the correct 
size, or if the address (imr_multiaddr) within the structure is not a multicast group, then 
ip_setmoptions posts EINVAL. mreq points to the valid ip_mreq structure. 

Locate the interface 

747-774

If the unicast address of the interface (imr_interface) is INADDR_ANY,
ip_setmoptions must locate the default interface for the specified group. A route structure 
is constructed with the group as the desired destination and passed to rtalloc, which locates a 
route for the group. If no route is available, the add request fails with the error EADDRNOTAVAIL. 
If a route is located, a pointer to the outgoing interface for the route is saved in ifp and the route 
entry, which is no longer needed, is released. 

If imr_interface is not INADDR_ANY, an explicit interface has been requested. The macro 
INADDR_TO_IFP searches for the interface with the requested unicast address. If an interface isn’t 
found or if it does not support multicasting, the request fails with the error EADDRNOTAVAIL.

We described the route structure in Section 8.5. The function rtalloc is 
described in Section 19.2, and the use of the routing tables for selecting multicast 
interfaces is described in Chapter 14. 

Already a member? 

775-792

The last check performed on the request is to examine the imo_membership array to see if the 
selected interface is already a member of the requested group. If the for loop finds a match, or if the 
membership array is full, EADDRINUSE or ETOOMANYREFS is posted and processing of this 
option stops. 

Join the group 

793-803

At this point the request looks reasonable. in_addmulti arranges for IP to begin receiving 
multicast datagrams for the group. The pointer returned by in_addmulti points to a new or 
existing in_multi structure (Figure 12.12) in the interface’s multicast group list. It is saved in the 
membership array and the size of the array is incremented. 
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in_addmulti Function 

in_addmulti and its companion in_delmulti (Figures 12.27 and 12.36) maintain the list 
of multicast groups that an interface has joined. Join requests either add a new in_multi structure 
to the interface list or increase the reference count of an existing structure. 

Figure 12.27. in_addmulti function: first half. 

 

 
 

Already a member 

469-487

ip_setmoptions has already verified that ap points to a class D multicast address and that 
ifp points to a multicast-capable interface. IN_LOOKUP_MULTI (Figure 12.14) determines if 
the interface is already a member of the group. If it is a member, in_addmulti updates the 
reference count and returns. 

If the interface is not yet a member of the group, the code in Figure 12.28 is executed. 
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Figure 12.28. in_addmulti function: second half. 

 

 
 

Update the in_multi list 

487-509

If the interface isn’t a member yet, in_addmulti allocates, initializes, and inserts the new 
in_multi structure at the front of the ia_multiaddrs list in the interface’s in_ifaddr 
structure (Figure 12.13). 

Update the interface and announce the change 

510-530

 359

If the interface driver has defined an if_ioctl function, in_addmulti constructs an ifreq 
structure (Figure 4.23) containing the group address and passes the SIOCADDMULTI request to the 
interface. If the interface rejects the request, the in_multi structure is unlinked from the interface 
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and released. Finally, in_addmulti calls igmp_joingroup to propagate the membership 
change to other hosts and routers. 

in_addmulti returns a pointer to the in_multi structure or null if an error occurred. 

slioctl and loioctl Functions: SIOCADDMULTI and 
SIOCDELMULTI

Multicast group processing for the SLIP and loopback interfaces is trivial: there is nothing to do other 
than error checking. Figure 12.29 shows the SLIP processing. 

Figure 12.29. slioctl function: multicast processing. 

 

 

673-687

EAFNOSUPPORT is returned whether the request is empty or not for the AF_INET protocol 
family. 

Figure 12.30 shows the loopback processing. 

Figure 12.30. loioctl function: multicast processing. 
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152-166

The processing for the loopback interface is identical to the SLIP code in Figure 12.29. 
EAFNOSUPPORT is returned whether the request is empty or not for the AF_INET protocol 
family. 

leioctl Function: SIOCADDMULTI and SIOCDELMULTI

Recall from Figure 4.2 that leioctl is the if_ioctl function for the LANCE Ethernet driver. 
Figure 12.31 shows the code for the SIOCADDMULTI and SIOCDELMULTI options. 

Figure 12.31. leioctl function: multicast processing. 

 

 

657-671

leioctl passes add and delete requests directly to the ether_addmulti or 
ether_delmulti functions. Both functions return ENETRESET if the request changes the set 
of IP multicast addresses that must be received by the physical hardware. If this occurs, leioctl 
calls lereset to reinitialize the hardware with the new multicast reception list. 

We don’t show lereset, as it is specific to the LANCE Ethernet hardware. For 
multicasting, lereset arranges for the hardware to receive frames addressed to 
any of the Ethernet multicast addresses contained in the ether_multi list 
associated with the interface. The LANCE driver uses a hashing mechanism if each 
entry on the multicast list is a single address. The hash code allows the hardware to 
receive multicast packets selectively. If the driver finds an entry that describes a 
range of addresses, it abandons the hash strategy and configures the hardware to 
receive all multicast packets. If the driver must fall back to receiving all Ethernet 
multicast addresses, the IFF_ALLMULTI flag is on when lereset returns. 

ether_addmulti Function 

Every Ethernet driver calls ether_addmulti to process the SIOCADDMULTI request. This 
function maps the IP class D address to the appropriate Ethernet multicast address (Figure 12.5) and 
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updates the ether_multi list. Figure 12.32 shows the first half of the ether_addmulti 
function. 

Figure 12.32. ether_addmulti function: first half. 

 

 
 

Initialize address range 

366-399

First, ether_addmulti initializes a range of multicast addresses in addrlo and addrhi 
(both are arrays of six unsigned characters). If the requested address is from the AF_UNSPEC 
family, ether_addmulti assumes the address is an explicit Ethernet multicast address and 
copies it into addrlo and addrhi. If the address is in the AF_INET family and is 
INADDR_ANY (0.0.0.0), ether_addmulti initializes addrlo to 
ether_ipmulticast_min and addrhi to ether_ipmulticast_max. These 
two constant Ethernet addresses are defined as: 

   u_char  ether_ipmulticast_min[6] = { 0x01, 0x00, 0x5e, 
0x00, 0x00, 0x00 }; 
   u_char  ether_ipmulticast_max[6] = { 0x01, 0x00, 0x5e, 
0x7f, 0xff, 0xff }; 
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As with etherbroadcastaddr (Section 4.3), this is a convenient way to 
define a 48-bit constant. 

IP multicast routers must listen for all IP multicasts. Specifying the group as INADDR_ANY is 
considered a request to join every IP multicast group. The Ethernet address range selected in this case 
spans the entire block of IP multicast addresses allocated to the IANA. 

The mrouted(8) daemon issues a SIOCADDMULTI request with 
INADDR_ANY when it begins routing packets for a multicast interface. 

ETHER_MAP_IP_MULTICAST maps any other specific IP multicast group to the appropriate 
Ethernet multicast address. Requests for other address families are rejected with an 
EAFNOSUPPORT error. 

While the Ethernet multicast list supports address ranges, there is no way for a process or the kernel to 
request a specific range, other than to enumerate the addresses, since addrlo and addrhi are 
always set to the same address. 

The second half of ether_addmulti, shown in Figure 12.33, verifies the address range and 
adds it to the list if it is new. 
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Figure 12.33. ether_addmulti function: second half. 

 

 
 

Already receiving 

400-418

ether_addmulti checks the multicast bit (Figure 4.12) of the high and low addresses to ensure 
that they are indeed Ethernet multicast addresses. ETHER_LOOKUP_MULTI (Figure 12.9) 
determines if the hardware is already listening for the specified multicast addresses. If so, the 
reference count (enm_refcount) in the matching ether_multi structure is incremented 
and ether_addmulti returns 0. 
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Update ether_multi list 

419-441

If this is a new address range, a new ether_multi structure is allocated, initialized, and linked to 
the ac_multiaddrs list in the interfaces arpcom structure (Figure 12.8). If ENETRESET is 
returned by ether_addmulti, the device driver that called the function knows that the 
multicast list has changed and the hardware reception filter must be updated. 

Figure 12.34 shows the relationships between the ip_moptions, in_multi, and 
ether_multi structures after the LANCE Ethernet interface has joined the all-hosts group. 

Figure 12.34. Overview of multicast data structures. 

 

 

12.12. Leaving an IP Multicast Group 

In general, the steps required to leave a group are the reverse of those required to join a group. The 
membership list in the ip_moptions structure is updated, the in_multi list for the IP 
interface is updated, and the ether_multi list for the device is updated. First, we return to 
ip_setmoptions and the IP_DROP_MEMBERSHIP case, which we show in Figure 12.35. 
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Figure 12.35. ip_setmoptions function: leaving a multicast group. 

 

 
 

Validation

804-830

The mbuf must contain an ip_mreq structure, within the structure imr_multiaddr must be a 
multicast group, and there must be an interface associated with the unicast address 
imr_interface. If these conditions aren’t met, EINVAL or EADDRNOTAVAIL is posted 
and processing continues at the end of the switch. 
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Delete membership references 

831-856

The for loop searches the group membership list for an in_multi structure with the requested 
{interface, group} pair. If a match isn’t found, EADDRNOTAVAIL is posted. Otherwise, 
in_delmulti updates the in_multi list and the second for loop removes the unused entry 
in the membership array by shifting subsequent entries to fill the gap. The size of the array is updated 
accordingly. 

in_delmulti Function 

Since many processes may be receiving multicast datagrams, calling in_delmulti (Figure 
12.36) results only in leaving the specified group when there are no more references to the 
in_multi structure. 

Figure 12.36. in_delmulti function. 
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Update in_multi structure 

534-567

in_delmulti starts by decrementing the reference count of the in_multi structure and 
returning if the reference count is nonzero. If the reference count drops to 0, there are no longer any 
processes waiting for the multicast datagrams on the specified {interface, group} pair. 
igmp_leavegroup is called, but as we’ll see in Section 13.8, the function does nothing. 

The for loop traverses the linked list of in_multi structures until it locates the matching 
structure. 

The body of this for loop consists of the single continue statement. All the 
work is done by the expressions at the top of the loop. The continue is not 
required but stands out more clearly than a bare semicolon. 

The ETHER_LOOKUP_MULTI macro in Figure 12.9 does not use the 
continue and the bare semicolon is almost undetectable. 

After the loop, the matching in_multi structure is unlinked and in_delmulti issues the 
SIOCDELMULTI request to the interface so that any device-specific data structures can be updated. 
For Ethernet interfaces, this means the ether_multi list is updated. Finally, the in_multi 
structure is released. 

The SIOCDELMULTI case for the LANCE driver was included in Figure 12.31 
where we also discussed the SIOCADDMULTI case. 

ether_delmulti Function 

When IP releases an in_multi structure associated with an Ethernet device, the device may be 
able to release the matching ether_multi structure. We say may because IP may be unaware of 
other software listening for IP multicasts. When the reference count for the ether_multi 
structure drops to 0, it can be released. Figure 12.37 shows the ether_delmulti function. 
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Figure 12.37. ether_delmulti function. 
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445-479

ether_delmulti initializes the addrlo and addrhi arrays in the same way as 
ether_addmulti does. 

Locate ether_multi structure 

480-494

ETHER_LOOKUP_MULTI locates a matching ether_multi structure. If it isn’t found, 
ENXIO is returned. If the matching structure is found, the reference count is decremented and if the 
result is nonzero, ether_delmulti returns immediately. In this case, the structure may not be 
released because another protocol has elected to receive the same multicast packets. 

Delete ether_multi structure 

495-511

The for loop searches the ether_multi list for the matching address range. The matching 
structure is unlinked from the list and released. Finally, the size of the list is updated and 
ENETRESET is returned so that the device driver can update its hardware reception filter. 

12.13. ip_getmoptions Function 

Fetching the current option settings is considerably easier than setting them. All the work is done by 
ip_getmoptions, shown in Figure 12.38. 
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Figure 12.38. ip_getmoptions function. 

 

 
 

Copy the option data and return 

876-914

The three arguments to ip_getmoptions are: optname, the option to fetch; imo, the 
ip_moptions structure; and mp, which points to a pointer to an mbuf. m_get allocates an 
mbuf to hold the option data. For each of the three options, a pointer (addr, ttl, and loop, 
respectively) is initialized to the data area of the mbuf and the length of the mbuf is set to the length of 
the option data. 

For IP_MULTICAST_IF, the unicast address found by IFP_TO_IA is returned or 
INADDR_ANY is returned if no explicit multicast interface has been selected. 

For IP_MULTICAST_TTL, imo_multicast_ttl is returned or if an explicit multicast 
TTL has not been selected, 1 (IP_DEFAULT_MULTICAST_TTL) is returned. 
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For IP_MULTICAST_LOOP, imo_multicast_loop is returned or if an explicit 
multicast loopback policy has not been selected, 1 (IP_DEFAULT_MULTICAST_LOOP) is 
returned. 

Finally, EOPNOTSUPP is returned if the option isn’t recognized. 

12.14. Multicast Input Processing: ipintr Function 

Now that we have described multicast addressing, group memberships, and the various data structures 
associated with IP and Ethernet multicasting, we can move on to multicast datagram processing. 

In Figure 4.13 we saw that an incoming Ethernet multicast packet is detected by ether_input, 
which sets the M_MCAST flag in the mbuf header before placing an IP packet on the IP input queue 
(ipintrq). The ipintr function processes each packet in turn. The multicast processing code 
we omitted from the discussion of ipintr appears in Figure 12.39. 

Figure 12.39. ipintr function: multicast input processing. 
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The code is from the section of ipintr that determines if a packet is addressed to the local system 
or if it should be forwarded. At this point, the packet has been checked for errors and any options have 
been processed. ip points to the IP header within the packet. 

Forward packets if configured as multicast router 

214-245

This entire section of code is skipped if the destination address is not an IP multicast group. If the 
address is a multicast group and the system is configured as an IP multicast router (ip_mrouter), 
ip_id is converted to network byte order (the form that ip_mforward expects), and the packet 
is passed to ip_mforward. If ip_mforward returns a nonzero value, an error was detected 
or the packet arrived through a multicast tunnel. The packet is discarded and ips_cantforward 
incremented. 

We describe multicast tunnels in Chapter 14. They transport multicast packets 
between multicast routers separated by standard IP routers. Packets that arrive 
through a tunnel must be processed by ip_mforward and not ipintr.

If ip_mforward returns 0, ip_id is converted back to host byte order and ipintr may 
continue processing the packet. 

If ip points to an IGMP packet, it is accepted and execution continues at ours (ipintr, Figure 
10.11). A multicast router must accept all IGMP packets irrespective of their individual destination 
groups or of the group memberships of the incoming interface. The IGMP packets contain 
announcements of membership changes. 

246-257

The remaining code in Figure 12.39 is executed whether or not the system is configured as a multicast 
router. IN_LOOKUP_MULTI searches the list of multicast groups that the interface has joined. If a 
match is not found, the packet is discarded. This occurs when the hardware filter accepts unwanted 
packets or when a group associated with the interface and the destination group of the packet map to 
the same Ethernet multicast address. 

If the packet is accepted, execution continues at the label ours in ipintr (Figure 10.11). 

12.15. Multicast Output Processing: ip_output Function 

When we discussed ip_output in Chapter 8, we postponed discussion of the mp argument to 
ip_output and the multicast processing code. In ip_output, if mp points to an 
ip_moptions structure, it overrides the default multicast output processing. The omitted code 
from ip_output appears in Figures 12.40 and 12.41. ip points to the outgoing packet, m points 
to the mbuf holding the packet, and ifp points to the interface selected by the routing tables for the 
destination group. 
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Figure 12.40. ip_output function: defaults and source address. 
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Figure 12.41. ip_output function: loopback, forward, and send. 

 

 
 

Establish defaults 

129-155

The code in Figure 12.40 is executed only if the packet is destined for a multicast group. If so, 
ip_output sets M_MCAST in the mbuf and dst is reset to the final destination as it may have 
been set to the next-hop router earlier in ip_output (Figure 8.24). 

If an ip_moptions structure was passed, ip_ttl and ifp are changed accordingly. 
Otherwise, ip_ttl is set to 1 (IP_DEFAULT_MULTICAST_TTL), which prevents the 
multicast from escaping to a remote network. The interface selected by consulting the routing tables or 
the interface specified within the ip_moptions structure must support multicasting. If they do 
not, ip_output discards the packet and returns ENETUNREACH.
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Select source address 

156-167

If the source address is unspecified, the for loop finds the Internet unicast address associated with 
the outgoing interface and fills in ip_src in the IP header. 

Unlike a unicast packet, an outgoing multicast packet may be transmitted on more than one interface if 
the system is configured as a multicast router. Even if the system is not a multicast router, the 
outgoing interface may be a member of the destination group and may need to receive the packet. 
Finally, we need to consider the multicast loopback policy and the loopback interface itself. Taking all 
this into account, there are three questions to consider: 

Should the packet be received on the outgoing interface? 
Should the packet be forwarded to other interfaces? 
Should the packet be transmitted on the outgoing interface? 

Figure 12.41 shows the code from ip_output that answers these questions. 

Loopback or not? 

168-176

If IN_LOOKUP_MULTI determines that the outgoing interface is a member of the destination 
group and imo_multicast_loop is nonzero, the packet is queued for input on the output 
interface by ip_mloopback. In this case, the original packet is not considered for forwarding, 
since the copy is forwarded during input processing if necessary. 

Forward or not? 

178-197

If the packet is not looped back, but the system is configured as a multicast router and the packet is 
eligible for forwarding, ip_mforward distributes copies to other multicast interfaces. If 
ip_mforward does not return 0, ip_output discards the packet and does not attempt to 
transmit it. This indicates an error with the packet. 

To prevent infinite recursion between ip_mforward and ip_output, ip_mforward 
always turns on IP_FORWARDING before calling ip_output. A datagram originating on the 
system is eligible for forwarding because the transport protocols do not turn on 
IP_FORWARDING.

Transmit or not? 

198-209

Packets with a TTL of 0 may be looped back, but they are never forwarded (ip_mforward 
discards them) and are never transmitted. If the TTL is 0 or if the output interface is the loopback 
interface, ip_output discards the packet since the TTL has expired or the packet has already been 
looped back by ip_mloopback.
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Send packet 

210-211

If the packet has made it this far, it is ready to be physically transmitted on the output interface. The 
code at sendit (ip_output, Figure 8.25) may fragment the datagram before passing it (or the 
resulting fragments) to the interface’s if_output function. We’ll see in Section 21.10 that the 
Ethernet output function, ether_output, calls arpresolve, which calls 
ETHER_MAP_IP_MULTICAST to construct an Ethernet multicast destination address based on 
the IP multicast destination address. 

ip_mloopback Function 

ip_mloopback relies on looutput (Figure 5.27) to do its job. Instead of passing a pointer to 
the loopback interface to looutput, ip_mloopback passes a pointer to the output multicast 
interface. The ip_mloopback function is shown in Figure 12.42. 

Figure 12.42. ip_mloopback function. 

 

 
 

Duplicate and queue packet 

929-956

Copying the packet isn’t enough; the packet must look as though it was received on the output 
interface, so ip_mloopback converts ip_len and ip_off to network byte order and 
computes the checksum for the packet. looutput takes care of putting the packet on the IP input 
queue. 
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12.16. Performance Considerations 

The multicast implementation in Net/3 has several potential performance bottlenecks. Since many 
Ethernet cards do not support perfect filtering of multicast addresses, the operating system must be 
prepared to discard multicast packets that pass through the hardware filter. In the worst case, an 
Ethernet card may fall back to receiving all multicast packets, most of which must be discarded by 
ipintr when they are found not to contain a valid IP multicast group address. 

IP uses a simple linear list and linear search to filter incoming IP datagrams. If the list grows to any 
appreciable length, a caching mechanism such as moving the most recently received address to the 
front of the list would help performance. 

12.17. Summary 

In this chapter we described how a single host processes IP multicast datagrams. We looked at the 
format of an IP class D address and an Ethernet multicast address and the mapping between the two. 

We discussed the in_multi and ether_multi structures, and we saw that each IP multicast 
interface maintains its own group membership list and that each Ethernet interface maintains a list of 
Ethernet multicast addresses. 

During input processing, IP multicasts are accepted only if they arrive on an interface that is a member 
of their destination group, although they may be forwarded to other interfaces if the system is 
configured as a multicast router. 

Systems configured as multicast routers must accept all multicast packets on every interface. This can 
be done quickly by issuing the SIOCADDMULTI command for the INADDR_ANY address. 

The ip_moptions structure is the cornerstone of multicast output processing. It controls the 
selection of an output interface, the TTL field of the multicast datagram, and the loopback policy. It 
also holds references to the in_multi structures, which determine when an interface joins or 
leaves an IP multicast group. 

We also discussed the two concepts implemented by the multicast TTL value: packet lifetime and 
packet scope. 

Exercises 

12.1 What is the difference between sending an IP broadcast packet to 255.255.255.255 and 
sending an IP multicast to the all-hosts group 224.0.0.1? 

12.2 Why are interfaces identified by their IP unicast addresses in the multicasting code? What 
must be changed so that an interface could send and receive multicast datagrams but not 
have a unicast IP address? 

12.3 In Section 12.3 we said that 32 IP groups are mapped to a single Ethernet address. Since 9 
bits of a 32-bit address are not included in the mapping, why didn’t we say that 512 (29) IP 
groups mapped to a single Ethernet address? 

12.4 Why do you think IP_MAX_MEMBERSHIPS is set to 20? Could it be set to a larger 
value? Hint: Consider the size of the ip_moptions structure (Figure 12.15). 
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12.5 What happens when a multicast datagram is looped back by IP and is also received by the 
hardware interface on which it is transmitted (i.e., a nonsimplex interface)? 

12.6 Draw a picture of a network with a multihomed host so that a multicast packet sent on one 
interface may be received on the other interface even if the host is not acting as a multicast 
router. 

12.7 Trace the membership add request through the SLIP and loopback interfaces instead of the 
Ethernet interface. 

12.8 How could a process request that the kernel join more than 
IP_MAX_MEMBERSHIPS?

12.9 Computing the checksum on a looped back packet is superfluous. Design a method to 
avoid the checksum computation for loopback packets. 

12.10 How many IP multicast groups could an interface join without reusing an Ethernet 
multicast address? 

12.11 The careful reader might have noticed that in_delmulti assumes that the interface 
has defined an ioctl function when it issues the SIOCDELMULTI request. Why is 
this OK? 

12.12 What happens to the mbuf allocated in ip_getmoptions if an unrecognized option 
is requested? 

12.13 Why is the group membership mechanism separate from the binding mechanism used to 
receive unicast and broadcast datagrams? 
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Chapter 13. IGMP: Internet Group Management 
Protocol

13.1. Introduction 

IGMP conveys group membership information between hosts and routers on a local network. Routers 
periodically multicast IGMP queries to the all-hosts group. Hosts respond to the queries by 
multicasting IGMP report messages. The IGMP specification appears in RFC 1112. Chapter 13 of 
Volume 1 describes the specification of IGMP and provides some examples. 

From an architecture perspective, IGMP is a transport protocol above IP. It has a protocol number (2) 
and its messages are carried in IP datagrams (as with ICMP). IGMP usually isn’t accessed directly by 
a process but, as with ICMP, a process can send and receive IGMP messages through an IGMP 
socket. This feature enables multicast routing daemons to be implemented as user-level processes. 

Figure 13.1 shows the overall organization of the IGMP protocol in Net/3. 

Figure 13.1. Summary of IGMP processing. 
  

 

 

The key to IGMP processing is the collection of in_multi structures shown in the center of Figure 
13.1. An incoming IGMP query causes igmp_input to initialize a countdown timer for each 
in_multi structure. The timers are updated by igmp_fasttimo, which calls 
igmp_sendreport as each timer expires. 

We saw in Chapter 12 that ip_setmoptions calls igmp_joingroup when a new 
in_multi structure is created. igmp_joingroup calls igmp_sendreport to announce 
the new group and enables the group’s timer to schedule a second announcement a short time later. 
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igmp_sendreport takes care of formatting an IGMP message and passing it to 
ip_output.

On the left and right of Figure 13.1 we see that a raw socket can send and receive IGMP messages 
directly. 

13.2. Code Introduction 

The IGMP protocol is implemented in four files listed in Figure 13.2. 

Figure 13.2. Files discussed in this chapter. 

 

 
 

Global Variables

Three new global variables, shown in Figure 13.3, are introduced in this chapter. 

Figure 13.3. Global variables introduced in this chapter. 

 

 
 

Statistics

IGMP statistics are maintained in the igmpstat variables shown in Figure 13.4. 

Figure 13.4. IGMP statistics. 
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Figure 13.5 shows some sample output of these statistics, from the netstat -p igmp 
command on vangogh.cs.berkeley.edu. 

Figure 13.5. Sample IGMP statistics. 

 

 

From Figure 13.5 we can tell that vangogh is attached to a network where IGMP is being used, but 
that vangogh is not joining any multicast groups, since igps_snd_reports is 0. 

SNMP Variables

There is no standard SNMP MIB for IGMP, but [McCloghrie and Farinacci 1994a] describes an 
experimental MIB for IGMP. 

13.3. igmp Structure 

An IGMP message is only 8 bytes long. Figure 13.6 shows the igmp structure used by Net/3. 

Figure 13.6. igmp structure. 

 

 

43-44

A 4-bit version code and a 4-bit type code are contained within igmp_type. Figure 13.7 shows 
the standard values. 

Figure 13.7. IGMP message types. 
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Only version 1 messages are used by Net/3. Multicast routers send type 1 
(IGMP_HOST_MEMBERSHIP_QUERY) messages to solicit membership reports from hosts on 
the local network. The response to a type 1 IGMP message is a type 2 
(IGMP_HOST_MEMBERSHIP_REPORT) message from the hosts reporting their multicast 
membership information. Type 3 messages transport multicast routing information between routers 
(Chapter 14). A host never processes type 3 messages. The remainder of this chapter discusses only 
type 1 and 2 messages. 

45-46

igmp_code is unused in IGMP version 1, and igmp_cksum is the familiar IP checksum 
computed over all 8 bytes of the IGMP message. 

47-48

igmp_group is 0 for queries. For replies, it contains the multicast group being reported. 

Figure 13.8 shows the structure of an IGMP message relative to an IP datagram. 

Figure 13.8. An IGMP message (igmp_omitted). 

 

 

13.4. IGMP protosw Structure 

Figure 13.9 describes the protosw structure for IGMP. 
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Figure 13.9. The IGMP protosw structure. 

 

 

Although it is possible for a process to send raw IP packets through the IGMP protosw entry, in 
this chapter we are concerned only with how the kernel processes IGMP messages. Chapter 32 
discusses how a process can access IGMP using a raw socket. 

There are three events that trigger IGMP processing: 

a local interface has joined a new multicast group (Section 13.5), 
an IGMP timer has expired (Section 13.6), and 
an IGMP query is received (Section 13.7). 

There are also two events that trigger local IGMP processing but do not result in any messages being 
sent: 

an IGMP report is received (Section 13.7), and 
a local interface leaves a multicast group (Section 13.8). 

These five events are discussed in the following sections. 

13.5. Joining a Group: igmp_joingroup Function 

We saw in Chapter 12 that igmp_joingroup is called by in_addmulti when a new 
in_multi structure is created. Subsequent requests to join the same group only increase the 
reference count in the in_multi structure; igmp_joingroup is not called. 
igmp_joingroup is shown in Figure 13.10

 384



ptg11539634

Figure 13.10. igmp_joingroup function. 

 

 

164-178

inm points to the new in_multi structure for the group. If the new group is the all-hosts group, 
or the membership request is for the loopback interface, inm_timer is disabled and 
igmp_joingroup returns. Membership in the all-hosts group is never reported, since every 
multicast host is assumed to be a member of the group. Sending a membership report to the loopback 
interface is unnecessary, since the local host is the only system on the loopback network and it already 
knows its membership status. 

In the remaining cases, a report is sent immediately for the new group, and the group timer is set to a 
random value based on the group. The global flag igmp_timers_are_running is set to 
indicate that at least one timer is enabled. igmp_fasttimo (Section 13.6) examines this variable 
to avoid unnecessary processing. 

When the timer for the new group expires, a second membership report is issued. The duplicate report 
is harmless, but it provides insurance in case the first report is lost or damaged. The report delay is 
computed by IGMP_RANDOM_DELAY (Figure 13.11). 

Figure 13.11. IGMP_RANDOM_DELAY function. 
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59-73

According to RFC 1122, report timers should be set to a random time between 0 and 10 
(IGMP_MAX_HOST_REPORT_DELAY) seconds. Since IGMP timers are decremented five 
(PR_FASTHZ) times per second, IGMP_RANDOM_DELAY must pick a random value between 1 
and 50. If r is the random number computed by adding the total number of IP packets received, the 
host’s primary IP address, and the multicast group, then 

0 (r mod 50) 49 

and 

1 (r mod 50) +1 50 

Zero is avoided because it would disable the timer and no report would be sent. 

13.6. igmp_fasttimo Function 

Before looking at igmp_fasttimo, we need to describe the mechanism used to traverse the 
in_multi structures. 

To locate each in_multi structure, Net/3 must traverse the in_multi list for each interface. 
During a traversal, an in_multistep structure (shown in Figure 13.12) records the position. 

Figure 13.12. in_multistep function. 

 

 

123-126

i_ia points to the next in_ifaddr interface structure and i_inm points to the next
in_multi structure for the current interface. 

The IN_FIRST_MULTI and IN_NEXT_MULTI macros (shown in Figure 13.13) traverse the 
lists. 
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Figure 13.13. IN_FIRST_MULTI and IN_NEXT_MULTI structures. 

 

 

154-169

If the in_multi list has more entries, i_inm is advanced to the next entry. When 
IN_NEXT_MULTI reaches the end of a multicast list, i_ia is advanced to the next interface and 
i_inm to the first in_multi structure associated with the interface. If the interface has no 
multicast structures, the while loop continues to advance through the interface list until all 
interfaces have been searched. 

170-177

The in_multistep array is initialized to point to the first in_ifaddr structure in the 
in_ifaddr list and i_inm is set to null. IN_NEXT_MULTI finds the first in_multi 
structure. 

We know from Figure 13.9 that igmp_fasttimo is the fast timeout function for IGMP and is 
called five times per second. igmp_fasttimo (shown in Figure 13.14) decrements multicast 
report timers and sends a report when the timer expires. 
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Figure 13.14. igmp_fasttimo function. 

 

 

187-198

If igmp_timers_are_running is false, igmp_fasttimo returns immediately instead 
of wasting time examining each timer. 

199-213

igmp_fasttimo resets the running flag and then initializes step and inm with 
IN_FIRST_MULTI. The igmp_fasttimo function locates each in_multi structure 
with the while loop and the IN_NEXT_MULTI macro. For each structure: 

If the timer is 0, there is nothing to be done. 
If the timer is nonzero, it is decremented. If it reaches 0, an IGMP membership report is sent 
for the group. 
If the timer is still nonzero, then at least one timer is still running, so 
igmp_timers_are_running is set to 1. 

igmp_sendreport Function

The igmp_sendreport function (shown in Figure 13.15) constructs and sends an IGMP report 
message for a single multicast group. 
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Figure 13.15. igmp_sendreport function. 

 

 

214-232

The single argument inm points to the in_multi structure for the group being reported. 
igmp_sendreport allocates a new mbuf and prepares it for an IGMP message. 
igmp_sendreport leaves room for a link-layer header and sets the length of the mbuf and 
packet to the length of an IGMP message. 

233-245

The IP header and IGMP message is constructed one field at a time. The source address for the 
datagram is set to INADDR_ANY, and the destination address is the multicast group being reported. 
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ip_output replaces INADDR_ANY with the unicast address of the outgoing interface. Every 
member of the group receives the report as does every multicast router (since multicast routers receive 
all IP multicasts). 

246-260

Finally, igmp_sendreport constructs an ip_moptions structure to go along with the 
message sent to ip_output. The interface associated with the in_multi structure is selected 
as the outgoing interface; the TTL is set to 1 to keep the report on the local network; and, if the local 
system is configured as a router, multicast loopback is enabled for this request. 

The process-level multicast router must hear the membership reports. In Section 
12.14 we saw that IGMP datagrams are always accepted when the system is 
configured as a multicast router. Through the normal transport demultiplexing code, 
the messages are passed to igmp_input, the pr_input function for IGMP 
(Figure 13.9). 

13.7. Input Processing: igmp_input Function 

In Section 12.14 we described the multicast processing portion of ipintr. We saw that a multicast 
router accepts any IGMP message, but a multicast host accepts only IGMP messages that arrive on an 
interface that is a member of the destination multicast group (i.e., queries and membership reports for 
which the receiving interface is a member). 

The accepted messages are passed to igmp_input by the standard protocol demultiplexing 
mechanism. The beginning and end of igmp_input are shown in Figure 13.16. The code for each 
IGMP message type is described in following sections. 
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Figure 13.16. igmp_input function.
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Validate IGMP message

52-96

The function ipintr passes m, a pointer to the received packet (stored in an mbuf), and 
iphlen, the size of the IP header in the datagram. 

The datagram must be large enough to contain an IGMP message (IGMP_MINLEN), must be 
contained within a standard mbuf header (m_pullup), and must have a correct IGMP checksum. If 
any errors are found, they are counted, the datagram is silently discarded, and igmp_input 
returns. 

The body of igmp_input processes the validated messages based on the code in igmp_type. 
Remember from Figure 13.6 that igmp_type includes a version code and a type code. The 
switch statement is based on the combined value stored in igmp_type (Figure 13.7). Each case 
is described separately in the following sections. 

Pass IGMP messages to raw IP

157-163

There is no default case for the switch statement. Any valid message (i.e., one that is properly 
formed) is passed to rip_input where it is delivered to any process listening for IGMP messages. 
IGMP messages with versions or types that are unrecognized by the kernel can be processed or 
discarded by the listening processes. 

The mrouted program depends on this call to rip_input so that it receives 
membership queries and reports. 

Membership Query: IGMP_HOST_MEMBERSHIP_QUERY

RFC 1075 recommends that multicast routers issue an IGMP membership query at least once every 
120 seconds. The query is sent to group 224.0.0.1 (the all-hosts group). Figure 13.17 shows how the 
message is processed by a host. 
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Figure 13.17. Input processing of the IGMP query message. 

 

 

97-122

Queries that arrive on the loopback interface are silently discarded (Exercise 13.1). Queries by 
definition are sent to the all-hosts group. If a query arrives addressed to a different address, it is 
counted in igps_rcv_badqueries and discarded. 

The receipt of a query message does not trigger an immediate flurry of IGMP membership reports. 
Instead, igmp_input resets the membership timers for each group associated with the interface on 
which the query was received to a random value with IGMP_RANDOM_DELAY. When the timer 
for a group expires, igmp_fasttimo sends a membership report. Meanwhile, the same activity 
is occurring on all the other hosts that received the IGMP query. As soon as the random timer for a 
particular group expires on one host, it is multicast to that group. This report cancels the timers on the 
other hosts so that only one report is multicast to the network. The routers, as well as any other 
members of the group, receive the report. 

The one exception to this scenario is the all-hosts group. A timer is never set for this group and a 
report is never sent. 

Membership Report: IGMP_HOST_MEMBERSHIP_REPORT

The receipt of an IGMP membership report is one of the two events we mentioned in Section 13.1 that 
does not result in an IGMP message. The effect of the message is local to the interface on which it was 
received. Figure 13.18 shows the message processing. 
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Figure 13.18. Input processing of the IGMP report message. 

 

 

123-146

Reports sent to the loopback interface are discarded, as are membership reports sent to the incorrect 
multicast group. That is, the message must be addressed to the group identified within the message. 

The source address of an incompletely initialized host might not include a network or host number (or 
both). igmp_report looks at the class A network portion of the address, which can only be 0 
when the network and subnet portions of the address are 0. If this is the case, the source address is set 
to the subnet address, which includes the network ID and subnet ID, of the receiving interface. The 
only reason for doing this is to inform a process-level daemon of the receiving interface, which is 
identified by the subnet number. 

If the receiving interface belongs to the group being reported, the associated report timer is reset to 0. 
In this way the first report sent to the group stops any other hosts from issuing a report. It is only 
necessary for the router to know that at least one interface on the network is a member of the group. 
The router does not need to maintain an explicit membership list or even a counter. 

13.8. Leaving a Group: igmp_leavegroup Function 

We saw in Chapter 12 that in_delmulti calls igmp_leavegroup when the last reference 
count in the associated in_multi structure drops to 0. 
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Figure 13.19. igmp_leavegroup function. 

 

 

179-186

As we can see, IGMP takes no action when an interface leaves a group. No explicit notification is 
sent the next time a multicast router issues an IGMP query, the interface does not generate an IGMP 
report for this group. If no report is generated for a group, the multicast router assumes that all the 
interfaces have left the group and stops forwarding multicast packets for the group to the network. 

If the interface leaves the group while a report is pending (i.e., the group’s report timer is running), the 
report is never sent, since the timer is discarded by in_delmulti (Figure 12.36) along with the 
in_multi structure for the group when icmp_leavegroup returns. 

13.9. Summary 

In this chapter we described IGMP, which communicates IP multicast membership information 
between hosts and routers on a single network. IGMP membership reports are generated when an 
interface joins a group, and on demand when multicast routers issue an IGMP report query message. 

The design of IGMP minimizes the number of messages required to communicate membership 
information: 

Hosts announce their membership when they join a group. 
Response to membership queries are delayed for a random interval, and the first response 
suppresses any others. 
Hosts are silent when they leave a group. 
Membership queries are sent no more than once per minute. 

Multicast routers share the IGMP information they collect with each other (Chapter 14) to route 
multicast datagrams toward remote members of the multicast destination group. 

Exercises

13.1 Why isn’t it necessary to respond to an IGMP query on the loopback interface? 

13.2 Verify the assumption stated on lines 226 to 229 in Figure 13.15. 

13.3 Is it necessary to set random delays for membership queries that arrive on a point-to-point 
network interface? 
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Chapter 14. IP Multicast Routing 

14.1. Introduction 

The previous two chapters discussed multicasting on a single network. In this chapter we look at 
multicasting across an entire internet. We describe the operation of the mrouted program, which 
computes the multicast routing tables, and the kernel functions that forward multicast datagrams 
between networks. 

Technically, multicast packets are forwarded. In this chapter we assume that every 
multicast packet contains an entire datagram (i.e., there are no fragments), so we use 
the term datagram exclusively. Net/3 forwards IP fragments as well as IP datagrams. 

Figure 14.1 shows several versions of mrouted and how they correspond to the BSD releases. The 
mrouted releases include both the user-level daemons and the kernel-level multicast code. 

Figure 14.1. mrouted and IP multicasting releases. 

 

 

IP multicast technology is an active area of research and development. This chapter discusses version 
2.0 of the multicast software, which is included in Net/3 but is considered an obsolete implementation. 
Version 3.3 was released too late to be discussed fully in this text, but we will point out various 3.3 
features along the way. 

Because commercial multicast routers are not widely deployed, multicast networks are often 
constructed using multicast tunnels, which connect two multicast routers over a standard IP unicast 
internet. Multicast tunnels are supported by Net/3 and are constructed with the Loose Source Record 
Route (LSRR) option (Section 9.6). An improved tunneling technique encapsulates the IP multicast 
datagram within an IP unicast datagram and is supported by version 3.3 of the multicast code but is 
not supported by Net/3. 

As in Chapter 12, we use the generic term transport protocols to refer to the protocols that send and 
receive multicast datagrams, but UDP is the only Internet protocol that supports multicasting. 

14.2. Code Introduction 

The three files listed in Figure 14.2 are discussed in this chapter. 
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Figure 14.2. Files discussed in this chapter. 

 

 
 

Global Variables

The global variables used by the multicast routing code are shown in Figure 14.3. 

Figure 14.3. Global variables introduced in this chapter. 

 

 
 

Statistics

All the statistics collected by the multicast routing code are found in the mrtstat structure 
described by Figure 14.4. Figure 14.5 shows some sample output of these statistics, from the 
netstat -gs command. 

Figure 14.4. Statistics collected in this chapter. 
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Figure 14.5. Sample IP multicast routing statistics. 

 

 

These statistics are from a system with two physical interfaces and one tunnel interface. These 
statistics show that the multicast route is found in the cache 98% of the time. The group address cache 
is less effective with only a 34% hit rate. The route cache is described with Figure 14.34 and the group 
address cache with Figure 14.21. 

SNMP Variables

There is no standard SNMP MIB for multicast routing, but [McCloghrie and Farinacci 1994a] and 
[McCloghrie and Farinacci 1994b] describe some experimental MIBs for multicast routers. 

14.3. Multicast Output Processing Revisited 

In Section 12.15 we described how an interface is selected for an outgoing multicast datagram. We 
saw that ip_output is passed an explicit interface in the ip_moptions structure, or 
ip_output looks up the destination group in the routing tables and uses the interface returned in 
the route entry. 

If, after selecting an outgoing interface, ip_output loops back the datagram, it is queued for input 
processing on the interface selected for output and is considered for forwarding when it is processed 
by ipintr. Figure 14.6 illustrates this process. 

Figure 14.6. Multicast output processing with loopback. 
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In Figure 14.6 the dashed arrows represent the original outgoing datagram, which in this example is 
multicast on a local Ethernet. The copy created by ip_mloopback is represented by the thin 
arrows; this copy is passed to the transport protocols for input. The third copy is created when 
ip_mforward decides to forward the datagram through another interface on the system. The 
thickest arrows in Figure 14.6 represents the third copy, which in this example is sent on a multicast 
tunnel. 

If the datagram is not looped back, ip_output passes it directly to ip_mforward, where it 
is duplicated and also processed as if it were received on the interface that ip_output selected. 
This process is shown in Figure 14.7. 

Figure 14.7. Multicast output processing with no loopback. 

 

 

Whenever ip_mforward calls ip_output to send a multicast datagram, it sets the 
IP_FORWARDING flag so that ip_output does not pass the datagram back to 
ip_mforward, which would create an infinite loop. 

ip_mloopback was described with Figure 12.42. ip_mforward is described in Section 14.8. 

14.4. mrouted Daemon 

Multicast routing is enabled and managed by a user-level process: the mrouted daemon, 
mrouted implements the router portion of the IGMP protocol and communicates with other 
multicast routers to implement multicast routing between networks. The routing algorithms are 
implemented in mrouted, but the multicast routing tables are maintained in the kernel, which 
forwards the datagrams. 

In this text we describe only the kernel data structures and functions that support mrouted w e do 
not describe mrouted itself. We describe the Truncated Reverse Path Broadcast (TRPB) algorithm 
[Deering and Cheriton 1990], used to select routes for multicast datagrams, and the Distance Vector 
Multicast Routing Protocol (DVMRP), used to convey information between multicast routers, in 
enough detail to make sense of the kernel multicast code. 

 399

RFC 1075 [Waitzman, Partridge, and Deering 1988] describes an old version of DVMRP. mrouted 
implements a newer version of DVMRP, which is not yet documented in an RFC. The best 
documentation for the current algorithm and protocol is the source code release for mrouted. 
Appendix B describes where the source code can be obtained. 
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The mrouted daemon communicates with the kernel by setting options on an IGMP socket 
(Chapter 32). The options are summarized in Figure 14.8. 

Figure 14.8. Multicast routing socket options. 

 

 

The socket options shown in Figure 14.8 are passed to rip_ctloutput (Section 32.8) by the 
setsockopt system call. Figure 14.9 shows the portion of rip_ctloutput that handles the 
DVMRP_xxx options. 

Figure 14.9. rip_ctloutput function: DVMRP_xxx socket options. 

 

 

173-187

When setsockopt is called, op equals PRCO_SETOPT and all the options are passed to the 
ip_mrouter_cmd function. For the getsockopt system call, op equals PRCO_GETOPT 
and EINVAL is returned for all the options. 

Figure 14.10 shows the ip_mrouter_cmd function. 
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Figure 14.10. ip_mrouter_cmd function. 
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These "options" are more like commands, since they cause the kernel to update various data 
structures. We use the term command throughout the rest of this chapter to emphasize this fact. 

84-92

The first command issued by mrouted must be DVMRP_INIT. Subsequent commands must 
come from the same socket as the DVMRP_INIT command. EACCES is returned when other 
commands are issued on a different socket. 

94-142

Each case in the switch checks to see if the right amount of data was included with the 
command and then calls the matching function. If the command is not recognized, EOPNOTSUPP is 
returned. Any error returned from the matching function is posted in error and returned at the end 
of the function. 

Figure 14.11 shows ip_mrouter_init, which is called when mrouted issues the 
DVMRP_INIT command during initialization. 

Figure 14.11. ip_mrouter_init function: DVMRP_INIT command. 

 

 

146-157

If the command is issued on something other than a raw IGMP socket, or if DVMRP_INIT has 
already been set, EOPNOTSUPP or EADDRINUSE are returned respectively. A pointer to the 
socket on which the initialization command is issued is saved in the global ip_mrouter. 
Subsequent commands must be issued on this socket. This prevents the concurrent operation of more 
than one instance of mrouted.

The remainder of the DVMRP_xxx commands are described in the following sections. 

14.5. Virtual Interfaces 

When operating as a multicast router, Net/3 accepts incoming multicast datagrams, duplicates them 
and forwards the copies through one or more interfaces. In this way, the datagram is forwarded to 
other multicast routers on the internet. 
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An outgoing interface can be a physical interface or it can be a multicast tunnel. Each end of the 
multicast tunnel is associated with a physical interface on a multicast router. Multicast tunnels allow 
two multicast routers to exchange multicast datagrams even when they are separated by routers that 
cannot forward multicast datagrams. Figure 14.12 shows two multicast routers connected by a 
multicast tunnel. 

Figure 14.12. A multicast tunnel. 

 

 

In Figure 14.12, the source host HS on network A is multicasting a datagram to group G. The only 
member of group G is on network B, which is connected to network A by a multicast tunnel. Router A 
receives the multicast (because multicast routers receive all multicasts), consults its multicast routing 
tables, and forwards the datagram through the multicast tunnel. 

The tunnel starts on the physical interface on router A identified by the IP unicast address Ts. The 
tunnel ends on the physical interface on router B identified by the IP unicast address, T .e  The tunnel 
itself is an arbitrarily complex collection of networks connected by IP unicast routers that implement 
the LSRR option. Figure 14.13 shows how an IP LSRR option implements the multicast tunnel. 

Figure 14.13. LSRR multicast tunnel options. 

 

 

The first line of Figure 14.13 shows the datagram sent by HS as a multicast on network A. Router A 
receives the datagram because multicast routers receive all multicasts on their locally attached 
networks. 

To send the datagram through the tunnel, router A inserts an LSRR option in the IP header. The 
second line shows the datagram as it leaves A on the tunnel. The first address in the LSRR option is 
the source address of the tunnel and the second address is the destination group. The destination of the 
datagram is Te the other end of the tunnel. The LSRR offset points to the destination group.  

The tunneled datagram is forwarded through the internet until it reaches the other end of the tunnel on 
router B. 
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The third line of the figure shows the datagram after it is processed by ip_dooptions on router 
B. Recall from Chapter 9 that ip_dooptions processes the LSRR option before the destination 
address of the datagram is examined by ipintr. Since the destination address of the datagram (Te) 
matches one of the interfaces on router B, ip_dooptions copies the address identified by the 
option offset (G in this example) into the destination field of the IP header. In the option, G is replaced 
with the address returned by ip_rtaddr, which normally selects the outgoing interface for the 
datagram based on the IP destination address (G in this case). This address is irrelevant, since 
ip_mforward discards the entire option. Finally, ip_dooptions advances the option offset. 

The fourth line in Figure 14.13 shows the datagram after ipintr calls ip_mforward, where 
the LSRR option is recognized and removed from the datagram header. The resulting datagram looks 
like the original multicast datagram and is processed by ip_mforward, which in our example 
forwards it onto network B as a multicast datagram where it is received by HG. 

Multicast tunnels constructed with LSRR options are obsolete. Since the March 1993 release of 
mrouted, tunnels have been constructed by prepending another IP header to the IP multicast 
datagram. The protocol in the new IP header is set to 4 to indicate that the contents of the packet is 
another IP packet. This value is documented in RFC 1700 as the "IP in IP" protocol. LSRR tunnels are 
supported in newer versions of mrouted for backward compatibility. 

Virtual Interface Table

For both physical interfaces and tunnel interfaces, the kernel maintains an entry in a virtual interface 
table, which contains information that is used only for multicasting. Each virtual interface is described 
by a vif structure (Figure 14.14). The global variable viftable is an array of these structures. 
An index to the table is stored in a vifi_t variable, which is an unsigned short integer. 

Figure 14.14. vif structure. 

 

 

105-110

The only flag defined for v_flags is VIFF_TUNNEL. When set, the interface is a tunnel to a 
remote multicast router. When not set, the interface is a physical interface on the local system. 
v_threshold is the multicast threshold, which we described in Section 12.9. v_lcl_addr is 
the unicast IP address of the local interface associated with this virtual interface. v_rmt_addr is 
the unicast IP address of the remote end of an IP multicast tunnel. Either v_lcl_addr or 
v_rmt_addr is nonzero, but never both. For physical interfaces, v_ifp is nonnull and points to 
the ifnet structure of the local interface. For tunnels, v_ifp is null. 
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The list of groups with members on the attached interface is kept as an array of IP multicast group 
addresses pointed to by v_lcl_grps, which is always null for tunnels. The size of the array is in 
v_lcl_grps_max, and the number of entries that are used is in v_lcl_grps_n. The 
array grows as needed to accommodate the group membership list. v_cached_group and 
v_cached_result implement a one-entry cache, which contain the group and result of the 
previous lookup. 

Figure 14.15 illustrates the viftable, which has 32 (MAXVIFS) entries. viftable[2] is 
the last entry in use, so numvifs is 3. The size of the table is fixed when the kernel is compiled. 
Several members of the vif structure in the first entry of the table are shown. v_ifp points to an 
ifnet structure, v_lcl_grps points to an array of in_addr structures. The array has 32 
(v_lcl_grps_max) entries, of which only 4 (v_lcl_grps_n) are in use. 

Figure 14.15. viftable array. 

 

 

mrouted maintains viftable through the DVMRP_ADD_VIF and DVMRP_DEL_VIF 
commands. Normally all multicast-capable interfaces on the local system are added to the table when 
mrouted begins. Multicast tunnels are added when mrouted reads its configuration file, usually 
/etc/mrouted.conf. Commands in this file can also delete physical interfaces from the 
virtual interface table or change the multicast information associated with the interfaces. 

A vifctl structure (Figure 14.16) is passed by mrouted to the kernel with the 
DVMRP_ADD_VIF command. It instructs the kernel to add an interface to the table of virtual 
interfaces. 

 405



ptg11539634

Figure 14.16. vifctl structure. 

 

 

76-82

vifc_vifi identifies the index of the virtual interface within viftable. The remaining four 
members, vifc_flags, vifc_threshold, vifc_lcl_addr, and 
vifc_rmt_addr, are copied into the vif structure by the add_vif function. 

add_vif Function

Figure 14.17 shows the add_vif function. 
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Figure 14.17. add_vif function: DVMRP_ADD_VIF command. 

 

 
 

Validate index

202-216

 407

If the table index specified by mrouted in vifc_vifi is too large, or the table entry is already 
in use, EINVAL or EADDRINUSE is returned respectively. 



ptg11539634

 408

Locate physical interface

217-221

ifa_ifwithaddr takes the unicast IP address in vifc_lcl_addr and returns a pointer to 
the associated ifnet structure. This identifies the physical interface to be used for this virtual 
interface. If there is no matching interface, EADDRNOTAVAIL is returned. 

Configure tunnel interface

222-224

For a tunnel, the remote end of the tunnel is copied from the vifctl structure to the vif structure 
in the interface table. 

Configure physical interface

225-243

For a physical interface, the link-level driver must support multicasting. The SIOCADDMULTI 
command used with INADDR_ANY configures the interface to begin receiving all IP multicast 
datagrams (Figure 12.32) because it is a multicast router. Incoming datagrams are forwarded when 
ipintr passes them to ip_mforward.

Save multicast information

244-253

The remaining interface information is copied from the vifctl structure to the vif structure. If 
necessary, numvifs is updated to record the number of virtual interfaces in use. 

del_vif Function

The function del_vif, shown in Figure 14.18, deletes entries from the virtual interface table. It is 
called when mrouted sets the DVMRP_DEL_VIF command. 
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Figure 14.18. del_vif function: DVMRP_DEL_VIF command. 

 

 
 

Validate index

257-268

If the index passed to del_vif is greater than the largest index in use or it references an entry that 
is not in use, EINVAL or EADDRNOTAVAIL is returned respectively. 

Delete interface

269-278

For a physical interface, the local group table is released, and the reception of all multicast datagrams 
is disabled by SIOCDELMULTI. The entry in viftable is cleared by bzero.

Adjust interface count

279-286

The for loop searches for the first active entry in the table starting at the largest previously active 
entry and working back toward the first entry. For unused entries, the s_addr member of 
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v_lcl_addr (an in_addr structure) is 0. numvifs is updated accordingly and the function 
returns. 

14.6. IGMP Revisited 

Chapter 13 focused on the host part of the IGMP protocol. mrouted implements the router portion 
of this protocol. For every physical interface, mrouted must keep track of which multicast groups 
have members on the attached network. mrouted multicasts an 
IGMP_HOST_MEMBERSHIP_QUERY datagram every 120 seconds and compiles the resulting 
IGMP_HOST_MEMBERSHIP_REPORT datagrams into a membership array associated with 
each network. This array is not the same as the membership list we described in Chapter 13. 

From the information collected, mrouted constructs the multicast routing tables. The list of groups 
is also used to suppress multicasts to areas of the multicast internet that do not have members of the 
destination group. 

The membership array is maintained only for physical interfaces. Tunnels are point-to-point interfaces 
to another multicast router, so no group membership information is needed. 

We saw in Figure 14.14 that v_lcl_grps points to an array of IP multicast groups. mrouted 
maintains this list with the DVMRP_ADD_LGRP and DVMRP_DEL_LGRP commands. An 
Igrplctl (Figure 14.19) structure is passed with both commands. 

Figure 14.19. lgrplctl structure. 

 

 

87-90

The {interface, group} pair is identified by lgc_vifi and lgc_gaddr. The interface index 
(lgc_vifi, an unsigned short) identifies a virtual interface, not a physical interface. 

When an IGMP_HOST_MEMBERSHIP_REPORT datagram is received, the functions shown in 
Figure 14.20 are called. 
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Figure 14.20. IGMP report processing. 

 

 
 

add_lgrp Function

mrouted examines the source address of an incoming IGMP report to determine which subnet and 
therefore which interface the report arrived on. Based on this information, mrouted sets the 
DVMRP_ADD_LGRP command for the interface to update the membership table in the kernel. This 
information is also fed into the multicast routing algorithm to update the routing tables. Figure 14.21 
shows the add_lgrp function. 

 411



ptg11539634

Figure 14.21. add_lgrp function: process DVMRP_ADD_LGRP command. 

 

 
 

Validate add request

291-301

If the request identifies an invalid interface, EINVAL is returned. If the interface is not in use or is a 
tunnel, EADDRNOTAVAIL is returned. 
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If needed, expand group array

302-326

If the new group won’t fit in the current group array, a new array is allocated. The first time 
add_lgrp is called for an interface, an array is allocated to hold 32 groups. 

Each time the array fills, add_lgrp allocates a new array of twice the previous size. The new array 
is allocated by malloc, cleared by bzero, and filled by copying the old array into the new one 
with bcopy. The maximum number of entries, v_lcl_grps_max, is updated, the old array 
(if any) is released, and the new array is attached to the vif entry with v_lcl_grps.

The "paranoid" comment points out there is no guarantee that the memory allocated by malloc 
contains all 0s. 

Add new group

327-332

The new group is copied into the next available entry and if the cache already contains the new group, 
the cache is marked as valid. 

The lookup cache contains an address, v_cached_group, and a cached lookup result, 
v_cached_result. The grplst_member function always consults the cache before 
searching the membership array. If the given group matches v_cached_group, the cached 
result is returned; otherwise the membership array is searched. 

del_lgrp Function

Group information is expired for each interface when no membership report has been received for the 
group within 270 seconds. mrouted maintains the appropriate timers and issues the 
DVMRP_DEL_LGRP command when the information expires. Figure 14.22 shows del_lgrp.
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Figure 14.22. del_lgrp function: process DVMRP_DEL_LGRP command. 

 

 
 

Validate interface index

337-347

If the request identifies an invalid interface, EINVAL is returned. If the interface is not in use or is a 
tunnel, EADDRNOTAVAIL is returned. 

Update lookup cache

348-350

If the group to be deleted is in the cache, the lookup result is set to 0 (false). 

Delete group

351-364

EADDRNOTAVAIL is posted in error in case the group is not found in the membership list. The 
for loop searches the membership array associated with the interface. If same (a macro that uses 
bcmp to compare the two addresses) is true, error is cleared and the group count is decremented. 
bcopy shifts the subsequent array entries down to delete the group and del_lgrp breaks out of 
the loop. 
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If the loop completes without finding a match, EADDRNOTAVAIL is returned; otherwise 0 is 
returned. 

grplst_member Function

During multicast forwarding, the membership array is consulted to avoid sending datagrams on a 
network when no member of the destination group is present. grplst_member, shown in 
Figure 14.23, searches the list looking for the given group address. 

Figure 14.23. grplst_member function. 

 

 
 

Check the cache

368-379

If the requested group is located in the cache, the cached result is returned and the membership array 
is not searched. 

Search the membership array

380-393

A linear search determines if the group is in the array. If it is found, the cache is updated to record the 
match and one is returned. If it is not found, the cache is updated to record the miss and 0 is returned. 
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14.7. Multicast Routing 

As we mentioned at the start of this chapter, we will not be presenting the TRPB algorithm 
implemented by mrouted, but we do need to provide a general overview of the mechanism to 
describe the multicast routing table and the multicast routing functions in the kernel. Figure 14.24 
shows the sample multicast network that we use to illustrate the algorithms. 

Figure 14.24. Sample multicast network. 

 

 

In Figure 14.24, routers are shown as boxes and the ellipses are the multicast networks attached to the 
routers. For example, router D can multicast on network D and C. Router C can multicast to network 
C, to routers A and B through point-to-point interfaces, and to E through a multicast tunnel. 

The simplest approach to multicast routing is to select a subset of the internet topology that forms a 
spanning tree. If each router forwards multicasts along the spanning tree, every router eventually 
receives the datagram. Figure 14.25 shows one spanning tree for our sample network, where host S on 
network A represents the source of a multicast datagram. 

Figure 14.25. Spanning tree for network A. 

 

 

For a discussion of spanning trees, see [Tanenbaum 1989] or [Perlman 1992]. 

We constructed the tree based on the shortest reverse path from every network back to the source in 
network A. In Figure 14.25, the link between routers B and C is omitted to form the spanning tree. 
The arrows between the source and router A, and between router C and D, emphasize that the 
multicast network is part of the spanning tree. 
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If the same spanning tree were used to forward a datagram from network C, the datagram would be 
forwarded along a longer path than needed to get to a recipient on network B. The algorithm described 
in RFC 1075 computes a separate spanning tree for each potential source network to avoid this 
problem. The routing tables contain a network number and subnet mask for each route, so that a single 
route applies to any host within the source subnet. 

Because each spanning tree is constructed to provide the shortest reverse path to the source of the 
datagram, and every network receives every multicast datagram, this process is called reverse path 
broadcasting or RPB. 

The RPB protocol has no knowledge of multicast group membership, so many datagrams are 
unnecessarily forwarded to networks that have no members in the destination group. If, in addition to 
computing the spanning trees, the routing algorithm records which networks are leaves and is aware of 
the group membership on each network, then routers attached to leaf networks can avoid forwarding 
datagrams onto the network when there is no member of the destination group present. This is called 
truncated reverse path broadcasting (TRPB), and is implemented by version 2.0 of mrouted with 
the help of IGMP to keep track of membership in the leaf networks. 

Figure 14.26 shows TRPB applied to a multicast sent from a source on network C and with a member 
of the destination group on network B. 

Figure 14.26. TRPB routing for network C. 

 

 

We’ll use Figure 14.26 to illustrate the terms used in the Net/3 multicast routing table. In this example, 
the shaded networks and routers receive a copy of the multicast datagram sent from the source on 
network C. The link between A and B is not part of the spanning tree and C does not have a link to D, 
since the multicast sent by the source is received directly by C and D. 

In this figure, networks A, B, D, and E are leaf networks. Router C receives the multicast and 
forwards it through the interfaces attached to routers A, B, and E even though sending it to A and E 
is wasted effort. This is a major weakness of the TRPB algorithm. 

The interface associated with network C on router C is called the parent because it is the interface on 
which router C expects to receive multicasts originating from network C. The interfaces from router C 
to routers A, B, and E, are child interfaces. For router A, the point-to-point interface is the parent for 
the source packets from C and the interface for network A is a child. Interfaces are identified as a 
parent or as a child relative to the source of the datagram. Multicast datagrams are forwarded only to 
the associated child interfaces, and never to the parent interface. 

Continuing with the example, networks A, D, and E are not shaded because they are leaf networks 
without members of the destination group, so the spanning tree is truncated at the routers and the 
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datagram is not forwarded onto these networks. Router B forwards the datagram onto network B, 
since there is a member of the destination group on the network. To implement the truncation 
algorithm, each multicast router that receives the datagram consults the group table associated with 
every virtual interface in the router’s viftable.

The final refinement to the multicast routing algorithm is called reverse path multicasting (RPM). The 
goal of RPM is to prune each spanning tree and avoid sending datagrams along branches of the tree 
that do not contain a member of the destination group. In Figure 14.26, RPM would prevent router C 
from sending a datagram to A and E, since there is no member of the destination group in those 
branches of the tree. Version 3.3 of mrouted implements RPM. 

Figure 14.27 shows our example network, but this time only the routers and networks reached when 
the datagram is routed by RPM are shaded. 

Figure 14.27. RPM routing for network C. 

 

 

To compute the routing tables corresponding to the spanning trees we described, the multicast routers 
communicate with adjacent multicast routers to discover the multicast internet topology and the 
location of multicast group members. In Net/3, DVMRP is used for this communication. DVMRP 
messages are transmitted as IGMP datagrams and are sent to the multicast group 224.0.0.4, which is 
reserved for DVMRP communication (Figure 12.1). 

In Figure 12.39, we saw that incoming IGMP packets are always accepted by a multicast router. They 
are passed to igmp_input, to rip_input, and then read by mrouted on a raw IGMP 
socket. mrouted sends DVMRP messages to other multicast routers on the same raw IGMP socket. 

For more information about RPB, TRPB, RPM, and the DVMRP messages that are needed to 
implement these algorithms, see [Deering and Cheriton 1990] and the source code release of 
mrouted.

There are other multicast routing protocols in use on the Internet. Proteon routers implement the 
MOSPF protocol described in RFC 1584 [Moy 1994]. PIM (Protocol Independent Multicasting) is 
implemented by Cisco routers, starting with Release 10.2 of their operating software. PIM is described 
in [Deering et al. 1994]. 

Multicast Routing Table

We can now describe the implementation of the multicast routing tables in Net/3. The kernel’s 
multicast routing table is maintained as a hash table with 64 entries (MRTHASHSIZ). The table is 
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kept in the global array mrttable, and each entry points to a linked list of mrt structures, shown 
in Figure 14.28. 

Figure 14.28. mrt structure. 

 

 

120-127

mrtc_origin and mrtc_originmask identify an entry in the table. mrtc_parent is 
the index of the virtual interface on which all multicast datagrams from the origin are expected. The 
outgoing interfaces are identified within mrtc_children, which is a bitmap. Outgoing 
interfaces that are also leaves in the multicast routing tree are identified in mrtc_leaves, which 
is also a bitmap. The last member, mrt_next, implements a linked list in case multiple routes 
hash to the same array entry. 

Figure 14.29 shows the organization of the multicast routing table. Each mrt structure is placed in 
the hash chain that corresponds to return value from the nethash function shown in Figure 14.31. 

Figure 14.29. Multicast routing table. 

 

 

The multicast routing table maintained by the kernel is a subset of the routing table maintained within 
mrouted and contains enough information to support multicast forwarding within the kernel. 
Updates to the kernel table are sent with the DVMRP_ADD_MRT command, which includes the 
mrtctl structure shown in Figure 14.30. 
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Figure 14.30. mrtctl structure. 

 

 

95-101

The five members of the mrtctl structure carry the information we have already described (Figure 
14.28) between mrouted and the kernel. 

The multicast routing table is keyed by the source IP address of the multicast datagram. nethash 
(Figure 14.31) implements the hashing algorithm used for the table. It accepts the source IP address 
and returns a value between 0 and 63 (MRTHASHSIZ —1). 

Figure 14.31. nethash function. 

 

 

398-407

in_netof returns in with the host portion set to all 0s leaving only the class A, B, or C network 
of the sending host in n. The result is shifted to the right until the low-order 8 bits are nonzero. 
MRTHASHMOD is 

   #define MRTHASHMOD(h)    ((h) & (MRTHASHSIZ - 1)) 
 

The low-order 8 bits are logically ANDed with 63, leaving only the low-order 6 bits, which is an 
integer in the range 0 to 63. 

Doing two function calls (nethash and in_netof) to calculate a hash value is 
an expensive algorithm to compute a hash for a 32-bit address. 
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del_mrt Function

The mrouted daemon adds and deletes entries in the kernel’s multicast routing table through the 
DVMRP_ADD_MRT and DVMRP_DEL_MRT commands. Figure 14.32 shows the del_mrt 
function. 

Figure 14.32. del_mrt function: process DVMRP_DEL_MRT command. 

 

 
 

Find route entry

451-462

The for loop starts at the entry identified by hash (initialized in its declaration from nethash). 
If the entry is not located, ESRCH is returned. 

Delete route entry

463-473

If the entry was stored in the cache, the cache is invalidated. The entry is unlinked from the hash chain 
and released. The if statement is needed to handle the special case when the matched entry is at the 
front of the list. 

add_mrt Function

The add_mrt function is shown in Figure 14.33. 
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Figure 14.33. add_mrt function: process DVMRP_ADD_MRT command. 

 

 
 

Update existing route

411-427

If the requested route is already in the routing table, the new information is copied into the route and 
add_mrt returns. 

Allocate new route

428-447

An mrt structure is constructed in a newly allocated mbuf with the information from mrtctl 
structure passed with the add request. The hash index is computed from mrtc_origin, and the 
new route is inserted as the first entry on the hash chain. 
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mrtfind Function

The multicast routing table is searched with the mrtfind function. The source of the datagram is 
passed to mrtfind, which returns a pointer to the matching mrt structure, or a null pointer if 
there is no match. 

Figure 14.34. mrtfind function. 

 

 
 

Check route lookup cache

477-488

The given source IP address (origin) is logically ANDed with the origin mask in the cache. If the 
result matches cached_origin, the cached entry is returned. 

Check the hash table

489-501

nethash returns the hash index for the route entry. The for loop searches the hash chain for a 
matching route. When a match is found, the cache is updated and a pointer to the route is returned. If a 
match is not found, a null pointer is returned. 
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14.8. Multicast Forwarding: ip_mforward Function 

Multicast forwarding is implemented entirely in the kernel. We saw in Figure 12.39 that ipintr 
passes incoming multicast datagrams to ip_mforward when ip_mrouter is nonnull, that is, 
when mrouted is running. 

We also saw in Figure 12.40 that ip_output can pass multicast datagrams that originate on the 
local host to ip_mforward to be routed to interfaces other than the one interface selected by 
ip_output.

Unlike unicast forwarding, each time a multicast datagram is forwarded to an interface, a copy is 
made. For example, if the local host is acting as a multicast router and is connected to three different 
networks, multicast datagrams originating on the system are duplicated and queued for output on all 
three interfaces. Additionally, the datagram may be duplicated and queued for input if the multicast 
loopback flag was set by the application or if any of the outgoing interfaces receive their own 
transmissions. 

Figure 14.35 shows a multicast datagram arriving on a physical interface. 

Figure 14.35. Multicast datagram arriving on physical interface. 

 

 

In Figure 14.35, the interface on which the datagram arrived is a member of the destination group, so 
the datagram is passed to the transport protocols for input processing. The datagram is also passed to 
ip_mforward, where it is duplicated and forwarded to a physical interface and to a tunnel (the 
thick arrows), both of which must be different from the receiving interface. 

Figure 14.36 shows a multicast datagram arriving on a tunnel. 
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Figure 14.36. Multicast datagram arriving on a multicast tunnel. 

 

 

In Figure 14.36, the datagram arriving on a physical interface associated with the local end of the 
tunnel is represented by the dashed arrows. It is passed to ip_mforward, which as we’ll see in 
Figure 14.37 returns a nonzero value because the packet arrived on a tunnel. This causes ipintr to 
not pass the packet to the transport protocols. 
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Figure 14.37. ip_mforward function: tunnel arrival. 

 

 

ip_mforward strips the tunnel options from the packet, consults the multicast routing table, and, 
in this example, forwards the packet on another tunnel and on the same physical interface on which it 
arrived, as shown by the thin arrows. This is OK because the multicast routing tables are based on the 
virtual interfaces, not the physical interfaces. 

In Figure 14.36 we assume that the physical interface is a member of the destination group, so 
ip_output passes the datagram to ip_mloopback, which queues it for processing by 
ipintr (the thick arrows). The packet is passed to ip_mforward again, where it is discarded 
(Exercise 14.4). ip_mforward returns 0 this time (because the packet arrived on a physical 
interface), so ipintr considers and accepts the datagram for input processing. 

 426



ptg11539634

We show the multicast forwarding code in three parts: 

tunnel input processing (Figure 14.37), 
forwarding eligibility (Figure 14.39), and 
forward to outgoing interfaces (Figure 14.40). 

516-526

The two arguments to ip_mforward are a pointer to the mbuf chain containing the datagram; and 
a pointer to the ifnet structure of the receiving interface. 

Arrival on physical interface

527-530

To distinguish between a multicast datagram arriving on a physical interface and a tunneled datagram 
arriving on the same physical interface, the IP header is examined for the characteristic LSRR option. 
If the header is too small to contain the option, or if the options don’t start with a NOP followed by an 
LSRR option, it is assumed that the datagram arrived on a physical interface and tunnel_src is 
set to 0. 

Arrival on a tunnel

531-558

If the datagram looks as though it arrived on a tunnel, the options are verified to make sure they are 
well formed. If the options are not well formed for a multicast tunnel, ip_mforward returns 1 to 
indicate that the datagram should be discarded. Figure 14.38 shows the organization of the tunnel 
options. 

Figure 14.38. Multicast tunnel options. 

 

 

In Figure 14.38 we assume there are no other options in the datagram, although that is not required. 
Any other IP options will appear after the LSRR option, which is always inserted before any other 
options by the multicast router at the start of the tunnel. 
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Delete tunnel options

559-565

If the options are OK, they are removed from the datagram by shifting the remaining options and data 
forward and adjusting m_len in the mbuf header and ip_len and ip_hl in the IP header 
(Figure 14.38). 

ip_mforward often uses tunnel_source as its return value, which is only nonzero when 
the datagram arrives on a tunnel. When ip_mforward returns a nonzero value, the caller discards 
the datagram. For ipintr this means that a datagram that arrives on a tunnel is passed to 
ip_mforward and discarded by ipintr. The forwarding code strips out the tunnel 
information, duplicates the datagram, and sends the datagrams with ip_output, which calls 
ip_mloopback if the interface is a member of the destination group. 

The next part of ip_mforward, shown in Figure 14.39, discards the datagram if it is ineligible 
for forwarding. 

Figure 14.39. ip_mforward function: forwarding eligibility checks. 

 

 
 

Expired TTL or local multicast

566-572

If ip_ttl is 0 or 1, the datagram has reached the end of its lifetime and is not forwarded. If the 
destination group is less than or equal to INADDR_MAX_LOCAL_GROUP (the 224.0.0.x groups, 
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Figure 12.1), the datagram is not allowed beyond the local network and is not forwarded. In either 
case, tunnel_src is returned to the caller. 

Version 3.3 of mrouted supports administrative scoping of certain destination 
groups. An interface can be configured to discard datagrams addressed to these 
groups, similar to the automatic scoping of the 224.0.0.x groups. 

No route available

573-579

If mrtfind cannot locate a route based on the source address of the datagram, the function returns. 
Without a route, the multicast router cannot determine to which interfaces the datagram should be 
forwarded. This might occur, for example, when the multicast datagrams arrive before the multicast 
routing table has been updated by mrouted.

Arrived on unexpected interface

580-592

If the datagram arrived on a physical interface but was expected to arrive on a tunnel or on a different 
physical interface, ip_mforward returns. If the datagram arrived on a tunnel but was expected to 
arrive on a physical interface or on a different tunnel, ip_mforward returns. A datagram may 
arrive on an unexpected interface when the routing tables are in transition because of changes in the 
group membership or in the physical topology of the network. 

The final part of ip_mforward (Figure 14.40) sends the datagram on each of the outgoing 
interfaces specified in the multicast route entry. 

Figure 14.40. ip_mforward function: forwarding. 

 

 

 429



ptg11539634

593-615

For each interface in viftable, a datagram is sent on the interface if 

the datagram’s TTL is greater than the multicast threshold for the interface, 
the interface is a child interface for the route, and 
the interface is not connected to a leaf network. 

If the interface is a leaf, the datagram is output only if there is a member of the destination group on 
the network (i.e., grplst_member returns a nonzero value). 

tunnel_send forwards the datagram on tunnel interfaces; phyint_send is used for physical 
interfaces. 

phyint_send Function

To send a multicast datagram on a physical interface, phyint_send (Figure 14.41) specifies the 
output interface explicitly in the ip_moptions structure it passes to ip_output.

Figure 14.41. phyint_send function. 

 

 

616-634

m_copy duplicates the outgoing datagram. The ip_moptions structure is set to force the 
datagram to be transmitted on the selected interface. The TTL value is decremented, and multicast 
loopback is enabled. 

The datagram is passed to ip_output. The IP_FORWARDING flag avoids an infinite loop, 
where ip_output calls ip_mforward again. 
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tunnel_send Function

To send a datagram on a tunnel, tunnel_send (Figure 14.43) must construct the appropriate 
tunnel options and insert them in the header of the outgoing datagram. Figure 14.42 shows how 
tunnel_send prepares a packet for the tunnel. 

Figure 14.42. Inserting tunnel options. 
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Figure 14.43. tunnel_send function: verify and allocate new header. 

 

 
 

Will the tunnel options fit?

635-652

If there is no room in the IP header for the tunnel options, tunnel_send returns immediately and 
the datagram is not forwarded on the tunnel. It may be forwarded on other interfaces. 

Duplicate the datagram and allocate mbuf for new header and tunnel 
options

653-672

In the call to m_copy, the starting offset for the copy is 20 (IP_HDR_LEN). The resulting mbuf 
chain contains the options and data for the datagram but not the IP header. mb_opts points to a new 
datagram header allocated by MGETHDR. The datagram header is prepended to mb_copy. Then 
m_len and m_data are adjusted to accommodate an IP header and the tunnel options. 
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The second half of tunnel_send, shown in Figure 14.44, modifies the headers of the outgoing 
packet and sends the packet. 

Figure 14.44. tunnel_send function: construct headers and send. 

 

 
 

Modify IP header

673-679

The original IP header is copied from the original mbuf chain into the newly allocated mbuf header. 
The TTL in the header is decremented, and the destination is changed to be the other end of the tunnel. 

Construct tunnel options

680-664

ip_h1 and ip_len are adjusted to accommodate the tunnel options. The tunnel options are placed 
just after the IP header: a NOP, followed by the LSRR code, the length of the LSRR option (11 bytes), 
and a pointer to the second address in the option (8 bytes). The source route consists of the local 
tunnel end point followed by the destination group (Figure 14.13). 

Send the tunneled datagram

665-697

 433

ip_output sends the datagram, which now looks like a unicast datagram with an LSRR option 
since the destination address is the unicast address of the other end of the tunnel. When it reaches the 
other end of the tunnel, the tunnel options are stripped off and the datagram is forwarded at that point, 
possibly through additional tunnels. 
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14.9. Cleanup: ip_mrouter_done Function 

When mrouted shuts down, it issues the DVMRP_DONE command, which is handled by the 
ip_mrouter_done function shown in Figure 14.45. 

Figure 14.45. ip_mrouter_done function: DVMRP_DONE command. 

 

 

161-186

This function runs at splnet to avoid any interaction with the multicast forwarding code. For every 
physical multicast interface, the list of local groups is released and the SIOCDELMULTI command 
is issued to stop receiving multicast datagrams (Exercise 14.3). The entire viftable array is 
cleared by bzero and numvifs is set to 0. 

187-198

Every active entry in the multicast routing table is released, the entire table is cleared with bzero, 
the cache is cleared, and ip_mrouter is reset. 
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Each entry in the multicast routing table may be the first in a linked list of entries. 
This code introduces a memory leak by releasing only the first entry in the list. 

14.10. Summary 

In this chapter we described the general concept of internetwork multicasting and the specific 
functions within the Net/3 kernel that support it. We did not discuss the implementation of 
mrouted, but the source is readily available for the interested reader. 

We described the virtual interface table and the differences between a physical interface and a tunnel, 
as well as the LSRR options used to implement tunnels in Net/3. 

We illustrated the RPB, TRPB, and RPM algorithms and described the kernel tables used to forward 
multicast datagrams according to TRPB. The concept of parent and leaf networks was also discussed. 

Exercises

14.1 In Figure 14.25, how many multicast routes are needed? 

14.2 Why is the update to the group membership cache in Figure 14.23 protected by splnet 
and splx?

14.3 What happens when SIOCDELMULTI is issued for an interface that has explicitly 
joined a multicast group with the IP_ADD_MEMBERSHIP option? 

14.4 When a datagram arrives on a tunnel and is accepted by ip_mforward, it may be 
looped back by ip_output when it is forwarded to a physical interface. Why does 
ip_mforward discard the looped-back packet when it arrives on the physical 
interface? 

14.5 Redesign the group address cache to increase its effectiveness. 
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Chapter 15. Socket Layer 

15.1. Introduction 

This chapter is the first of three that cover the socket-layer code in Net/3. The socket abstraction was 
introduced with the 4.2BSD release in 1983 to provide a uniform interface to network and interprocess 
communication protocols. The Net/3 release discussed here is based on the 4.3BSD Reno version of 
sockets, which is slightly different from the earlier 4.2 releases used by many Unix vendors. 

As described in Section 1.7, the socket layer maps protocol-independent requests from a process to the 
protocol-specific implementation selected when the socket was created. 

To allow standard Unix I/O system calls such as read and write to operate with network 
connections, the filesystem and networking facilities in BSD releases are integrated at the system call 
level. Network connections represented by sockets are accessed through a descriptor (a small integer) 
in the same way an open file is accessed through a descriptor. This allows the standard filesystem calls 
such as read and write, as well as network-specific system calls such as sendmsg and 
recvmsg, to work with a descriptor associated with a socket. 

Our focus is on the implementation of sockets and the associated system calls and not on how a 
typical program might use the socket layer to implement network applications. For a detailed 
discussion of the process-level socket interface and how to program network applications see [Stevens 
1990] and [Rago 1993]. 

Figure 15.1 shows the layering between the socket interface in a process and the protocol 
implementation in the kernel. 
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Figure 15.1. The socket layer converts generic requests to specific protocol operations. 

 

 
 
splnet Processing 

The socket layer contains many paired calls to splnet and splx. As discussed in Section 1.12, 
these calls protect code that accesses data structures shared between the socket layer and the protocol-
processing layer. Without calls to splnet, a software interrupt that initiates protocol processing 
and changes the shared data structures will confuse the socket-layer code when it resumes. 

We assume that readers understand these calls and we rarely point them out in our discussion. 

15.2. Code Introduction 

The three files listed in Figure 15.2 are described in this chapter. 

Figure 15.2. Files discussed in this chapter. 
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Global Variables 

The two global variable covered in this chapter are described in Figure 15.3. 

Figure 15.3. Global variable introduced in this chapter. 

 

15.3. socket Structure 

A socket represents one end of a communication link and holds or points to all the information 
associated with the link. This information includes the protocol to use, state information for the 
protocol (which includes source and destination addresses), queues of arriving connections, data 
buffers, and option flags. Figure 15.5 shows the definition of a socket and its associated buffers. 

41-42 

so_type is specified by the process creating a socket and identifies the communication semantics 
to be supported by the socket and the associated protocol. so_type shares the same values as 
pr_type shown in Figure 7.8. For UDP, so_type would be SOCK_DGRAM and for TCP it 
would be SOCK_STREAM. 

43 

so_options is a collection of flags that modify the behavior of a socket. Figure 15.4 describes 
the flags. 

Figure 15.4. so_options values. 
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A process can modify all the socket options with the getsockopt and 
setsockopt system calls except SO_ACCEPTCONN, which is set by the 
kernel when the listen system call is issued on the socket. 

 

 

Figure 15.5. struct socket definition. 
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44 

so_linger is the time in clock ticks that a socket waits for data to drain while closing a 
connection (Section 15.15). 

45 

so_state represents the internal state and additional characteristics of the socket. Figure 15.6 lists 
the possible values for so_state. 

Figure 15.6. so_state values. 

 

 

In Figure 15.6, the middle column shows that SS_ASYNC and SS_NBIO can be changed explicitly 
by a process by the fcntl and ioctl system calls. The other flags are implicitly changed by the 
process during the execution of system calls. For example, if the process calls connect, the 
SS_ISCONNECTED flag is set by the kernel when the connection is established. 

SS_NBIO and SS_ASYNC Flags 

By default, a process blocks waiting for resources when it makes an I/O request. For example, a 
read system call on a socket blocks if there is no data available from the network. When the data 
arrives, the process is unblocked and read returns. Similarly, when a process calls write, the 
kernel blocks the process until space is available in the kernel for the data. If SS_NBIO is set, the 
kernel does not block a process during I/O on the socket but instead returns the error code 
EWOULDBLOCK. 

If SS_ASYNC is set, the kernel sends the SIGIO signal to the process or process group specified 
by so_pgid when the status of the socket changes for one of the following reasons: 

• a connection request has completed, 
• a disconnect request has been initiated, 
• a disconnect request has completed, 
• half of a connection has been shut down, 
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• data has arrived on a socket, 
• data has been sent from a socket (i.e., the output buffer has free space), or 
• an asynchronous error has occurred on a UDP or TCP socket. 

46 

so_pcb points to a protocol control block that contains protocol-specific state information and 
parameters for the socket. Each protocol defines its own control block structure, so so_pcb is 
defined to be a generic pointer. Figure 15.7 lists the control block structures that we discuss. 

Figure 15.7. Protocol control blocks. 

 

 

so_pcb never points to a tcpcb structure directly; see Figure 22.1. 

47 

so_proto points to the protosw structure of the protocol selected by the process during the 
socket system call (Section 7.4). 

48-64 

Sockets with SO_ACCEPTCONN set maintain two connection queues. Connections that are not yet 
established (e.g., the TCP three-way handshake is not yet complete) are placed on the queue 
so_q0. Connections that are established and are ready to be accepted (e.g., the TCP three-way 
handshake is complete) are placed on the queue so_q. The lengths of the queues are kept in 
so_q0len and so_qlen. Each queued connection is represented by its own socket. 
so_head in each queued socket points to the original socket with SO_ACCEPTCONN set. 

The maximum number of queued connections for a particular socket is controlled by so_qlimit, 
which is specified by a process when it calls listen. The kernel silently enforces an upper limit of 
5 (SOMAXCONN, Figure 15.24) and a lower limit of 0. A somewhat obscure formula shown with 
Figure 15.29 uses so_qlimit to control the number of queued connections. 

Figure 15.8 illustrates a queue configuration in which three connections are ready to be accepted and 
one connection is being established. 
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Figure 15.8. Socket connection queues. 

 

 

65 

so_timeo is a wait channel (Section 15.10) used during accept, connect, and close 
processing. 

66 

so_error holds an error code until it can be reported to a process during the next system call that 
references the socket. 

67 

If SS_ASYNC is set for a socket, the SIGIO signal is sent to the process (if so_pgid is greater 
than 0) or to the progress group (if so_pgid is less than 0). so_pgid can be changed or 
examined with the SIOCSPGRP and SIOCGPGRP ioctl commands. For more information 
about process groups see [Stevens 1992]. 

68 

so_oobmark identifies the point in the input data stream at which out-of-band data was most 
recently received. Section 16.11 discusses socket support for out-of-band data and Section 29.7 
discusses the semantics of out-of-band data in TCP. 

69-82 

Each socket contains two data buffers, so_rcv and so_snd, used to buffer incoming and 
outgoing data. These are structures contained within the socket structure, not pointers to structures. 
We describe the organization and use of the socket buffers in Chapter 16. 

83-86 
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so_tpcb is not used by Net/3. so_upcall and so_upcallarg are used only by the NFS 
software in Net/3. 

NFS is unusual. In many ways it is a process-level application that has been moved 
into the kernel. The so_upcall mechanism triggers NFS input processing when 
data is added to a socket receive buffer. The tsleep and wakeup mechanism is 
inappropriate in this case, since the NFS protocol executes within the kernel, not as a 
process. 

The files socketvar.h and uipc_socket2.c define several macros and functions that 
simplify the socket-layer code. Figure 15.9 summarizes them. 
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Figure 15.9. Socket macros and functions. 
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15.4. System Calls 

A process interacts with the kernel through a collection of well-defined functions called system calls. 
Before showing the system calls that support networking, we discuss the system call mechanism itself. 

The transfer of execution from a process to the protected environment of the kernel is machine- and 
implementation-dependent. In the discussion that follows, we use the 386 implementation of Net/3 to 
illustrate implementation specific operations. 

In BSD kernels, each system call is numbered and the hardware is configured to transfer control to a 
single kernel function when the process executes a system call. The particular system call is identified 
as an integer argument to the function. In the 386 implementation, syscall is that function. Using 
the system call number, syscall indexes a table to locate the sysent structure for the requested 
system call. Each entry in the table is a sysent structure: 

    struct sysent { 
        int sy_narg;           /* number of arguments */ 
        int (*sy_call) ();     /* implementing function */ 
    };                         /* system call table entry 
*/ 
 

Here are several entries from the sysent array, which is defined in 
kern/init_sysent.c. 

    struct sysent sysent[] = { 
            /* … */ 
            { 3, recvmsg },                   /* 27 = 
recvmsg */ 
            { 3, sendmsg },                   /* 28 = 
sendmsg */ 
            { 6, recvfrom },                  /* 29 = 
recvfrom */ 
            { 3, accept },                    /* 30 = 
accept */ 
            { 3, getpeername },               /* 31 = 
getpeername */ 
            { 3, getsockname },               /* 32 = 
getsockname */ 
            /* … */ 
    } 
 

For example, the recvmsg system call is the 27th entry in the system call table, has three 
arguments, and is implemented by the recvmsg function in the kernel. 

syscall copies the arguments from the calling process into the kernel and allocates an array to 
hold the results of the system call, which syscall returns to the process when the system call 
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completes, syscall dispatches control to the kernel function associated with the system call. In the 
386 implementation, this call looks like: 

    struct sysent *callp; 
    error = (*callp->sy_call)(p, args, rval); 
 

where callp is a pointer to the relevant sysent structure, p is a pointer to the process table entry 
for the process that made the system call, args represents the arguments to the system call as an 
array of 32-bit words, and rval is an array of two 32-bit words to hold the return value of the 
system call. When we use the term system call, we mean the function within the kernel called by 
syscall, not the function within the process called by the application. 

syscall expects the system call function (i.e., what sy_call points to) to return 0 if no errors 
occurred and a nonzero error code otherwise. If no error occurs, the kernel passes the values in rval 
back to the process as the return value of the system call (the one made by the application). If an error 
occurs, syscall ignores the values in rval and returns the error code to the process in a 
machine-dependent way so that the error is made available to the process in the external variable 
errno. The function called by the application returns –1 or a null pointer to indicate that errno 
should be examined. 

The 386 implementation sets the carry bit to indicate that the value returned by syscall is an error 
code. The system call stub in the process stores the code in errno and returns –1 or a null pointer to 
the application. If the carry bit is not set, the value returned by syscall is returned by the stub. 

To summarize, a function implementing a system call "returns" two values: one for the syscall 
function, and a second (found in rval) that syscall returns to the calling process when no error 
occurs. 

Example 

The prototype for the socket system call is: 

    int socket (int domain, int type, int protocol); 
 

The prototype for the kernel function that implements the system call is 

    struct socket_args { 
        int domain; 
        int type; 
        int protocol; 
    }; 
    socket(struct proc *p, struct socket_args *uap, int 
*retval); 
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When an application calls socket, the process passes three separate integers to the kernel with the 
system call mechanism, syscall copies the arguments into an array of 32-bit values and passes a 
pointer to the array as the second argument to the kernel version of socket. The kernel version of 
socket treats the second argument as a pointer to an socket_args structure. Figure 15.10 
illustrates this arrangement. 

Figure 15.10. socket argument processing. 

 

 

As illustrated by socket, each kernel function that implements a system call declares args not 
as a pointer to an array of 32-bit words, but as a pointer to a structure specific to the system call. 

The implicit cast is legal only in traditional K&R C or in ANSI C when a prototype 
is not in effect. If a prototype is in effect, the compiler generates a warning. 

syscall prepares the return value of 0 before executing the kernel system call function. If no error 
occurs, the system call function can return without clearing *retval and syscall returns 0 to 
the process. 

System Call Summary 

Figure 15.11 summarizes the system calls relevant to networking. 
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Figure 15.11. Networking system calls in Net/3. 

 

 

We present the setup, server, client, and termination calls in this chapter. The input and output system 
calls are discussed in Chapter 16 and the administrative calls in Chapter 17. 

Figure 15.12 shows the sequence in which an application might use the calls. The I/O system calls in 
the large box can be called in any order. This is not a complete state diagram as some valid transitions 
are not included; just the most common ones are shown. 
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Figure 15.12. Network system call flowchart. 

 

 

15.5. Processes, Descriptors, and Sockets 

Before describing the socket system calls, we need to discuss the data structures that tie together 
processes, descriptors, and sockets. Figure 15.13 shows the structures and members relevant to our 
discussion. A more complete explanation of the file structures can be found in [Leffler et al. 1989]. 
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Figure 15.13. Process, file, and socket structures. 

 

 

The first argument to a function implementing a system call is always p, a pointer to the proc 
structure of the calling process. The proc structure represents the kernel's notion of a process. 
Within the proc structure, p_fd points to a filedesc structure, which manages the descriptor 
table pointed to by fd_ofiles. The descriptor table is dynamically sized and consists of an array 
of pointers to file structures. Each file structure describes a single open file and can be shared 
between multiple processes. 

Only a single file structure is shown in Figure 15.13. It is accessed by p->p_fd-
>fd_ofiles[fd]. Within the file structure, two members are of interest to us: f_ops and 
f_data. The implementation of I/O system calls such as read and write varies according to 
what type of I/O object is associated with a descriptor. f_ops points to a fileops structure 
containing a list of function pointers that implement the read, write, ioctl, select, 
and close system calls for the associated I/O object. Figure 15.13 shows f_ops pointing to a 
global fileops structure, socketops, which contains pointers to the functions for sockets. 

f_data points to private data used by the associated I/O object. For sockets, f_data points to the 
socket structure associated with the descriptor. Finally, we see that so_proto in the socket 
structure points to the protosw structure for the protocol selected when the socket is created. 
Recall that each protosw structure is shared by all sockets associated with the protocol. 

We now proceed to discuss the system calls. 
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15.6. socket System Call 

The socket system call creates a new socket and associates it with a protocol as specified by the 
domain, type, and protocol arguments specified by the process. The function (shown in 
Figure 15.14) allocates a new descriptor, which identifies the socket in future system calls, and returns 
the descriptor to the process. 

Figure 15.14. socket system call. 

 

 

42-55 

Before each system call a structure is defined to describe the arguments passed from the process to the 
kernel. In this case, the arguments are passed within a socket_args structure. All the socket-
layer system calls have three arguments: p, a pointer to the proc structure for the calling process; 
uap, a pointer to a structure containing the arguments passed by the process to the system call; and 
retval, a value–result argument that points to the return value for the system call. Normally, we 
ignore the p and retval arguments and refer to the contents of the structure pointed to by uap as 
the arguments to the system call. 

56-60 
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falloc allocates a new file structure and slot in the fd_ofiles array (Figure 15.13). fp 
points to the new structure and fd is the index of the structure in the fd_ofiles array. socket 
enables the file structure for read and write access and marks it as a socket. socketops, a 
global fileops structure shared by all sockets, is attached to the file structure by f_ops. 
The socketops variable is initialized at compile time as shown in Figure 15.15. 

Figure 15.15. socketops: the global fileops structure for sockets. 

 

 

60-69 

socreate allocates and initializes a socket structure. If socreate fails, the error code is 
posted in error, the file structure is released, and the descriptor slot cleared. If socreate 
succeeds, f_data is set to point to the socket structure and establishes the association between 
the descriptor and the socket. fd is returned to the process through *retval. socket returns 
0 or the error code returned by socreate. 

socreate Function 

Most socket system calls are divided into at least two functions, in the same way that socket and 
socreate are. The first function retrieves from the process all the data required, calls the second 
soxxx function to do the work, and then returns any results to the process. This split is so that the 
second function can be called directly by kernel-based network protocols, such as NFS. socreate 
is shown in Figure 15.16. 
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Figure 15.16. socreate function. 

 

 

43-52 

The four arguments to socreate are: dom, the requested protocol domain (e.g., PF_INET); 
aso, in which a pointer to a new socket structure is returned; type, the requested socket type 
(e.g., SOCK_STREAM); and proto, the requested protocol. 

Find protocol switch table 

53-60 

If proto is nonzero, pffindproto looks for the specific protocol requested by the process. If 
proto is 0, pffindtype looks for a protocol within the specified domain with the semantics 
specified by type. Both functions return a pointer to a protosw structure of the matching 
protocol or a null pointer (Section 7.6). 
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Allocate and initialize socket structure 

61-66 

socreate allocates a new socket structure, fills it with 0s, records the type, and, if the 
calling process has superuser privileges, turns on SS_PRIV in the socket structure. 

PRU_ATTACH request 

67-69 

The first example of the protocol-independent socket layer making a protocol-specific request appears 
in socreate. Recall from Section 7.4 and Figure 15.13 that so->so_proto-
>pr_usrreq is a pointer to the user-request function of the protocol associated with socket so. 
Every protocol provides this function in order to handle communication requests from the socket 
layer. The prototype for the function is: 

    int pr_usrreq (struct socket *so, int req, struct mbuf 
*m0, *m1, *m2); 
 

The first argument, so, is a pointer to the relevant socket and req is a constant identifying the 
particular request. The next three arguments (m0, m1, and m2) are different for each request. They are 
always passed as pointers to mbuf structures, even if they have another type. Casts are used when 
necessary to avoid warnings from the compiler. 

Figure 15.17 shows the requests available through the pr_usrreq function. The semantics of each 
request depend on the particular protocol servicing the request. 

Figure 15.17. pr_usrreq requests. 
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PRU_CONNECT2 is supported only within the Unix domain, where it connects 
two local sockets to each other. Unix pipes are implemented in this way. 

Cleanup and return 

70-77 

Returning to socreate, the function attaches the protocol switch table to the new socket and 
issues the PRU_ATTACH request to notify the protocol of the new end point. This request causes 
most protocols, including TCP and UDP, to allocate and initialize any structures required to support 
the new end point. 

Superuser Privileges 

Figure 15.18 summarizes the networking operations that require superuser access. 

Figure 15.18. Superuser privileges in Net/3. 

 

 

The multicast ioctl commands (SIOCADDMULTI and SIOCDELMULTI) 
are accessible to nonsuperuser processes when they are invoked indirectly by the 
IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP socket options 
(Sections 12.11 and 12.12). 

In Figure 15.18, the "Process" column identifies requests that must be made by a superuser process, 
and the "Socket" column identifies requests that must be issued on a socket created by a superuser 
process (i.e., the process does not need superuser privileges if it has access to the socket, Exercise 
15.1). In Net/3, the suser function determines if the calling process has superuser privileges, and 
the SS_PRIV flag determines if the socket was created by a superuser process. 

Since rip_usrreq tests SS_PRIV immediately after creating the socket with socreate, 
we show this function as accessible only from a superuser process. 

15.7. getsock and sockargs Functions 

These functions appear repeatedly in the implementation of the socket system calls. getsock maps 
a descriptor to a file table entry and sockargs copies arguments from the process to a newly 
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allocated mbuf in the kernel. Both functions check for invalid arguments and return a nonzero error 
code accordingly. 

Figure 15.19 shows the getsock function. 

Figure 15.19. getsock function. 

 

 

754-767 

The function selects the file table entry specified by the descriptor fdes with fdp, a pointer to the 
filedesc structure. getsock returns a pointer to the open file structure in fpp or an error if 
the descriptor is out of the valid range, does not point to an open file, or does not have a socket 
associated with it. 

Figure 15.20 shows the sockargs function. 
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Figure 15.20. sockargs function. 

 

 

768-783 

The mechanism described in Section 15.4 copies pointer arguments for a system call from the process 
to the kernel but does not copy the data referenced by the pointers, since the semantics of each 
argument are known only by the specific system call and not by the generic system call mechanism. 
Several system calls use sockargs to follow the pointer arguments and copy the referenced data 
from the process into a newly allocated mbuf within the kernel. For example, sockargs copies the 
local socket address pointed to by bind's second argument from the process to an mbuf. 

If the data does not fit in a single mbuf or an mbuf cannot be allocated, sockargs returns 
EINVAL or ENOBUFS. Note that a standard mbuf is used and not a packet header mbuf. 
copyin copies the data from the process into the mbuf. The most common error from copyin is 
EACCES, returned when the process provides an invalid address. 

784-785 

When an error occurs, the mbuf is discarded and the error code is returned. If there is no error, a 
pointer to the mbuf is returned in mp, and sockargs returns 0. 

786-794 
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If type is MT_SONAME, the process is passing in a sockaddr structure. sockargs sets the 
internal length, sa_len, to the length of the argument just copied. This ensures that the size 
contained within the structure is correct even if the process did not initialize the structure correctly. 

Net/3 does include code to support applications compiled on a pre-4.3BSD Reno 
system, which did not have an sa_len member in the sockaddr structure, but 
that code is not shown in Figure 15.20. 

15.8. bind System Call 

The bind system call associates a local network transport address with a socket. A process acting as 
a client usually does not care what its local address is. In this case, it isn't necessary to call bind 
before the process attempts to communicate; the kernel selects and implicitly binds a local address to 
the socket as needed. 

A server process almost always needs to bind to a specific well-known address. If so, the process must 
call bind before accepting connections (TCP) or receiving datagrams (UDP), because the clients 
establish connections or send datagrams to the well-known address. 

A socket's foreign address is specified by connect or by one of the write calls that allow 
specification of foreign addresses (sendto or sendmsg). 

Figure 15.21 shows bind. 

Figure 15.21. bind function. 

 

 

70-82 
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The arguments to bind (passed within a bind_args structure) are: s, the socket descriptor; 
name, a pointer to a buffer containing the transport address (e.g., a sockaddr_in structure); 
and namelen, the size of the buffer. 

83-90 

getsock returns the file structure for the descriptor, and sockargs copies the local address 
from the process into an mbuf, sobind associates the address specified by the process with the 
socket. Before bind returns sobind's result, the mbuf holding the address is released. 

Technically, a descriptor such as s identifies a file structure with an associated 
socket structure and is not itself a socket structure. We refer to such a 
descriptor as a socket to simplify our discussion. 

We will see this pattern many times: arguments specified by the process are copied into an mbuf and 
processed as necessary, and then the mbuf is released before the system call returns. Although mbufs 
were designed explicitly to facilitate processing of network data packets, they are also effective as a 
general-purpose dynamic memory allocation mechanism. 

Another pattern illustrated by bind is that retval is unused in many system calls. In Section 15.4 
we mentioned that retval is always initialized to 0 before syscall dispatches control to a 
system call. If 0 is the appropriate return value, the system calls do not need to change retval. 

sobind Function 

sobind, shown in Figure 15.22, is a wrapper that issues the PRU_BIND request to the protocol 
associated with the socket. 

Figure 15.22. sobind function. 

 

 

78-89 

sobind issues the PRU_BIND request. The local address, nam, is associated with the socket if 
the request succeeds; otherwise the error code is returned. 
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15.9. listen System Call 

The listen system call, shown in Figure 15.23, notifies a protocol that the process is prepared to 
accept incoming connections on the socket. It also specifies a limit on the number of connections that 
can be queued on the socket, after which the socket layer refuses to queue additional connection 
requests. When this occurs, TCP ignores incoming connection requests. Queued connections are made 
available to the process when it calls accept (Section 15.11). 

Figure 15.23. listen system call. 

 

 

91-98 

The two arguments passed to listen specify the socket descriptor and the connection queue limit. 

99-105 

getsock returns the file structure for the descriptor, s, and solisten passes the listen 
request to the protocol layer. 

solisten Function 

This function, shown in Figure 15.24, issues the PRU_LISTEN request and prepares the socket to 
receive connections. 
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Figure 15.24. solisten function. 

 

 

90-109 

After solisten issues the PRU_LISTEN request and pr_usrreq returns, the socket is 
marked as ready to accept connections. SS_ACCEPTCONN is not set if a connection is queued 
when pr_usrreq returns. 

The maximum queue size for incoming connections is computed and saved in so_qlimit. Here 
Net/3 silently enforces a lower limit of 0 and an upper limit of 5 (SOMAXCONN) backlogged 
connections. 

15.10. tsleep and wakeup Functions 

When a process executing within the kernel cannot proceed because a kernel resource is unavailable, 
it waits for the resource by calling tsleep, which has the following prototype: 

    int tsleep (caddr_t chan, int pri, char *mesg, int 
timeo); 
 

The first argument to tsleep, chan, is called the wait channel. It identifies the particular resource 
or event such as an incoming network connection, for which the process is waiting. Many processes 
can be sleeping on a single wait channel. When the resource becomes available or when the event 
occurs, the kernel calls wakeup with the wait channel as the single argument. The prototype for 
wakeup is: 

    void wakeup (caddr_t chan); 
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All processes waiting for the channel are awakened and set to the run state. The kernel arranges for 
tsleep to return when each of the processes resumes execution. 

The pri argument specifies the priority of the process when it is awakened, as well as several optional 
control flags for tsleep. By setting the PCATCH flag in pri, tsleep also returns when a 
signal arrives, mesg is a string identifying the call to tsleep and is included in debugging messages 
and in ps output. timeo sets an upper bound on the sleep period and is measured in clock ticks. 

Figure 15.25 summarizes the return values from tsleep. 

Figure 15.25. tsleep return values. 

 

 

A process never sees the ERESTART error because it is handled by the syscall 
function and never returned to a process. 

Because all processes sleeping on a wait channel are awakened by wakeup, we always see a call to 
tsleep within a tight loop. Every process must determine if the resource is available before 
proceeding because another awakened process may have claimed the resource first. If the resource is 
not available, the process calls tsleep once again. 

It is unusual for multiple processes to be sleeping on a single socket, so a call to wakeup usually 
causes only one process to be awakened by the kernel. 

For a more detailed discussion of the sleep and wakeup mechanism see [Leffler et al. 1989]. 

Example 

One use of multiple processes sleeping on the same wait channel is to have multiple server processes 
reading from a UDP socket. Each server calls recvfrom and, as long as no data is available, the 
calls block in tsleep. When a datagram arrives on the socket, the socket layer calls wakeup and 
each server is placed on the run queue. The first server to run receives the datagram while the others 
call tsleep again. In this way, incoming datagrams are distributed to multiple servers without the 
cost of starting a new process for each datagram. This technique can also be used to process incoming 
connection requests in TCP by having multiple processes call accept on the same socket. This 
technique is described in [Comer and Stevens 1993]. 
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15.11. accept System Call 

After calling listen, a process waits for incoming connections by calling accept, which 
returns a descriptor that references a new socket connected to a client. The original socket, s, 
remains unconnected and ready to receive additional connections. accept returns the address of the 
foreign system if name points to a valid buffer. 

The connection-processing details are handled by the protocol associated with the socket. For TCP, 
the socket layer is notified when a connection has been established (i.e., when TCP's three-way 
handshake has completed). For other protocols, such as OSI's TP4, tsleep returns when a 
connection request has arrived. The connection is completed when explicitly confirmed by the process 
by reading or writing on the socket. 

Figure 15.26 shows the implementation of accept. 
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Figure 15.26. accept system call. 
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106-114 

The three arguments to accept (in the accept_args structure) are: s, the socket descriptor; 
name, a pointer to a buffer to be filled in by accept with the transport address of the foreign 
host; and anamelen, a pointer to the size of the buffer. 

Validate arguments 

116-134 

accept copies the size of the buffer (*anamelen) into namelen, and getsock returns 
the file structure for the socket. If the socket is not ready to accept connections (i.e., listen has 
not been called) or nonblocking I/O has been requested and no connections are queued, EINVAL or 
EWOULDBLOCK are returned respectively. 

Wait for a connection 

135-145 

The while loop continues until a connection is available, an error occurs, or the socket can no 
longer receive data. accept is not automatically restarted after a signal is caught (tsleep returns 
EINTR). The protocol layer wakes up the process when it inserts a new connection on the queue with 
sonewconn. 
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Within the loop, the process waits in tsleep, which returns 0 when a connection is available. If 
tsleep is interrupted by a signal or the socket is set for nonblocking semantics, accept returns 
EINTR or EWOULDBLOCK (Figure 15.25). 

Asynchronous errors 

146-151 

If an error occurred on the socket during the sleep, the error code is moved from the socket to the 
return value for accept, the socket error is cleared, and accept returns. 

It is common for asynchronous events to change the state of a socket. The protocol processing layer 
notifies the socket layer of the change by setting so_error and waking any process waiting on the 
socket. Because of this, the socket layer must always examine so_error after waking to see if an 
error occurred while the process was sleeping. 

Associate socket with descriptor 

152-164 

falloc allocates a descriptor for the new connection; the socket is removed from the accept queue 
by soqremque and attached to the file structure. Exercise 15.4 discusses the call to panic. 

Protocol processing 

167-179 

accept allocates a new mbuf to hold the foreign address and calls soaccept to do protocol 
processing. The allocation and queueing of new sockets created during connection processing is 
described in Section 15.12. If the process provided a buffer to receive the foreign address, copyout 
copies the address from nam and the length from namelen to the process. If necessary, 
copyout silently truncates the name to fit in the process's buffer. Finally, the mbuf is released, 
protocol processing enabled, and accept returns. 

Because only one mbuf is allocated for the foreign address, transport addresses must fit in one mbuf. 
Unix domain addresses, which are pathnames in the filesystem (up to 1023 bytes in length), may 
encounter this limit, but there is no problem with the 16-byte sockaddr_in structure for the 
Internet domain. The comment on line 170 indicates that this limitation could be removed by 
allocating and copying an mbuf chain. 

soaccept Function 

soaccept, shown in Figure 15.27, calls the protocol layer to retrieve the client's address for the 
new connection. 
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Figure 15.27. soaccept function. 

 

 

184-197 

soaccept ensures that the socket is associated with a descriptor and issues the PRU_ACCEPT 
request to the protocol. After pr_usrreq returns, nam contains the name of the foreign socket. 

15.12. sonewconn and soisconnected Functions 

In Figure 15.26 we saw that accept waits for the protocol layer to process incoming connection 
requests and to make them available through so_q. Figure 15.28 uses TCP to illustrate this process. 
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Figure 15.28. Incoming TCP connection processing. 

 

 

In the upper left corner of Figure 15.28, accept calls tsleep to wait for incoming connections. 
In the lower left, tcp_input processes an incoming TCP SYN by calling sonewconn to create 
a socket for the new connection (Figure 28.7). sonewconn queues the socket on so_q0, since 
the three-way handshake is not yet complete. 

When the final ACK of the TCP handshake arrives, tcp_input calls soisconnected 
(Figure 29.2), which updates the new socket, moves it from so_q0 to so_q, and wakes up any 
processes that had called accept to wait for incoming connections. 

The upper right corner of the figure shows the functions we described with Figure 15.26. When 
tsleep returns, accept takes the connection off so_q and issues the PRU_ATTACH request. 
The socket is associated with a new file descriptor and returned to the calling process. 

Figure 15.29 shows the sonewconn function. 
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Figure 15.29. sonewconn function. 

 

 

123-129 

The protocol layer passes head, a pointer to the socket that is accepting the incoming connection, 
and connstatus, a flag to indicate the state of the new connection. For TCP, connstatus is 
always 0. 

For TP4, connstatus is always SS_ISCONFIRMING. The connection is 
implicitly confirmed when a process begins reading from or writing to the socket. 

Limit incoming connections 

130-131 

sonewconn prohibits additional connections when the following inequality is true: 
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This formula provides a fudge factor for connections that never complete and guarantees that 
listen (fd, 0) allows one connection. See Figure 18.23 in Volume 1 for an additional 
discussion of this formula. 

Allocate new socket 

132-143 

A new socket structure is allocated and initialized. If the process calls setsockopt for the 
listening socket, the connected socket inherits several socket options because so_options, 
so_linger, so_pgid, and the sb_hiwat values are copied into the new socket 
structure. 

Queue connection 

144 

soqueue was set from connstatus on line 129. The new socket is inserted onto so_q0 if 
soqueue is 0 (e.g., TCP connections) or onto so_q if connstatus is nonzero (e.g., TP4 
connections). 

Protocol processing 

145-150 

The PRU_ATTACH request is issued to perform protocol layer processing on the new connection. If 
this fails, the socket is dequeued and discarded, and sonewconn returns a null pointer. 

Wakeup processes 

151-157 

If connstatus is nonzero, any processes sleeping in accept or selecting for readability on the 
socket are awakened, connstatus is logically ORed with so_state. This code is never 
executed for TCP connections, since connstatus is always 0 for TCP. 

Protocols, such as TCP, that put incoming connections on so_q0 first, call soisconnected 
when the connection establishment phase completes. For TCP, this happens when the second SYN is 
ACKed on the connection. 

Figure 15.30 shows soisconnected. 
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Figure 15.30. soisconnected function. 

 

 
 
Queue incomplete connections 

78-87 

The socket state is changed to show that the connection has completed. When soisconnected 
is called for incoming connections, (i.e., when the local process is calling accept), head is 
nonnull. 

If soqremque returns 1, the socket is queued on so_q and sorwakeup wakes up any 
processes using select to monitor the socket for connection arrival by testing for readability. If a 
process is blocked in accept waiting for the connection, wakeup causes the matching tsleep 
to return. 

Wakeup processes waiting for new connection 

88-93 

If head is null, soqremque is not called since the process initiated the connection with the 
connect system call and the socket is not on a queue. If head is nonnull and soqremque 
returns 0, the socket is already on so_q. This happens with protocols such as TP4, which place 
connections on so_q before they are complete. wakeup awakens any process blocked in 
connect, and sorwakeup and sowwakeup take care of any processes that are using 
select to wait for the connection to complete. 

15.13. connect System call 

A server process calls the listen and accept system calls to wait for a remote process to 
initiate a connection. If the process wants to initiate a connection itself (i.e., a client), it calls 
connect. 
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For connection-oriented protocols such as TCP, connect establishes a connection to the specified 
foreign address. The kernel selects and implicitly binds an address to the local socket if the process 
has not already done so with bind. 

For connectionless protocols such as UDP or ICMP, connect records the foreign address for use in 
sending future datagrams. Any previous foreign address is replaced with the new address. 

Figure 15.31 shows the functions called when connect is used for UDP or TCP. 

Figure 15.31. connect processing. 

 

 

The left side of the figure shows connect processing for connectionless protocols, such as UDP. In 
this case the protocol layer calls soisconnected and the connect system call returns 
immediately. 

The right side of the figure shows connect processing for connection-oriented protocols, such as 
TCP. In this case, the protocol layer begins the connection establishment and calls 
soisconnecting to indicate that the connection will complete some time in the future. Unless 
the socket is nonblocking, soconnect calls tsleep to wait for the connection to complete. For 
TCP, when the three-way handshake is complete, the protocol layer calls soisconnected to 
mark the socket as connected and then calls wakeup to awaken the process and complete the 
connect system call. 
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Figure 15.32 shows the connect system call. 

Figure 15.32. connect system call. 

 

 

180-188 

The three arguments to connect (in the connect_args structure) are: s, the socket 
descriptor; name, a pointer to a buffer containing the foreign address; and namelen, the length 
of the buffer. 

189-200 
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getsock returns the socket as usual. A connection request may already be pending on a 
nonblocking socket, in which case EALREADY is returned. sockargs copies the foreign address 
from the process into the kernel. 

Start connection processing 

201-208 

The connection attempt is started by calling soconnect. If soconnect reports an error, 
connect jumps to bad. If a connection has not yet completed by the time soconnect returns 
and nonblocking I/O is enabled, EINPROGRESS is returned immediately to avoid waiting for the 
connection to complete. Since connection establishment normally involves exchanging several packets 
with the remote system, it may take a while to complete. Further calls to connect return 
EALREADY until the connection completes. EISCONN is returned when the connection is 
complete. 

Wait for connection establishment 

208-217 

The while loop continues until the connection is established or an error occurs. splnet prevents 
connect from missing a wakeup between testing the state of the socket and the call to 
tsleep. After the loop, error contains 0, the error code from tsleep, or the error from the 
socket. 

218-224 

The SS_ISCONNECTING flag is cleared since the connection has completed or the attempt has 
failed. The mbuf containing the foreign address is released and any error is returned. 

soconnect Function 

This function ensures that the socket is in a valid state for a connection request. If the socket is not 
connected or a connection is not pending, then the connection request is always valid. If the socket is 
already connected or a connection is pending, the new connection request is rejected for connection-
oriented protocols such as TCP. For connectionless protocols such as UDP, multiple connection 
requests are OK but each new request replaces the previous foreign address. 

Figure 15.33 shows the soconnect function. 
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Figure 15.33. soconnect function. 

 

 

198-222 

soconnect returns EOPNOTSUPP if the socket is marked to accept connections, since a process 
cannot initiate connections if listen has already been called for the socket. EISCONN is returned 
if the protocol is connection oriented and a connection has already been initiated. For a connectionless 
protocol, any existing association with a foreign address is broken by sodisconnect. 

The PRU_CONNECT request starts the appropriate protocol processing to establish the connection 
or the association. 

Breaking a Connectionless Association 

For connectionless protocols, the foreign address associated with a socket can be discarded by calling 
connect with an invalid name such as a pointer to a structure filled with 0s or a structure with an 
invalid size. sodisconnect removes a foreign address associated with the socket, and 
PRU_CONNECT returns an error such as EAFNOSUPPORT or EADDRNOTAVAIL, leaving 
the socket with no foreign address. This is a useful, although obscure, way of breaking the association 
between a connectionless socket and a foreign address without replacing it. 

15.14. shutdown System Call 

The shutdown system call, shown in Figure 15.34, closes the write-half, read-half, or both halves 
of a connection. For the read-half, shutdown discards any data the process hasn't yet read and any 
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data that arrives after the call to shutdown. For the write-half, shutdown lets the protocol 
specify the semantics. For TCP, any remaining data will be sent followed by a FIN. This is TCP's 
half-close feature (Section 18.5 of Volume 1). 

Figure 15.34. shutdown system call. 

 

 

To destroy the socket and release the descriptor, close must be called. close can also be called 
directly without first calling shutdown. As with all descriptors, close is called by the kernel 
for sockets that have not been closed when a process terminates. 

550-557 

In the shutdown_args structure, s is the socket descriptor and how specifies which halves of 
the connection are to be closed. Figure 15.35 shows the expected values for how and how++ (which 
is used in Figure 15.36). 

Figure 15.35. shutdown system can options. 
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Figure 15.36. soshutdown function. 

 

 

Notice that there is an implicit numerical relationship between how and the constants 
FREAD and FWRITE. 

558-564 

shutdown is a wrapper function for soshutdown. The socket associated with the descriptor is 
returned by getsock, soshutdown is called, and its value is returned. 

soshutdown and sorflush 

The shut down of the read-half of a connection is handled in the socket layer by sorflush, and 
the shut down of the write-half of a connection is processed by the PRU_SHUTDOWN request in the 
protocol layer. The soshutdown function is shown in Figure 15.36. 

720-732 

If the read-half of the socket is being closed, sorflush, shown in Figure 15.37, discards the data 
in the socket's receive buffer and disables the read-half of the connection. If the write-half of the 
socket is being closed, the PRU_SHUTDOWN request is issued to the protocol. 
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Figure 15.37. sorflush function. 

 

 

733-747 

The process waits for a lock on the receive buffer. Because of SB_NOINTR, sblock does not 
return when an interrupt occurs. splimp blocks network interrupts and protocol processing while 
the socket is modified, since the receive buffer may be accessed by the protocol layer as it processes 
incoming packets. 

socantrcvmore marks the socket to reject incoming packets. A copy of the sockbuf 
structure is saved in asb to be used after interrupts are restored by splx. The original sockbuf 
structure is cleared by bzero, so that the receive queue appears to be empty. 

Release control mbufs 

748-751 

Some kernel resources may be referenced by control information present in the receive queue when 
shutdown was called. The mbuf chain is still available through sb_mb in the copy of the 
sockbuf structure. 

If the protocol supports access rights and has registered a dom_dispose function, it is called here 
to release these resources. 

In the Unix domain it is possible to pass descriptors between processes with control 
messages. These messages contain pointers to reference counted data structures. The 
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dom_dispose function takes care of discarding the references and the data 
structures if necessary to avoid creating an unreferenced structure and introducing a 
memory leak in the kernel. For more information on passing file descriptors within 
the Unix domain, see [Stevens 1990] and [Leffler et al. 1989]. 

Any input data pending when shutdown is called is discarded when sbrelease releases any 
mbufs on the receive queue. 

Notice that the shut down of the read-half of the connection is processed entirely by the socket layer 
(Exercise 15.6) and the shut down of the write-half of the connection is handled by the protocol 
through the PRU_SHUTDOWN request. TCP responds to the PRU_SHUTDOWN by sending all 
queued data and then a FIN to close the write-half of the TCP connection. 

15.15. close System Call 

The close system call works with any type of descriptor. When fd is the last descriptor that 
references the object, the object-specific close function is called: 

    error = (*fp->f_ops->fo_close)(fp, p); 
 

As shown in Figure 15.13, fp->f_ops->fo_close for a socket is the function 
soo_close. 

soo_close Function 

This function, shown in Figure 15.38, is a wrapper for the soclose function. 

Figure 15.38. soo_close function. 

 

 

152-161 

If a socket structure is associated with the file structure, soclose is called, f_data is 
cleared, and any posted error is returned. 

soclose Function 
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This function aborts any connections that are pending on the socket (i.e., that have not yet been 
accepted by a process), waits for data to be transmitted to the foreign system, and releases the data 
structures that are no longer needed. 

soclose is shown in Figure 15.39. 

Figure 15.39. soclose function. 

 

 
 
Discard pending connections 

129-141 
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If the socket was accepting connections, soclose traverses the two connection queues and calls 
soabort for each pending connection. If the protocol control block is null, the protocol has already 
been detached from the socket and soclose jumps to the cleanup code at discard. 

soabort issues the PRU_ABORT request to the socket's protocol and returns the 
result. soabort is not shown in this text. Figures 23.38 and 30.7 discuss how 
UDP and TCP handle this request. 

Break established connection or association 

 142-157 

If the socket is not connected, execution continues at drop; otherwise the socket must be 
disconnected from its peer. If a disconnect is not in progress, sodisconnect starts the 
disconnection process. If the SO_LINGER socket option is set, soclose may need to wait for the 
disconnect to complete before returning. A nonblocking socket never waits for a disconnect to 
complete, so soclose jumps immediately to drop in that case. Otherwise, the connection 
termination is in progress and the SO_LINGER option indicates that soclose must wait some 
time for it to complete. The while loop continues until the disconnect completes, the linger time 
(so_linger) expires, or a signal is delivered to the process. 

If the linger time is set to 0, tsleep returns only when the disconnect completes 
(perhaps because of an error) or a signal is delivered. 

Release data structures 

158-173 

If the socket still has an attached protocol, the PRU_DETACH request breaks the connection 
between this socket and the protocol. Finally the socket is marked as not having an associated file 
descriptor, which allows sofree to release the socket. 

The sofree function is shown in Figure 15.40. 

Figure 15.40. sofree function. 

 



ptg11539634

 482

Return if socket still in use 

 110-114 

If a protocol is still associated with the socket, or if the socket is still associated with a descriptor, 
sofree returns immediately. 

Remove from connection queues 

115-119 

If the socket is on a connection queue (so_head is nonnull), the socket's queues should be empty.  
If they are not empty, there is a bug in the socket code and the kernel panics. If they are empty, 
so_head is cleared.  
 
Discard send and receive queues 

120-123 

sbrelease discards any buffers in the send queue and sorflush discards any buffers in the 
receive queue. Finally, the socket itself is released. 

15.16. Summary 

In this chapter we looked at all the system calls related to network operations. The system call 
mechanism was described, and we traced the calls until they entered the protocol processing layer 
through the pr_usrreq function. 

While looking at the socket layer, we avoided any discussion of address formats, protocol semantics, 
or protocol implementations. In the upcoming chapters we tie together the link-layer processing and 
socket-layer processing by looking in detail at the implementation of the Internet protocols in the 
protocol processing layer. 

Exercises 

15.1 How can a process without superuser privileges gain access to a socket created by a 
superuser process? 

15.2 How can a process determine if the sockaddr buffer it provides to accept was too 
small to hold the foreign address returned by the call? 

15.3 A feature proposed for IPv6 sockets is to have accept and recvfrom return a 
source route as an array of 128-bit IPv6 addresses instead of a single peer address. Since 
the array will not fit in a single mbuf, modify accept and recvfrom to handle an 
mbuf chain from the protocol layer instead of a single mbuf. Will the existing code work if 
the protocol layer returns the array in an mbuf cluster instead of a chain of mbufs? 
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15.4 Why is panic called when soqremque returns a null pointer in Figure 15.26? 

15.5 Why does sorflush make a copy of the receive buffer? 

15.6 What happens when additional data is received after sorflush has zeroed the socket's 
receive buffer? Read Chapter 16 before attempting this exercise. 
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Chapter 16. Socket I/O 

16.1. Introduction 

In this chapter we discuss the system calls that read and write data on a network connection. The 
chapter is divided into three parts. 

The first part covers the four system calls for sending data: write, writev, sendto, and 
sendmsg. The second part covers the four system calls for receiving data: read, readv, 
recvfrom, and recvmsg. The third part of the chapter covers the select system call, 
which provides a standard way to monitor the status of descriptors in general and sockets in particular. 

The core of the socket layer is the sosend and soreceive functions. They handle all I/O 
between the socket layer and the protocol layer. As we’ll see, the semantics of the various types of 
protocols overlap in these functions, making the functions long and complex. 

16.2. Code Introduction 

The three headers and four C files listed in Figure 16.1 are covered in this chapter. 

Figure 16.1. Files discussed in this chapter.

 

 
 

Global Variables

The first two global variables shown in Figure 16.2 are used by the select system call. The third 
global variable controls the amount of memory allocated to a socket. 

Figure 16.2. Global variables introduced in this chapter.
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16.3. Socket Buffers 

Section 15.3 showed that each socket has an associated send and receive buffer. The sockbuf 
structure definition from Figure 15.5 is repeated in Figure 16.3. 

Figure 16.3. sockbuf structure.

 

 

72-78

Each buffer contains control information as well as pointers to data stored in mbuf chains. sb_mb 
points to the first mbuf in the chain, and sb_cc is the total number of data bytes contained within 
the mbufs. sb_hiwat and sb_lowat regulate the socket flow control algorithms, sb_mbcnt 
is the total amount of memory allocated to the mbufs in the buffer. 

Recall that each mbuf may store from 0 to 2048 bytes of data (if an external cluster is used). 
sb_mbmax is an upper bound on the amount of memory to be allocated as mbufs for each socket 
buffer. Default limits are specified by each protocol when the PRU_ATTACH request is issued by 
the socket system call. The high-water and low-water marks may be modified by the process as 
long as the kernel-enforced hard limit of 262,144 bytes per socket buffer (sb_max) is not exceeded. 
The flow control algorithms are described in Sections 16.4 and 16.8. Figure 16.4 shows the default 
settings for the Internet protocols. 

Figure 16.4. Default socket buffer limits for the Internet protocols.

 

 

Since the source address of each incoming UDP datagram is queued with the data (Section 23.8), the 
default UDP value for sb_hiwat is set to accommodate 40 1K datagrams and their associated 
sockaddr_in structures (16 bytes each). 

79
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sb_sel is a selinfo structure used to implement the select system call (Section 16.13). 
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Figure 16.5 lists the possible values for sb_flags.

Figure 16.5. sb_flags values.

 

 

81-82

sb_timeo is measured in clock ticks and limits the time a process blocks during a read or write 
call. The default value of 0 causes the process to wait indefinitely. sb_timeo may be changed or 
retrieved by the SO_SNDTIMEO and SO_RCVTIMEO socket options. 

Socket Macros and Functions

There are many macros and functions that manipulate the send and receive buffers associated with 
each socket. The macros and functions in Figure 16.6 handle buffer locking and synchronization. 
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Figure 16.6. Macros and functions for socket buffer locking and 

synchronization.

 

 

Figure 16.7 includes the macros and functions used to set the resource limits for socket buffers and to 
append and delete data from the buffers. In the table, m, m0, n, and control are all pointers to mbuf 
chains. sb points to the send or receive buffer for a socket. 
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Figure 16.7. Macros and functions for socket buffer allocation and 

manipulation.
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16.4. write, writev, sendto, and sendmsg System 
Calls

These four system calls, which we refer to collectively as the write system calls, send data on a 
network connection. The first three system calls are simpler interfaces to the most general request, 
sendmsg.

All the write system calls, directly or indirectly, call sosend, which does the work of copying data 
from the process to the kernel and passing data to the protocol associated with the socket. Figure 16.8 
summarizes the flow of control. 

Figure 16.8. All socket output is handled by sosend.

 

 

In the following sections, we discuss the functions shaded in Figure 16.8. The other four system calls 
and soo_write are left for readers to investigate on their own. 

Figure 16.9 shows the features of these four system calls and a related library function (send). 
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Figure 16.9. Write system calls.

 

 

In Net/3, send is implemented as a library function that calls sendto. For 
binary compatibility with previously compiled programs, the kernel maps the old 
send system call to the function osend, which is not discussed in this text. 

From the second column in Figure 16.9 we see that the write and writev system calls are valid 
with any descriptor, but the remaining system calls are valid only with socket descriptors. 

The third column shows that writev and sendmsg accept data from multiple buffers. Writing 
from multiple buffers is called gathering. The analogous read operation is called scattering. In a 
gather operation the kernel accepts, in order, data from each buffer specified in an array of iovec 
structures. The array can have a maximum of UIO_MAXIOV elements. The structure is shown in 
Figure 16.10. 

Figure 16.10. iovec structure.

 

 

41-44

iov_base points to the start of a buffer of iov_len bytes. 

Without this type of interface, a process would have to copy buffers into a single larger buffer or make 
multiple write system calls to send data from multiple buffers. Both alternatives are less efficient than 
passing an array of iovec structures to the kernel in a single call. With datagram protocols, the 
result of one writev is one datagram, which cannot be emulated with multiple writes. 

Figure 16.11 illustrates the structures as they are used by writev, where iovp points to the first 
element of the array and iovcnt is the size of the array. 
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Figure 16.11. iovec arguments to writev.

 

 

Datagram protocols require a destination address to be associated with each write call. Since 
write, writev, and send do not accept an explicit destination, they may be called only after 
a destination has been associated with a connectionless socket by calling connect. A destination 
must be provided with sendto or sendmsg, or connect must have been previously called. 

The fifth column in Figure 16.9 shows that the sendxxx system calls accept optional control flags, 
which are described in Figure 16.12. 

Figure 16.12. sendxxx system calls: flags values.

 

 

As indicated in the last column of Figure 16.9, only the sendmsg system call supports control 
information. The control information and several other arguments to sendmsg are specified within 
a msghdr structure (Figure 16.13) instead of being passed separately. 

Figure 16.13. msghdr structure.

 

 

msg_name should be declared as a pointer to a sockaddr structure, since it 
contains a network address. 

228-236
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The msghdr structure contains a destination address (msg_name and msg_namelen), a 
scatter/gather array (msg_iov and msg_iovlen), control information (msg_control and 
msg_controllen), and receive flags (msg_flags). The control information is formatted as 
a cmsghdr structure shown in Figure 16.14. 

Figure 16.14. cmsghdr structure.

 

 

251-256

The control information is not interpreted by the socket layer, but the messages are typed 
(cmsg_type) and they have an explicit length (cmsg_len). Multiple control messages may 
appear in the control information mbuf. 

Example

Figure 16.15 shows how a fully specified msghdr structure might look during a call to 
sendmsg.

Figure 16.15. msghdr structure for sendmsg system call.

 

16.5. sendmsg System Call 

 492

Only the sendmsg system call provides access to all the features of the sockets API associated with 
output. The sendmsg and sendit functions prepare the data structures needed by sosend, 
which passes the message to the appropriate protocol. For SOCK_DGRAM protocols, a message is a 
datagram. For SOCK_STREAM protocols, a message is a sequence of bytes. For 
SOCK_SEQPACKET protocols, a message could be an entire record (implicit record boundaries) or 
part of a larger record (explicit record boundaries). A message is always an entire record (implicit 
record boundaries) for SOCK_RDM protocols. 
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Even though the general sosend code handles SOCK_SEQPACKET and 
SOCK_RDM protocols, there are no such protocols in the Internet domain. 

Figure 16.16 shows the sendmsg code. 

Figure 16.16. sendmsg system call.

 

 

307-321

There are three arguments to sendmsg: the socket descriptor; a pointer to a msghdr structure; 
and several control flags. The copyin function copies the msghdr structure from user space to 
the kernel. 

Copy iov array

322-334

An iovec array with eight entries (UIO_SMALLIOV) is allocated automatically on the stack. If 
this is not large enough, sendmsg calls MALLOC to allocate a larger array. If the process specifies 
an array with more than 1024 (UIO_MAXIOV) entries, EMSGSIZE is returned. copyin places a 
copy of the iovec array from user space into either the array on the stack or the larger, dynamically 
allocated, array. 
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This technique avoids the relatively expensive call to malloc in the most common 
case of eight or fewer entries. 

sendit and cleanup

335-340

When sendit returns, the data has been delivered to the appropriate protocol or an error has 
occurred. sendmsg releases the iovec array (if it was dynamically allocated) and returns 
sendit’s result. 

16.6. sendit Function 

sendit is the common function called by sendto and sendmsg. sendit initializes a 
uio structure and copies control and address information from the process into the kernel. Before 
discussing sosend, we must explain the uiomove function and the uio structure. 

uiomove Function

The prototype for this function is: 

    int uiomove(caddr_t cp, int n, struct uio *uio);
 

The uiomove function moves n bytes between a single buffer referenced by cp and the multiple 
buffers specified by an iovec array in uio. Figure 16.17 shows the definition of the uio structure, 
which controls and records the actions of the uiomove function. 

Figure 16.17. uio structure.

 

 

45-61

 494

In the uio structure, uio_iov points to an array of iovec structures, uio_offset counts 
the number of bytes transferred by uiomove, and uio_resid counts the number of bytes 
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remaining to be transferred. Each time uiomove is called, uio_offset increases by n and 
uio_resid decreases by n. uiomove adjusts the base pointers and buffer lengths in the 
uio_iov array to exclude any bytes that uiomove transfers each time it is called. Finally, 
uio_iov is advanced through each entry in the array as each buffer is transferred. uio_segflg 
indicates the location of the buffers specified by the base pointers in the uio_iov array and 
uio_rw indicates the direction of the transfer. The buffers may be located in the user data space, 
user instruction space, or kernel data space. Figure 16.18 summarizes the operation of uiomove. 
The descriptions use the argument names shown in the uiomove prototype. 

Figure 16.18. uiomove operation.

 

 
 

Example

Figure 16.19 shows a uio structure before uiomove is called. 

Figure 16.19. uiomove: before.

 

 

uio_iov points to the first entry in the iovec array. Each of the iov_base pointers point to 
the start of their respective buffer in the address space of the process. uio_offset is 0, and 
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uio_resid is the sum of size of the three buffers. cp points to a buffer within the kernel, 
typically the data area of an mbuf. Figure 16.20 shows the same data structures after 

Figure 16.20. uiomove: after.

 

 
   uiomove(cp, n, uio); 
 

is executed where n includes all the bytes from the first buffer and only some of the bytes from the 
second buffer (i.e., n0 < n < n0 + n1). 

After uiomove, the first buffer has a length of 0 and its base pointer has been advanced to the end 
of the buffer. uio_iov now points to the second entry in the iovec array. The pointer in this 
entry has been advanced and the length decreased to reflect the transfer of some of the bytes in the 
buffer. uio_offset has been increased by n and uio_resid has been decreased by n. The 
data from the buffers in the process has been moved into the kernel’s buffer because uio_rw was 
UIO_WRITE.

sendit Code

We can now discuss the sendit code shown in Figure 16.21. 
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Figure 16.21. sendit function.
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Initialize auio

341-368

sendit calls getsock to get the file structure associated with the descriptor s and initializes 
the uio structure to gather the output buffers specified by the process into mbufs in the kernel. The 
length of the transfer is calculated by the for loop as the sum of the buffer lengths and saved in 
uio_resid. The first if within the loop ensures that the buffer length is nonnegative. The 
second if ensures that uio_resid does not overflow, since uio_resid is a signed integer 
and iov_len is guaranteed to be nonnegative. 

Copy address and control information from the process

369-385

sockargs makes copies of the destination address and control information into mbufs if they are 
provided by the process. 

Send data and cleanup

386-401

uio_resid is saved in len so that the number of bytes transferred can be calculated if sosend 
does not accept all the data. The socket, destination address, uio structure, control information, and 
flags are all passed to sosend. When sosend returns, sendit responds as follows: 

If sosend transfers some data and is interrupted by a signal or a blocking condition, the 
error is discarded and the partial transfer is reported. 
If sosend returns EPIPE, the SIGPIPE signal is sent to the process. error is not 
set to 0, so if a process catches the signal and the signal handler returns, or if the process 
ignores the signal, the write call returns EPIPE. 
If no error occurred (or it was discarded), the number of bytes transferred is calculated and 
saved in *retsize. Since sendit returns 0, syscall (Section 15.4) returns 
*retsize to the process instead of returning the error code. 
If any other error occurs, the error code is returned to the process. 

Before returning, sendit releases the mbuf containing the destination address. sosend is 
responsible for releasing the control mbuf. 

16.7. sosend Function 

sosend is one of the most complicated functions in the socket layer. Recall from Figure 16.8 that 
all five write calls eventually call sosend. It is sosend’s responsibility to pass the data and 
control information to the pr_usrreq function of the protocol associated with the socket 
according to the semantics supported by the protocol and the buffer limits specified by the socket. 
sosend never places data in the send buffer; it is the protocol’s responsibility to store and remove 
the data. 

The interpretation of the send buffer’s sb_hiwat and sb_lowat values by sosend depends 
on whether the associated protocol implements reliable or unreliable data transfer semantics. 
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Reliable Protocol Buffering

For reliable protocols, the send buffer holds both data that has not yet been transmitted and data that 
has been sent, but has not been acknowledged. sb_cc is the number of bytes of data that reside in 

the send buffer, and 0 sb_cc sb_hiwat.

sb_cc may temporarily exceed sb_hiwat when out-of-band data is sent. 

It is sosend’s responsibility to ensure that there is enough space in the send buffer before passing 
any data to the protocol layer through the pr_usrreq function. The protocol layer adds the data to 
the send buffer. sosend transfers data to the protocol in one of two ways: 

If PR_ATOMIC is set, sosend must preserve the message boundaries between the 
process and the protocol layer. In this case, sosend waits for enough space to become 
available to hold the entire message. When the space is available, an mbuf chain containing 
the entire message is constructed and passed to the protocol in a single call through the 
pr_usrreq function. RDP and SPP are examples of this type of protocol. 
If PR_ATOMIC is not set, sosend passes the message to the protocol one mbuf at a time 
and may pass a partial mbuf to avoid exceeding the high-water mark. This method is used 
with SOCK_STREAM protocols such as TCP and SOCK_SEQPACKET protocols such as 
TP4. With TP4, record boundaries are indicated explicitly with the MSG_EOR flag (Figure 
16.12), so it is not necessary for the message boundaries to be preserved by sosend. 

TCP applications have no control over the size of outgoing TCP segments. For example, a message of 
4096 bytes sent on a TCP socket will be split by the socket layer into two mbufs with external 
clusters, containing 2048 bytes each, assuming there is enough space in the send buffer for 4096 bytes. 
Later, during protocol processing, TCP will segment the data according to the maximum segment size 
for the connection, which is normally less than 2048. 

When a message is too large to fit in the available buffer space and the protocol allows messages to be 
split, sosend still does not pass data to the protocol until the free space in the buffer rises above 
sb_lowat. For TCP, sb_lowat defaults to 2048 (Figure 16.4), so this rule prevents the socket 
layer from bothering TCP with small chunks of data when the send buffer is nearly full. 

Unreliable Protocol Buffering

With unreliable protocols (e.g., UDP), no data is ever stored in the send buffer and no 
acknowledgment is ever expected. Each message is passed immediately to the protocol where it is 
queued for transmission on the appropriate network device. In this case, sb_cc is always 0, and 
sb_hiwat specifies the maximum size of each write and indirectly the maximum size of a 
datagram. 

Figure 16.4 shows that sb_hiwat defaults to 9216 (9 x 1024) for UDP. Unless the process changes 
sb_hiwat with the SO_SNDBUF socket option, an attempt to write a datagram larger than 9216 
bytes returns with an error. Even then, other limitations of the protocol implementation may prevent a 
process from sending large datagrams. Section 11.10 of Volume 1 discusses these defaults and limits 
in other TCP/IP implementations. 

9216 is large enough for a NFS write, which often defaults to 8192 bytes of data plus 
protocol headers. 
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sosend Code

Figure 16.22 shows an overview of the sosend function. We discuss the four shaded sections 
separately. 

Figure 16.22. sosend function: overview.

 

 

271-278

The arguments to sosend are: so, a pointer to the relevant socket; addr, a pointer to a 
destination address; uio, a pointer to a uio structure describing the I/O buffers in user space; 
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top, an mbuf chain that holds data to be sent; control, an mbuf that holds control information 
to be sent; and flags, which contains options for this write call. 

Normally, a process provides data to the socket layer through the uio mechanism and top is null. 
When the kernel itself is using the socket layer (such as with NFS), the data is passed to sosend as 
an mbuf chain pointed to by top, and uio is null. 

279-304

The initialization code is described separately. 

Lock send buffer

305-308

sosend’s main processing loop starts at restart, where it obtains a lock on the send buffer 
with sblock before proceeding. The lock ensures orderly access to the socket buffer by multiple 
processes. 

If MSG_DONTWAIT is set in flags, then SBLOCKWAIT returns M_NOWAIT, which tells 
sblock to return EWOULDBLOCK if the lock is not available immediately. 

MSG_DONTWAIT is used only by NFS in Net/3. 

The main loop continues until sosend transfers all the data to the protocol (i.e., resid == 0). 

Check for space

309-341

Before any data is passed to the protocol, various error conditions are checked and sosend 
implements the flow control and resource control algorithms described earlier. If sosend blocks 
waiting for more space to appear in the output buffer, it jumps back to restart before continuing. 

Use data from top

342-350

Once space becomes available and sosend has obtained a lock on the send buffer, the data is 
prepared for delivery to the protocol layer. If uio is null (i.e., the data is in the mbuf chain pointed to 
by top), sosend checks MSG_EOR and sets M_EOR in the chain to mark the end of a logical 
record. The mbuf chain is ready for the protocol layer. 

Copy data from process

351-396

When uio is not null, sosend must transfer the data from the process. When PR_ATOMIC is set 
(e.g., UDP), this loop continues until all the data has been stored in a single mbuf chain. A break, 
which is not shown in Figure 16.22, causes the loop to terminate when all the data has been copied 
from the process, and sosend passes the entire chain to the protocol. 



ptg11539634

When PR_ATOMIC is not set (e.g., TCP), this loop is executed only once, filling a single mbuf with 
data from uio. In this case, the mbufs are passed one at a time to the protocol. 

Pass data to the protocol

397-413

For PR_ATOMIC protocols, after the mbuf chain is passed to the protocol, resid is always 0 and 
control falls through the two loops to release. When PR_ATOMIC is not set, sosend 
continues filling individuals mbufs while there is more data to send and while there is still space in the 
buffer. If the buffer fills and there is still data to send, sosend loops back and waits for more space 
before filling the next mbuf. If all the data is sent, both loops terminate. 

Cleanup

414-422

After all the data has been passed to the protocol, the socket buffer is unlocked, any remaining mbufs 
are discarded, and sosend returns. 

The detailed description of sosend is shown in four parts: 

initialization (Figure 16.23), 

Figure 16.23. sosend function: initialization.

 

error and resource checking (Figure 16.24), 
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Figure 16.24. sosend function: error and resource checking.

 

data transfer (Figure 16.25), and 
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Figure 16.25. sosend function: data transfer.

 

protocol dispatch (Figure 16.26). 
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Figure 16.26. sosend function: protocol dispatch.

 

The first part of sosend shown in Figure 16.23 initializes various variables. 

Compute transfer size and semantics

279-284

atomic is set if sosendallatonce is true (any protocol for which PR_ATOMIC is set) or 
the data has been passed to sosend as an mbuf chain in top. This flag controls whether data is 
passed to the protocol as a single mbuf chain or in separate mbufs. 

285-297

resid is the number of bytes in the iovec buffers or the number of bytes in the top mbuf chain. 
Exercise 16.1 discusses why resid might be negative. 

If requested, disable routing

298-303

dontroute is set when the routing tables should be bypassed for this message only. clen is the 
number of bytes in the optional control mbuf. 

304

The macro snderr posts the error code, reenables protocol processing, and jumps to the cleanup 
code at out. This macro simplifies the error handling within the function. 

Figure 16.24 shows the part of sosend that checks for error conditions and waits for space to 
appear in the send buffer. 

309

Protocol processing is suspended to prevent the buffer from changing while it is being examined. 
Before each transfer, sosend checks several conditions: 
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310-311 

If output from the socket is prohibited (e.g., the write-half of a TCP connection has been 
closed), EPIPE is returned. 

312-313 

If the socket is in an error state (e.g., an ICMP port unreachable may have been generated by 
a previous datagram), so_error is returned. sendit discards the error if some data has 
been sent before the error occurs (Figure 16.21, line 389). 

314-318 

If the protocol requires connections and a connection has not been established or a connection 
attempt has not been started, ENOTCONN is returned. sosend permits a write consisting 
of control information and no data even when a connection has not been established. 

The Internet protocols do not use this feature, but it is used by TP4 to send 
data with a connection request, to confirm a connection request, and to send 
data with a disconnect request. 

319-321 

If a destination address is not specified for a connectionless protocol (e.g., the process calls 
send without establishing a destination with connect), EDESTADDREQ is returned. 

Compute available space

322-324

sbspace computes the amount of free space remaining in the send buffer. This is an administrative 
limit based on the buffer’s high-water mark, but is also limited by sb_mbmax to prevent many small 
messages from consuming too many mbufs (Figure 16.6). sosend gives out-of-band data some 
priority by relaxing the limits on the buffer size by 1024 bytes. 

Enforce message size limit

325-327

If atomic is set and the message is larger than the high-water mark, EMSGSIZE is returned; the 
message is too large to be accepted by the protocol e ven if the buffer were empty. If the control 
information is larger than the high-water mark, EMSGSIZE is also returned. This is the test that 
limits the size of a datagram or record. 

Wait for more space?

328-329

If there is not enough space in the send buffer, the data is from a process (versus from the kernel in 
top), and one of the following conditions is true, then sosend must wait for additional space 
before continuing: 
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the message must be passed to protocol in a single request (atomic is set), or 
the message may be split, but the free space has dropped below the low-water mark, or 
the message may be split, but the control information does not fit in the available space. 

When the data is passed to sosend in top (i.e., when uio is null), the data is already located in 
mbufs. Therefore sosend ignores the high- and low-water marks since no additional mbuf 
allocations are required to pass the data to the protocol. 

If the send buffer low-water mark is not used in this test, an interesting interaction occurs between the 
socket layer and the transport layer that leads to performance degradation. [Crowcroft et al. 1992] 
provides details on this scenario. 

Wait for space

330-338

If sosend must wait for space and the socket is nonblocking, EWOULDBLOCK is returned. 
Otherwise, the buffer lock is released and sosend waits with sbwait until the status of the buffer 
changes. When sbwait returns, sosend reenables protocol processing and jumps back to 
restart to obtain a lock on the buffer and to check the error and space conditions again before 
continuing. 

By default, sbwait blocks until data can be sent. By changing sb_timeo in the buffer through 
the SO_SNDTIMEO socket option, the process selects an upper bound for the wait time. If the timer 
expires, sbwait returns EWOULDBLOCK. Recall from Figure 16.21 that this error is discarded 
by sendit if some data has already been transferred to the protocol. This timer does not limit the 
length of the entire call, just the inactivity time between filling mbufs. 

339-341

At this point, sosend has determined that some data may be passed to the protocol. splx enables 
interrupts since they should not be blocked during the relatively long time it takes to copy data from 
the process to the kernel. mp holds a pointer used to construct the mbuf chain. The size of the control 
information (clen) is subtracted from the space available before sosend transfers any data from 
the process. 

Figure 16.25 shows the section of sosend that moves data from the process to one or more mbufs 
in the kernel. 

Allocate packet header or standard mbuf

351-360

When atomic is set, this code allocates a packet header during the first iteration of the loop and 
standard mbufs afterwards. When atomic is not set, this code always allocates a packet header 
since top is always cleared before entering the loop. 
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If possible, use a cluster

361-371

If the message is large enough to make a cluster allocation worthwhile and space is greater than or 
equal to MCLBYTES, a cluster is attached to the mbuf by MCLGET. When space is less than 
MCLBYTES, the extra 2048 bytes will break the allocation limit for the buffer since the entire 
cluster is allocated even if resid is less than MCLBYTES.

If MCLGET fails, sosend jumps to nopages and uses a standard mbuf instead of an external 
cluster. 

The test against MINCLSIZE should use >, not >=, since a write of 208 
(MINCLSIZE) bytes fits within two mbufs. 

When atomic is set (e.g., UDP), the mbuf chain represents a datagram or record and max_hdr 
bytes are reserved at the front of the first cluster for protocol headers. Subsequent clusters are part of 
the same chain and do not need room for the headers. 

If atomic is not set (e.g., TCP), no space is reserved since sosend does not know how the 
protocol will segment the outgoing data. 

Notice that space is decremented by the size of the cluster (2048 bytes) and not by len, which is 
the number of data bytes to be placed in the cluster (Exercise 16.2). 

Prepare the mbuf

372-382

If a cluster was not used, the number of bytes stored in the mbuf is limited by the smaller of: (1) the 
space in the mbuf, (2) the number of bytes in the message, or (3) the space in the buffer. 

When atomic is set, MH_ALIGN locates the data at the end of the buffer for the first buffer in the 
chain. MH_ALIGN is skipped if the data completely fills the mbuf. This may or may not leave 
enough room for protocol headers, depending on how much data is placed in the mbuf. When 
atomic is not set, no space is set aside for the headers. 

Get data from the process

383-395

uiomove copies len bytes of data from the process to the mbuf. After the transfer, the mbuf 
length is updated, the previous mbuf is linked to the new mbuf (or top points to the first mbuf), and 
the length of the mbuf chain is updated. If an error occurred during the transfer, sosend jumps to 
release.
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When the last byte is transferred from the process, M_EOR is set in the packet if the process set 
MSG_EOR, and sosend breaks out of this loop. 

MSG_EOR applies only to protocols with explicit record boundaries such as TP4, 
from the OSI protocol suite. TCP does not support logical records and ignores the 
MSG_EOR flag. 

Fill another buffer?

396

If atomic is set, sosend loops back and begins filling another mbuf. 

The test for space > 0 appears to be extraneous. space is irrelevant when 
atomic is not set since the mbufs are passed to the protocol one at a time. When 
atomic is set, this loop is entered only when there is enough space for the entire 
message. See also Exercise 16.2. 

The last section of sosend, shown in Figure 16.26, passes the data and control mbufs to the 
protocol associated with the socket. 

397-405

The socket’s SO_DONTROUTE option is toggled if necessary before and after passing the data to the 
protocol layer to bypass the routing tables on this message. This is the only option that can be enabled 
for a single message and, as described with Figure 16.23, it is controlled by the MSG_DONTROUTE 
flag during a write. 

pr_usrreq is bracketed with splnet and splx to block interrupts while the protocol is 
processing the message. This is a paranoid assumption since some protocols (such as UDP) may be 
able to do output processing without blocking interrupts, but this information is not available at the 
socket layer. 

If the process tagged this message as out-of-band data, sosend issues the PRU_SENDOOB 
request; otherwise it issues the PRU_SEND request. Address and control mbufs are also passed to 
the protocol at this time. 

406-413

clen, control, top, and mp are reset, since control information is passed to the protocol 
only once and a new mbuf chain is constructed for the next part of the message. resid is nonzero 
only when atomic is not set (e.g., TCP). In that case, if space remains in the buffer, sosend 
loops back to fill another mbuf. If there is no more space, sosend loops back to wait for more space 
(Figure 16.24). 

We’ll see in Chapter 23 that unreliable protocols, such as UDP, immediately queue the data for 
transmission on the network. Chapter 26 describes how reliable protocols, such as TCP, add the data 
to the socket’s send buffer where it remains until it is sent to, and acknowledged by, the destination. 
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sosend Summary

sosend is a complex function. It is 142 lines long, contains three nested loops, one loop 
implemented with goto, two code paths based on whether PR_ATOMIC is set or not, and two 
concurrency locks. As with much software, some of the complexity has accumulated over the years. 
NFS added the MSG_DONTWAIT semantics and the possibility of receiving data from an mbuf 
chain instead of the buffers in a process. The SS_ISCONFIRMING state and MSG_EOR flag 
were introduced to handle the connection and record semantics of the OSI protocols. 

A cleaner approach would be to implement a separate sosend function for each type of protocol 
and dispatch through a pr_send pointer in the protosw entry. This idea is suggested and 
implemented for UDP in [Partridge and Pink 1993]. 

Performance Considerations

As described in Figure 16.25, sosend, when possible, passes message in mbuf-sized chunks to the 
protocol layer. While this results in more calls to the protocol than building and passing an entire 
mbuf chain, [Jacobson 1988a] reports that it improves performance by increasing parallelism. 

Transferring one mbuf at a time (up to 2048 bytes) allows the CPU to prepare a packet while the 
network hardware is transmitting. Contrast this to a sending a large mbuf chain: while the chain is 
being constructed, the network and the receiving system are idle. On the system described in 
[Jacobson 1988a], this change resulted in a 20% increase in network throughput. 

It is important to make sure the send buffer is always larger than the bandwidth-delay product of a 
connection (Section 20.7 of Volume 1). For example, if TCP discovers that the connection can hold 20 
segments before an acknowledgment is received, the send buffer must be large enough to hold the 20 
unacknowledged segments. If it is too small, TCP will run out of data to send before the first 
acknowledgment is returned and the connection will be idle for some period of time. 

16.8. read, readv, recvfrom, and recvmsg System 
Calls

These four system calls, which we refer to collectively as read system calls, receive data from a 
network connection. The first three system calls are simpler interfaces to the most general read system 
call, recvmsg. Figure 16.27 summarizes the features of the four read system calls and one library 
function (recv). 

Figure 16.27. Read system calls.

 

 

In Net/3, recv is implemented as a library function that calls recvfrom. For 
binary compatibility with previously compiled programs, the kernel maps the old 
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recv system call to the function orecv. We discuss only the kernel 
implementation of recvfrom.

The read and readv system calls are valid with any descriptor, but the remaining calls are valid 
only with socket descriptors. 

As with the write calls, multiple buffers are specified by an array of iovec structures. For datagram 
protocols, recvfrom and recvmsg return the source address associated with each incoming 
datagram. For connection-oriented protocols, getpeername returns the address associated with 
the other end of the connection. The flags associated with the receive calls are shown in Section 16.11. 

As with the write calls, the receive calls utilize a common function, in this case soreceive, to do 
all the work. Figure 16.28 illustrates the flow of control for the read system calls. 

Figure 16.28. All socket input is processed by soreceive.

 

 

We discuss only the three shaded functions in Figure 16.28. The remaining functions are left for 
readers to investigate on their own. 

16.9. recvmsg System Call 

The recvmsg function is the most general read system call. Addresses, control information, and 
receive flags may be discarded without notification if a process uses one of the other read system calls 
while this information is pending. Figure 16.29 shows the recvmsg function. 
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Figure 16.29. recvmsg system call.

 

 

433-445

The three arguments to recvmsg are: the socket descriptor; a pointer to a msghdr structure; and 
several control flags. 

Copy iov array

446-461

As with sendmsg, recvmsg copies the msghdr structure into the kernel, allocates a larger 
iovec array if the automatic array aiov is too small, and copies the array entries from the process 
into the kernel array pointed to by iov (Section 16.4). The flags provided as the third argument are 
copied into the msghdr structure. 
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recvit and cleanup

462-470

After recvit has received data, the msghdr structure is copied back into the process with the 
updated buffer lengths and flags. If a larger iovec structure was allocated, it is released before 
recvmsg returns. 

16.10. recvit Function 

The recvit function shown in Figures 16.30 and 16.31 is called from recv, recvfrom, 
and recvmsg. It prepares a uio structure for processing by soreceive based on the 
msghdr structure prepared by the recvxxx calls. 

Figure 16.30. recvit function: initialize uio structure.
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Figure 16.31. recvit function: return results.

 

 

471-500

getsock returns the file structure for the descriptor s, and then recvit initializes the uio 
structure to describe a read transfer from the kernel to the process. The number of bytes to transfer is 
computed by summing the msg_iovlen members of the iovec array. The total is saved in 
uio_resid and in len.

The second half of recvit, shown in Figure 16.31, calls soreceive and copies the results 
back to the process. 
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Call soreceive

501-510

soreceive implements the complex semantics of receiving data from the socket buffers. The 
number of bytes transferred is saved in *retsize and returned to the process. When an signal 
arrives or a blocking condition occurs after some data has been copied to the process (len is not 
equal to uio_resid), the error is discarded and the partial transfer is reported. 

Copy address and control information to the process

511-542

If the process provided a buffer for an address or control information or both, the buffers are filled and 
their lengths adjusted according to what soreceive returned. An address may be truncated if the 
buffer is too small. This can be detected by the process if it saves the buffer length before the read call 
and compares it with the value returned by the kernel in the namelenp variable (or in the length 
field of the sockaddr structure). Truncation of control information is reported by setting 
MSG_CTRUNC in msg_flags. See also Exercise 16.7. 

Cleanup

543-549

At out, the mbufs allocated for the source address and the control information are released. 

16.11. soreceive Function 

This function transfers data from the receive buffer of the socket to the buffers specified by the 
process. Some protocols provide an address specifying the sender of the data, and this can be returned 
along with additional control information that may be present. Before examining the code, we need to 
discuss the semantics of a receive operation, out-of-band data, and the organization of a socket’s 
receive buffer. 

Figure 16.32 lists the flags that are recognized by the kernel during soreceive.

Figure 16.32. recvxxx system calls: flag values passed to kernel.

 

 

recvmsg is the only read system call that returns flags to the process. In the other calls, the 
information is discarded by the kernel before control returns to the process. Figure 16.33 lists the flags 
that recvmsg can set in the msghdr structure. 
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Figure 16.33. recvmsg system call: msg_flag values returned by kernel.

 

 
 

Out-of-Band Data

Out-of-band (OOB) data semantics vary widely among protocols. In general, protocols expedite OOB 
data along a previously established communication link. The OOB data might not remain in sequence 
with previously sent regular data. The socket layer supports two mechanisms to facilitate handling 
OOB data in a protocol-independent way: tagging and synchronization. In this chapter we describe the 
abstract OOB mechanisms implemented by the socket layer. UDP does not support OOB data. The 
relationship between TCP’s urgent data mechanism and the socket OOB mechanism is described in the 
TCP chapters. 

A sending process tags data as OOB data by setting the MSG_OOB flag in any of the sendxxx calls, 
sosend passes this information to the socket’s protocol, which provides any special services, such 
as expediting the data or using an alternate queueing strategy. 

When a protocol receives OOB data, the data is set aside instead of placing it in the socket’s receive 
buffer. A process receives the pending OOB data by setting the MSG_OOB flag in one of the 
recvxxx calls. Alternatively, the receiving process can ask the protocol to place OOB data inline 
with the regular data by setting the SO_OOBINLINE socket option (Section 17.3). When 
SO_OOBINLINE is set, the protocol places incoming OOB data in the receive buffer with the 
regular data. In this case, MSG_OOB is not used to receive the OOB data. Read calls return either all 
regular data or all OOB data. The two types are never mixed in the input buffers of a single input 
system call. A process that uses recvmsg to receive data can examine the MSG_OOB flag to 
determine if the returned data is regular data or OOB data that has been placed inline. 

The socket layer supports synchronization of OOB and regular data by allowing the protocol layer to 
mark the point in the regular data stream at which OOB data was received. The receiver can determine 
when it has reached this mark by using the SIOCATMARK ioctl command after each read 
system call. When receiving regular data, the socket layer ensures that only the bytes preceding the 
mark are returned in a single message so that the receiver does not inadvertently pass the mark. If 
additional OOB data is received before the receiver reaches the mark, the mark is silently advanced. 

Example

Figure 16.34 illustrates the two methods of receiving out-of-band data. 
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Figure 16.34. Receiving out-of-band data.

 

In both examples, bytes A through I have been received as regular data, byte J as out-of-band data, 
and bytes K and L as regular data. The receiving process has accepted all data up to but not including 
byte A. 

In the first example, the process can read bytes A through I or, if MSG_OOB is set, byte J. Even if the 
length of the read request is more than 9 bytes (A—I), the socket layer returns only 9 bytes to avoid 
passing the out-of-band synchronization mark. When byte I is consumed, SIOCATMARK is true; it is 
not necessary to consume byte J for the process to reach the out-of-band mark. 

In the second example, the process can read only bytes A through I, at which point SIOCATMARK is 
true. A second call can read bytes J through L. 

In Figure 16.34, byte J is not the byte identified by TCP’s urgent pointer. The urgent pointer in this 
example would point to byte K. See Section 29.7 for details. 

Other Receive Options

A process can set the MSG_PEEK flag to retrieve data without consuming it. The data remains on the 
receive queue until a read system call without MSG_PEEK is processed. 

The MSG_WAITALL flag indicates that the call should not return until enough data can be returned 
to fulfill the entire request. Even if soreceive has some data that can be returned to the process, it 
waits until additional data has been received. 

When MSG_WAITALL is set, soreceive can return without filling the buffer in the following 
cases: 

the read-half of the connection is closed, 
the socket’s receive buffer is smaller than the size of the read, 
an error occurs while the process is waiting for additional data, 
out-of-band data becomes available, or 
the end of a logical record occurs before the read buffer is filled. 

NFS is the only software in Net/3 that uses the MSG_WAITALL and 
MSG_DONTWAIT flags. MSG_DONTWAIT can be set by a process to 
issue a nonblocking read system call without selecting nonblocking I/O with 
ioctl or fcntl.
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Receive Buffer Organization: Message Boundaries

For protocols that support message boundaries, each message is stored in a single chain of mbufs. 
Multiple messages in the receive buffer are linked together by m_nextpkt to form a queue of 
mbufs (Figure 2.21). The protocol processing layer adds data to the receive queue and the socket layer 
removes data from the receive queue. The high-water mark for a receive buffer restricts the amount of 
data that can be stored in the buffer. 

When PR_ATOMIC is not set, the protocol layer stores as much data in the buffer as possible and 
discards the portion of the incoming data that does not fit. For TCP, this means that any data that 
arrives and is outside the receive window is discarded. When PR_ATOMIC is set, the entire message 
must fit within the buffer. If the message does not fit, the protocol layer discards the entire message. 
For UDP, this means that incoming datagrams are discarded when the receive buffer is full, probably 
because the process is not reading datagrams fast enough. 

Protocols with PR_ADDR set use sbappendaddr to construct an mbuf chain and add it to the 
receive queue. The chain contains an mbuf with the source address of the message, 0 or more control 
mbufs, followed by 0 or more mbufs containing the data. 

For SOCK_SEQPACKET and SOCK_RDM protocols, the protocol builds an mbuf chain for each 
record and calls sbappendrecord to append the record to the end of the receive buffer if 
PR_ATOMIC is set. If PR_ATOMIC is not set (OSI’s TP4), a new record is started with 
sbappendrecord. Additional data is added to the record with sbappend.

It is not correct to assume that PR_ATOMIC indicates the buffer organization. For 
example, TP4 does not have PR_ATOMIC set, but supports record boundaries with 
the M_EOR flag. 

Figure 16.35 illustrates the organization of a UDP receive buffer consisting of 3 mbuf chains (i.e., 
three datagrams). The m_type value for each mbuf is included. 

Figure 16.35. UDP receive buffer consisting of three datagrams.
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In the figure, the third datagram has some control information associated with it. Three UDP socket 
options can cause control information to be placed in the receive buffer. See Figure 22.5 and Section 
23.7 for details. 

For PR_ATOMIC protocols, sb_lowat is ignored while data is being received. When 
PR_ATOMIC is not set, sb_lowat is the smallest number of bytes returned in a read system call. 
There are some exceptions to this rule, discussed with Figure 16.41. 

Receive Buffer Organization: No Message Boundaries

When the protocol does not maintain message boundaries (i.e., SOCK_STREAM protocols such as 
TCP), incoming data is appended to the end of the last mbuf chain in the buffer with sbappend. 
Incoming data is trimmed to fit within the receive buffer, and sb_lowat puts a lower bound on the 
number of bytes returned by a read system call. 

Figure 16.36 illustrates the organization of a TCP receive buffer, which contains only regular data. 

Figure 16.36. so_rcv buffer for TCP.

 

 
 

Control Information and Out-of-band Data

Unlike TCP, some stream protocols support control information and call sbappendcontrol to 
append the control information and the associated data as a new mbuf chain in the receive buffer. If 
the protocol supports inline OOB data, sbinsertoob inserts a new mbuf chain just after any 
mbuf chain that contains OOB data, but before any mbuf chain with regular data. This ensures that 
incoming OOB data is queued ahead of any regular data. 

Figure 16.37 illustrates the organization of a receive buffer that contains control information and OOB 
data. 
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Figure 16.37. so_rcv buffer with control and OOB data.

 

 

The Unix domain stream protocol supports control information and the OSI TP4 protocol supports 
MT_OOBDATA mbufs. TCP does not support control data nor does it support the MT_OOBDATA 
form of out-of-band data. If the byte identified by TCP’s urgent pointer is stored inline 
(SO_OOBINLINE is set), it appears as regular data, not OOB data. TCP’s handling of the urgent 
pointer and the associated byte is described in Section 29.7. 

16.12. soreceive Code 

We now have enough background information to discuss soreceive in detail. While receiving 
data, soreceive must respect message boundaries, handle addresses and control information, and 
handle any special semantics identified by the read flags (Figure 16.32). The general rule is that 
soreceive processes one record per call and tries to return the number of bytes requested. Figure 
16.38 shows an overview of the function. 
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Figure 16.38. soreceive function: overview.
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439-446

soreceive has six arguments. so is a pointer to the socket. A pointer to an mbuf to receive 
address information is returned in *paddr. If mp0 points to an mbuf pointer, soreceive 
transfers the receive buffer data to an mbuf chain pointed to by *mp0. In this case, the uio 
structure is used only for the count in uio_resid. If mp0 is null, soreceive copies the data 
into buffers described by the uio structure. A pointer to the mbuf containing control information is 
returned in *controlp, and soreceive returns the flags described in Figure 16.33 in 
*flagsp.

447-453

soreceive starts by setting pr to point to the socket’s protocol switch structure and saving 
uio_resid (the size of the receive request) in orig_resid. If control information or 
addressing information is copied from the kernel to the process, orig_resid is set to 0. If data is 
copied, uio_resid is updated. In either case, orig_resid will not equal uio_resid. 
This fact is used at the end of soreceive (Figure 16.51). 

454-461

*paddr and *controlp are cleared. The flags passed to soreceive in *flagsp are 
saved in flags after the MSG_EOR flag is cleared (Exercise 16.8). flagsp is a value-result 
argument, but only the recvmsg system call can receive the result flags. If flagsp is null, 
flags is set to 0. 

483-487

Before accessing the receive buffer, sblock locks the buffer. soreceive waits for the lock 
unless MSG_DONTWAIT is set in flags.

This is another side effect of supporting calls to the socket layer from NFS within the 
kernel. 

Protocol processing is suspended, so soreceive is not interrupted while it examines the buffer. m 
is the first mbuf on the first chain in the receive buffer. 
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If necessary, wait for data

488-541

soreceive checks several conditions and if necessary waits for more data to arrive in the buffer 
before continuing. If soreceive sleeps in this code, it jumps back to restart when it wakes 
up to see if enough data has arrived. This continues until the request can be satisfied. 

542-545

soreceive jumps to dontblock when it has enough data to satisfy the request. A pointer to 
the second chain in the receive buffer is saved in nextrecord.

Process address and control information

546-590

Address information and control information are processed before any other data is transferred from 
the receive buffer. 

Setup data transfer

591-597

Since only OOB data or regular data is transferred in a single call to soreceive, this code 
remembers the type of data at the front of the queue so soreceive can stop the transfer when the 
type changes. 

Mbuf data transfer loop

598-692

This loop continues as long as there are mbufs in the buffer (m is not null), the requested number of 
bytes has not been transferred (uio_resid > 0), and no error has occurred. 

Cleanup

693-719

The remaining code updates various pointers, flags, and offsets; releases the socket buffer lock; 
enables protocol processing; and returns. 

In Figure 16.39, soreceive handles requests for OOB data. 
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Figure 16.39. soreceive function: out-of-band data.

 

 
 

Receive OOB data

462-477

Since OOB data is not stored in the receive buffer, soreceive allocates a standard mbuf and 
issues the PRU_RCVOOB request to the protocol. The while loop copies any data returned by the 
protocol to the buffers specified by uio. After the copy, soreceive returns 0 or the error code. 

UDP always returns EOPNOTSUPP for the PRU_RCVOOB request. See Section 30.2 for details 
regarding TCP urgent processing. In Figure 16.40, soreceive handles connection confirmation. 

Figure 16.40. soreceive function: connection confirmation.

 

 
 

Connection confirmation

478-482

If the data is to be returned in an mbuf chain, *mp is initialized to null. If the socket is in the 
SO_ISCONFIRMING state, the PRU_RCVD request notifies the protocol that the process is 
attempting to receive data. 

The SO_ISCONFIRMING state is used only by the OSI stream protocol, TP4. In 
TP4, a connection is not considered complete until a user-level process has 
confirmed the connection by attempting to send or receive data. The process can 
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reject a connection by calling shutdown or close, perhaps after calling 
getpeername to determine where the connection came from. 

Figure 16.38 showed that the receive buffer is locked before it is examined by the code in Figure 
16.41. This part of soreceive determines if the read system call can be satisfied by the data that 
is already in the receive buffer. 

Figure 16.41. soreceive function: enough data?

 

 
 

Can the call be satisfied now?

488-504

The general rule for soreceive is that it waits until enough data is in the receive buffer to satisfy 
the entire read. There are several conditions that cause an error or less data than was requested to be 
returned. 

If any of the following conditions are true, the process is put to sleep to wait for more data to arrive so 
the call can be satisfied: 

There is no data in the receive buffer (m equals 0). 
There is not enough data to satisfy the entire read (sb_cc < uio_resid) and 
MSG_DONTWAIT is not set), the minimum amount of data is not available (sb_cc < 
sb_lowat), and more data can be appended to this chain when it arrives (m_nextpkt 
is 0 and PR_ATOMIC is not set). 
There is not enough data to satisfy the entire read, a minimum amount of data is available, 
data can be added to this chain, but MSG_WAITALL indicates that soreceive should 
wait until the entire read can be satisfied. 

If the conditions in the last case are met but the read is too large to be satisfied without blocking 
(uio_resid <= sb_hiwat), soreceive continues without waiting for more data. 

If there is some data in the buffer and MSG_DONTWAIT is set, soreceive does not wait for 
more data. 
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There are several reasons why waiting for more data may not be appropriate. In Figure 16.42, 
soreceive checks for these conditions and returns, or waits for more data to arrive. 

Figure 16.42. soreceive function: wait for more data?

 

 
 

Wait for more data?

505-534

At this point, soreceive has determined that it must wait for additional data to arrive before the 
read can be satisfied. Before waiting it checks for several additional conditions: 

505-512 

If the socket is in an error state and empty (m is null), soreceive returns the error code. If 
there is an error and the receive buffer also contains data (m is nonnull), the data is returned 
and a subsequent read returns the error when there is no more data. If MSG_PEEK is set, the 
error is not cleared, since a read system call with MSG_PEEK set should not change the state 
of the socket. 

513-518 
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If the read-half of the connection has been closed and data remains in the receive buffer, 
sosend does not wait and returns the data to the process (at dontblock). If the receive 
buffer is empty, soreceive jumps to release and the read system call returns 0, 
which indicates that the read-half of the connection is closed. 

519-523 

If the receive buffer contains out-of-band data or the end of a logical record, soreceive 
does not wait for additional data and jumps to dontblock.

524-528 

If the protocol requires a connection and it does not exist, ENOTCONN is posted and the 
function jumps to release.

529-534 

If the read is for 0 bytes or nonblocking semantics have been selected, the function jumps to 
release and returns 0 or EWOULDBLOCK, respectively. 

Yes, wait for more data

535-541

soreceive has now determined that it must wait for more data, and that it is reasonable to do so 
(i.e., some data will arrive). The receive buffer is unlocked while the process sleeps in sbwait. If 
sbwait returns because of an error or a signal, soreceive returns the error; otherwise the 
function jumps to restart to determine if the read can be satisfied now that more data has arrived. 

As in sosend, a process can enable a receive timer for sbwait with the SO_RCVTIMEO 
socket option. If the timer expires before a data arrives, sbwait returns EWOULDBLOCK.

The effect of this timer is not what one would expect. Since the timer gets reset every 
time there is activity on the socket buffer, the timer never expires if at least 1 byte 
arrives within the timeout interval. This can delay the return of the read system call 
for more than the value of the timer. sb_timeo is an inactivity timer and does not 
put an upper bound on the amount of time that may be required to satisfy the read 
system call. 

At this point, soreceive is prepared to transfer some data from the receive buffer. Figure 16.43 
shows the transfer of any address information. 
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Figure 16.43. soreceive function: return address information.

 

 
 

dontblock

542-545

nextrecord maintains a reference to the next record that appears in the receive buffer. This is 
used at the end of soreceive to attach the remaining mbufs to the socket buffer after the first 
chain has been discarded. 

Return address information

546-564

If the protocol provides addresses, such as UDP, the mbuf containing the address is removed from the 
mbuf chain and returned in *paddr. If paddr is null, the address is discarded. 

Throughout soreceive, if MSG_PEEK is set, the data is not removed from the buffer. 

The code in Figure 16.44 processes any control mbufs that are in the buffer. 
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Figure 16.44. soreceive function: control information.

 

 
 

Return control information

565-590

Each control mbuf is removed from the buffer (or copied if MSG_PEEK is set) and attached to 
*controlp. If controlp is null, the control information is discarded. 

If the process is prepared to receive control information, the protocol has a dom_externalize 
function defined, and if the control mbuf contains a SCM_RIGHTS (access rights) message, the 
dom_externalize function is called. This function takes any kernel action associated with 
receiving the access rights. Only the Unix protocol domain supports access rights, as discussed in 
Section 7.3. If the process is not prepared to receive control information (controlp is null) the 
mbuf is discarded. 

The loop continues while there are more mbufs with control information and no error has occurred. 

For the Unix protocol domain, the dom_externalize function implements the 
semantics of passing file descriptors by modifying the file descriptor table of the 
receiving process. 

After the control mbufs are processed, m points to the next mbuf on the chain. If the chain does not 
contain any mbufs after the address, or after the control information, m is null. This occurs, for 
example, when a 0-length UDP datagram is queued in the receive buffer. In Figure 16.45 
soreceive prepares to transfer the data from the mbuf chain. 
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Figure 16.45. soreceive function: mbuf transfer setup.

 

 
 

Prepare to transfer data

591-597

After the control mbufs have been processed, the chain should contain regular, out-of-band data mbufs 
or no mbufs at all. If m is null, soreceive is finished with this chain and control drops to the 
bottom of the while loop. If m is not null, any remaining chains (nextrecord) are reattached to 
m and the type of the next mbuf is saved in type. If the next mbuf contains OOB data, MSG_OOB 
is set in flags, which is later returned to the process. Since TCP does not support the 
MT_OOBDATA form of out-of-band data, MSG_OOB will never be returned for reads on TCP 
sockets. 

Figure 16.47 shows the first part of the mbuf transfer loop. Figure 16.46 lists the variables updated 
within the loop. 

Figure 16.46. soreceive function: loop variables.
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Figure 16.47. soreceive function: uiomove.

 

 

598-600

During each iteration of the while loop, the data in a single mbuf is transferred to the output chain 
or to the uio buffers. The loop continues while there are more mbufs, the process’s buffers are not 
full, and no error has occurred. 

Check for transition between OOB and regular data

600-605

If, while processing the mbuf chain, the type of the mbuf changes, the transfer stops. This ensures that 
regular and out-of-band data are not both returned in the same message. This check does not apply to 
TCP. 

Update OOB mark

606-611

The distance to the oobmark is computed and limits the size of the transfer, so the byte before the 
mark is the last byte transferred. The size of the transfer is also limited by the size of the mbuf. This 
code does apply to TCP. 

612-625

 531

If the data is being returned to the uio buffers, uiomove is called. If the data is being returned as 
an mbuf chain, uio_resid is adjusted to reflect the number of bytes moved. 
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To avoid suspending protocol processing for a long time, protocol processing is enabled during the 
call to uiomove. Additional data may appear in the receive buffer because of protocol processing 
while uiomove is running. 

The code in Figure 16.48 adjusts all the pointers and offsets to prepare for the next mbuf. 

Figure 16.48. soreceive function: update buffer.

 

 
 

Finished with mbuf?

626-646

If all the bytes in the mbuf have been transferred, the mbuf must be discarded or the pointers 
advanced. If the mbuf contained the end of a logical record, MSG_EOR is set. If MSG_PEEK is set, 
soreceive skips to the next buffer. If MSG_PEEK is not set, the buffer is discarded if the data 
was copied by uiomove, or appended to mp if the data is being returned in an mbuf chain. 

More data to process

647-657

 532

There may be more data to process in the mbuf if the request didn’t consume all the data, if 
so_oobmark cut the request short, or if additional data arrived during uiomove. If 
MSG_PEEK is set, moff is updated. If the data is to be returned on an mbuf chain, len bytes are 
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copied and attached to the chain. The mbuf pointers and the receive buffer byte count are updated by 
the amount of data that was transferred. 

Figure 16.49 contains the code that handles the OOB offset and the MSG_EOR processing. 

Figure 16.49. soreceive function: out-of-band data mark.

 

 
 

Update OOB mark

658-670

If the out-of-band mark is nonzero, it is decremented by the number of bytes transferred. If the mark 
has been reached, SS_RCVATMARK is set and soreceive breaks out of the while loop. If 
MSG_PEEK is set, offset is updated instead of so_oobmark.

End of logical record

671-672

If the end of a logical record has been reached, soreceive breaks out of the mbuf processing loop 
so data from the next logical record is not returned with this message. 

The loop in Figure 16.50 waits for more data to arrive when MSG_WAITALL is set and the request 
is not complete. 
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Figure 16.50. soreceive function: MSG_WAITALL processing.

 

 
 

MSG_WAITALL

673-681

If MSG_WAITALL is set, there is no more data in the receive buffer (m equals 0), the caller wants 
more data, sosendallatonce is false, and this is the last record in the receive buffer 
(nextrecord is null), then soreceive must wait for additional data. 

Error or no more data will arrive

682-683

If an error is pending or the connection is closed, the loop is terminated. 

Wait for data to arrive

684-689

sbwait returns when the receive buffer is changed by the protocol layer. If the wait was interrupted 
by a signal (error is nonzero), sosend returns immediately. 

Synchronize m and nextrecord with receive buffer

690-692

m and nextrecord are updated, since the receive buffer has been modified by the protocol layer. 
If data arrived in the mbuf, m will be nonzero and the while loop terminates. 
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Process next mbuf

693

This is the end of the mbuf processing loop. Control returns to the loop starting on line 600 (Figure 
16.47). As long as there is data in the receive buffer, more space to fill, and no error has occurred, the 
loop continues. 

When soreceive stops copying data, the code in Figure 16.51 is executed. 

Figure 16.51. soreceive function: cleanup.

 

 
 

Truncated message

694-698

If the process received a partial message (a datagram or a record) because its receive buffer was too 
small, the process is notified by setting MSG_TRUNC and the remainder of the message is discarded. 
MSG_TRUNC (as with all receive flags) is available only to a process through the recvmsg 
system call, even though soreceive always sets the flags. 

End of record processing

699-706

If MSG_PEEK is not set, the next mbuf chain is attached to the receive buffer and, if required, the 
protocol is notified that the receive operation has been completed by issuing the PRU_RCVD 
protocol request. TCP uses this feature to update the receive window for the connection. 
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Nothing transferred

707-712

If soreceive runs to completion, no data is transferred, the end of a record is not reached, and the 
read-half of the connection is still active, then the buffer is unlocked and soreceive jumps back 
to restart to continue waiting for data. 

713-714

Any flags set during soreceive are returned in *flagsp, the buffer is unlocked, and 
soreceive returns. 

Analysis

soreceive is a complex function. Much of the complication is because of the intricate 
manipulation of pointers and the multiple types of data (out-of-band, address, control, regular) and 
multiple destinations (process buffers, mbuf chain). 

Similar to sosend, soreceive has collected features over the years. A specialized receive 
function for each protocol would blur the boundary between the socket layer and the protocol layer, 
but it would simplify the code considerably. 

[Partridge and Pink 1993] describe the creation of a custom soreceive function for UDP to 
checksum datagrams while they are copied from the receive buffer to the process. They note that 
modifying the generic soreceive function to support this feature would "make the already 
complicated socket routines even more complex." 

16.13. select System Call 

In the following discussion we assume that the reader is familiar with the basic operation and 
semantics of select. For a detailed discussion of the application interface to select see 
[Stevens 1992]. 

Figure 16.52 shows the conditions detected by using select to monitor a socket. 

Figure 16.52. select system call: socket events.
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We start with the first half of the select system call, shown in Figure 16.53. 

Figure 16.53. select function: initialization.

 

 
 

Validation and setup

390-410

 537

Two arrays of three descriptor sets are allocated on the stack: ibits and obits. They are cleared 
by bzero. The first argument, nd, must be no larger than the maximum number of descriptors 
associated with the process. If nd is more than the number of descriptors currently allocated to the 
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process, it is reduced to the current allocation. ni is set to the number of bytes needed to store a bit 
mask with nd bits (1 bit for each descriptor). For example, if the maximum number of descriptors is 
256 (FD_SETSIZE), fd_set is represented as an array of 32-bit integers (NFDBITS), and nd 
is 65, then: 

 

 

where howmany (x,y) returns the number of y-bit objects required to store x bits. 

Copy file descriptor sets from process

411-418

The getbits macro uses copyin to transfer the file descriptor sets from the process to the three 
descriptor sets in ibits. If a descriptor set pointer is null, nothing is copied from the process. 

Setup timeout value

419-438

If tv is null, timo is set to 0 and select will wait indefinitely. If tv is not null, the timeout 
value is copied into the kernel and rounded up to the resolution of the hardware clock by 
itimerfix. The current time is added to the timeout value by timevaladd. The number of 
clock ticks until the timeout is computed by hzto and saved in timo. If the resulting timeout is 0, 
timo is set to 1. This prevents select from blocking and implements the nonblocking semantics 
of an all-0s timeval structure. 

The second half of select, shown in Figure 16.54, scans the file descriptors indicated by the 
process and returns when one or more become ready, or the timer expires, or a signal occurs. 
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Figure 16.54. select function: second half.

 

 
 

Scan file descriptors

439-442

The loop that starts at retry continues until select can return. The current value of the global 
integer nselcoll is saved and the P_SELECT flag is set in the calling process’s control block. If 
either of these change while selscan (Figure 16.55) is checking the file descriptors, it indicates 
that the status of a descriptor has changed because of interrupt processing and select must rescan 
the descriptors. selscan looks at every descriptor set in the three input descriptor sets and sets the 
matching descriptor in the output set if the descriptor is ready. 

 539



ptg11539634

Figure 16.55. selscan function.

 

 
 

Error or some descriptors are ready

443-444

Return immediately if an error occurred or if a descriptor is ready. 

Timeout expired?

445-451

If the process supplied a time limit and the current time has advanced beyond the timeout value, return 
immediately. 

Status changed during selscan

452-455

selscan can be interrupted by protocol processing. If the socket is modified during the interrupt, 
P_SELECT and nselcoll are changed and select must rescan the descriptors. 
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Wait for buffer changes

456-460

All processes calling select use selwait as the wait channel when they call tsleep. With 
Figure 16.60 we show that this causes some inefficiencies if more than one process is waiting for the 
same socket buffer. If tsleep returns without an error, select jumps to retry to rescan the 
descriptors. 

Ready to return

461-480

At done, P_SELECT is cleared, ERESTART is changed to EINTR, and EWOULDBLOCK 
is changed to 0. These changes ensure that EINTR is returned when a signal occurs during select 
and 0 is returned when a timeout occurs. 

The output descriptor sets are copied back to the process and select returns. 

selscan Function

The heart of select is the selscan function shown in Figure 16.55. For every bit set in one of 
the three descriptor sets, selscan computes the descriptor associated with the bit and dispatches 
control to the fo_select function associated with the descriptor. For sockets, this is the 
soo_select function. 

Locate descriptors to be monitored

481-496

The first for loop iterates through each of the three descriptor sets: read, write, and exception. The 
second for loop interates within each descriptor set. This loop is executed once for every 32 bits 
(NFDBITS) in the set. 

The inner while loop checks all the descriptors identified by the 32-bit mask extracted from the 
current descriptor set and stored in bits. The function ffs returns the position within bits of 
the first 1 bit, starting at the low-order bit. For example, if bits is 1000 (with 28 leading 0s), 
ffs(bits) is 4. 

Poll descriptor

497-500

From i and the return value of ffs, the descriptor associated with the bit is computed and stored in 
fd. The bit is cleared in bits (but not in the input descriptor set), the file structure associated 
with the descriptor is located, and fo_select is called. 

The second argument to fo_select is one of the elements in the flag array. msk is the index 
of the outer for loop. So the first time through the loop, the second argument is FREAD, the 
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second time it is FWRITE, and the third time it is 0. EBADF is returned if the descriptor is not 
valid. 

Descriptor is ready

501-504

When a descriptor is found to be ready, the matching bit is set in the output descriptor set and n (the 
number of matches) is incremented. 

505-510

The loops continue until all the descriptors are polled. The number of ready descriptors is returned in 
*retval.

soo_select Function

For every descriptor that selscan finds in the input descriptor sets, it calls the function referenced 
by the fo_select pointer in the fileops structure (Section 15.5) associated with the 
descriptor. In this text, we are interested only in socket descriptors and the soo_select function 
shown in Figure 16.56. 
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Figure 16.56. soo_select function.

 

 

105-112

Each time soo_select is called, it checks the status of only one descriptor. If the descriptor is 
ready relative to the conditions specified in which, the function returns 1 immediately. If the 
descriptor is not ready, selrecord marks either the socket’s receive or send buffer to indicate that 
a process is selecting on the buffer and then soo_select returns 0. 

Figure 16.52 showed the read, write, and exceptional conditions for sockets. Here we see that the 
macros soreadable and sowriteable are consulted by soo_select. These macros 
are defined in sys/socketvar.h.

Is socket readable?

113-120

The soreadable macro is: 

    #define soreadable(so) \ 
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        ((so)->so_rcv.sb_cc >= (so)->so_rcv.sb_lowat || \ 
        ((so)->so_state & SS_CANTRCVMORE) || \ 
        (so)->so_qlen || (so)->so_error)
 

Since the receive low-water mark for UDP and TCP defaults to 1 (Figure 16.4), the socket is readable 
if any data is in the receive buffer, if the read-half of the connection is closed, if any connections are 
ready to be accepted, or if there is an error pending. 

Is socket writeable?

121-128

The sowriteable macro is: 

    #define sowriteable(so) \ 
        (sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat && 
\
        (((so)->so_state&SS_ISCONNECTED) || \ 
          ((so)->so_proto->pr_flags&PR_CONNREQUIRED)==0) || 
\
        ((so)->so_state & SS_CANTSENDMORE) || \ 
        (so)->so_error) 
 

The default send low-water mark for UDP and TCP is 2048. For UDP, sowriteable is always 
true because sbspace is always equal to sb_hiwat, which is always greater than or equal to 
sb_lowat, and a connection is not required. 

For TCP, the socket is not writeable when the free space in the send buffer is less than 2048 bytes. 
The other cases are described in Figure 16.52. 

Are there any exceptional conditions pending?

129-140

For exceptions, so_oobmark and the SS_RCVATMARK flags are examined. An exceptional 
condition exists until the process has read past the synchronization mark in the data stream. 

selrecord Function

Figure 16.57 shows the definition of the selinfo structure stored with each send and receive 
buffer (the sb_sel member from Figure 16.3). 

Figure 16.57. selinfo structure.

 

 544



ptg11539634

 

41-44

When only one process has called select for a given socket buffer, sl_pid is the process ID of 
the waiting process. When additional processes call select on the same buffer, SI_COLL is set in 
sl_flags. This is called a collision. This is the only flag currently defined for sl_flags.

The selrecord function shown in Figure 16.58 is called when soo_select finds a descriptor 
that is not ready. The function records enough information so that the process is awakened by the 
protocol processing layer when the buffer changes. 

Figure 16.58. selrecord function.

 

 
 

Already selecting on this descriptor

522-531

The first argument to selrecord points to the proc structure for the selecting process. The 
second argument points to the selinfo record to update (so_snd.sb_sel or 
so_rcv.sb_sel). If this process is already recorded in the selinfo record for this socket 
buffer, the function returns immediately. For example, the process called select with the read and 
exception bits set for the same descriptor. 

Select collision with another process?

532-534

If another process is already selecting on this buffer, SI_COLL is set. 
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No collision

535-537

If there is no other process already selecting on this buffer, si_pid is 0 so the ID of the current 
process is saved in si_pid.

selwakeup Function

When protocol processing changes the state of a socket buffer and only one process is selecting on the 
buffer, Net/3 can immediately put that process on the run queue based on the information it finds in 
the selinfo structure. 

When the state changes and there is more than one process selecting on the buffer (SI_COLL is set), 
Net/3 has no way of determining the set of processes interested in the buffer. When we discussed the 
code in Figure 16.54, we pointed out that every process that calls select uses selwait as the 
wait channel when calling tsleep. This means the corresponding wakeup will schedule all the 
processes that are blocked in select even  those that are not interested in activity on the buffer. 

Figure 16.59 shows how selwakeup is called. 

Figure 16.59. selwakeup processing.

 

 

The protocol processing layer is responsible for notifying the socket layer by calling one of the 
functions listed at the bottom of Figure 16.59 when an event occurs that changes the state of a socket. 
The three functions shown at the bottom of Figure 16.59 cause selwakeup to be called and any 
process selecting on the socket to be scheduled to run. 

selwakeup is shown in Figure 16.60. 
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Figure 16.60. selwakeup function.

 

 

541-548

If si_pid is 0, there is no process selecting on the buffer and the function returns immediately. 

Wake all processes during a collision

549-553

If more than one process is selecting on the affected socket, nselcoll is incremented, the collision 
flag is cleared, and every process blocked in select is awakened. As mentioned with Figure 16.54, 
nselcoll forces select to rescan the descriptors if the buffers change before the process has 
blocked in tsleep (Exercise 16.9). 

554-567

If the process identified by si_pid is waiting on selwait, it is scheduled to run. If the process 
is waiting on some other wait channel, the P_SELECT flag is cleared. The process can be waiting on 
some other wait channel if selrecord is called for a valid descriptor and then selscan finds a 
bad file descriptor in one of the descriptor sets. selscan returns EBADF, but the previously 
modified selinfo record is not reset. Later, when selwakeup runs, selwakeup may find 
the process identified by sel_pid is no longer waiting on the socket buffer so the selinfo 
information is ignored. 

 547

Only one process is awakened during selwakeup unless multiple processes are sharing the same 
descriptor (i.e., the same socket buffers), which is rare. On the machines to which the authors had 
access, nselcoll was always 0, which confirms the statement that select collisions are rare. 
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16.14. Summary 

In this chapter we looked at the read, write, and select system calls for sockets. 

We saw that sosend handles all output between the socket layer and the protocol processing layer 
and that soreceive handles all input. 

The organization of the send buffer and receive buffers was described, as well as the default values 
and semantics of the high-water and low-water marks for the buffers. 

The last part of the chapter discussed the implementation of select. We showed that when only 
one process is selecting on a descriptor, the protocol processing layer will awaken only the process 
identified in the selinfo structure. When there is a collision and more than one process is 
selecting on a descriptor, the protocol layer has no choice but to awaken every process that is selecting 
on any descriptor. 

Exercises

16.1 What happens to resid in sosend when an unsigned integer larger than the 
maximum positive signed integer is passed in the write system call? 

16.2 When sosend puts less than MCLBYTES of data in a cluster, space is reduced by 
the full MCLBYTES and may become negative, which terminates the loop that fills mbufs 
for atomic protocols. Is this a problem? 

16.3 Datagram and stream protocols have very different semantics. Divide the sosend and 
soreceive functions each into two functions, one to handle messages, and one to 
handle streams. Other than making the code clearer, what are the advantages of making 
this change? 

16.4 For PR_ATOMIC protocols, each write call specifies an implicit message boundary. The 
socket layer delivers the message as a single unit to the protocol. The MSG_EOR flag 
allows a process to specify explicit message boundaries. Why is the implicit technique 
insufficient? 

16.5 What happens when sosend cannot immediately acquire a lock on the send buffer when 
the socket descriptor is marked as nonblocking and the process does not specify 
MSG_DONTWAIT?

16.6 Under what circumstances would sb_cc < sb_hiwat yet sbspace would 
report no free space? Why should a process be blocked in this case? 

16.7 Why isn’t the length of a control message copied back to the process by recvit as is the 
name length? 

16.8 Why does soreceive clear MSG_EOR?

16.9 What might happen if the nselcoll code were removed from select and selwakeup?
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16.10 Modify the select system call to return the time remaining in the timer when 
select returns. 
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Chapter 17. Socket Options 

17.1. Introduction 

We complete our discussion of the socket layer in this chapter by discussing several system calls that 
modify the behavior of sockets. 

The setsockopt and getsockopt system calls were introduced in Section 8.8, where we 
described the options that provide access to IP features. In this chapter we show the implementation of 
these two system calls and the socket-level options that are controlled through them. 

The ioctl function was introduced in Section 4.4, where we described the protocol-independent 
ioctl commands for network interface configuration. In Section 6.7 we described the IP specific 
ioctl commands used to assign network masks as well as unicast, broadcast, and destination 
addresses. In this chapter we describe the implementation of ioctl and the related features of the 
fcntl function. 

Finally, we describe the getsockname and getpeername system calls, which return address 
information for sockets and connections. 

Figure 17.1 shows the functions that implement the socket option system calls. The shaded functions 
are described in this chapter. 

Figure 17.1. setsockopt and getsockopt system calls. 
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17.2. Code Introduction 

The code in this chapter comes from the four files listed in Figure 17.2. 

Figure 17.2. Files discussed in this chapter. 

 

 
 

Global Variables and Statistics

No new global variables are introduced and no statistics are collected by the system calls we describe 
in this chapter. 

17.3. setsockopt System Call 

Figure 8.29 listed the different protocol levels that can be accessed with this function (and with 
getsockopt). In this chapter we focus on the SOL_SOCKET level options, which are listed in 
Figure 17.3. 

Figure 17.3. setsockopt and getsockopt options. 

 

 

The prototype for setsockopt is 

    int setsockopt(int s, int level, int optname, void 
*optval, int optlen);
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Figure 17.4 shows the code for this system call. 

Figure 17.4. setsockopt system call. 

 

 

565-597

getsock locates the file structure for the socket descriptor. If val is nonnull, valsize 
bytes of data are copied from the process into an mbuf allocated by m_get. The data associated 
with an option can be no more than MLEN bytes in length, so if valsize is larger than MLEN, 
then EINVAL is returned. sosetopt is called and its value is returned. 

sosetopt Function

This function processes all the socket-level options and passes any other options to the 
pr_ctloutput function for the protocol associated with the socket. Figure 17.5 shows an 
overview of the function. 
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Figure 17.5. sosetopt function. 

 

 

752-764

If the option is not for the socket level (SOL_SOCKET), the PRCO_SETOPT request is issued to 
the underlying protocol. Note that the protocol’s pr_ctloutput function is being called and not 
its pr_usrreq function. Figure 17.6 shows which function is called for the Internet protocols. 

Figure 17.6. pr_ctloutput functions. 

 

 

765

The switch statement handles the socket-level options. 
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841-844

An unrecognized option causes ENOPROTOOPT to be returned after the mbuf holding the option is 
released. 

845-855

Unless an error occurs, control always falls through the switch, where the option is passed to the 
associated protocol in case the protocol layer needs to respond to the request as well as the socket 
layer. None of the Internet protocols expect to process the socket-level options. 

Notice that the return value from the call to the pr_ctloutput function is explicitly discarded in 
case the option is not expected by the protocol. m is set to null to avoid the call to m_free, since 
the protocol layer is responsible for releasing the mbuf. 

Figure 17.7 shows the linger option and the options that set a single flag in the socket structure. 

Figure 17.7. sosetopt function: linger and flag options. 

 

 

766-772

The linger option expects the process to pass a linger structure: 

    struct linger { 
        int     l_onoff;    /* option on/off */ 
        int     l_linger;   /* linger time in seconds */ 
    }; 
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After making sure the process has passed data and it is the size of a linger structure, the 
l_linger member is copied into so_linger. The option is enabled or disabled after the next 
set of case statements. so_linger was described in Section 15.15 with the close system 
call. 

773-789

These options are boolean flags set when the process passes a nonzero value and cleared when 0 is 
passed. The first check makes sure an integer-sized object (or larger) is present in the mbuf and then 
sets or clears the appropriate option. 

Figure 17.8 shows the socket buffer options. 

Figure 17.8. sosetopt function: socket buffer options. 

 

 

790-815

This set of options changes the size of the send and receive buffers in a socket. The first test makes 
sure the required integer has been provided for all four options. For SO_SNDBUF and 
SO_RCVBUF, sbreserve adjusts the high-water mark but does no buffer allocation. For 
SO_SNDLOWAT and SO_RCVLOWAT, the low-water marks are adjusted. 

Figure 17.9 shows the timeout options. 
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Figure 17.9. sosetopt function: timeout options. 

 

 

816-824

The timeout value for SO_SNDTIMEO and SO_RCVTIMEO is specified by the process in a 
timeval structure. If the right amount of data is not available, EINVAL is returned. 

825-830

The time interval stored in the timeval structure must be small enough so that when it is 
represented as clock ticks, it fits within a short integer, since sb_timeo is a short integer. 

The code on line 826 is incorrect. The time interval cannot be represented as a short integer if: 

 

 

where 

 

 

So EDOM should be returned if 
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The last term in this equation is not hz as specified in the code. The correct test is 

    if (tv->tv_sec*hz + tv->tv_usec/tick > SHRT_MAX) 
 

but see Exercise 17.3 for more discussion. 

831-840

The converted time, val, is saved in the send or receive buffer as requested. sb_timeo limits the 
amount of time a process will wait for data in the receive buffer or space in the send buffer. See 
Sections 16.7 and 16.11 for details. 

The timeout values are passed as the last argument to tsleep, which expects an 
integer, so the process is limited to 65535 ticks. At 100 Hz, this less than 11 minutes. 

17.4. getsockopt System Call 

getsockopt returns socket and protocol options as requested. The prototype for this system call 
is 

    int getsockopt(int s, int level, int name, caddr_t val,
int *valsize);
 

The code is shown in Figure 17.10. 
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Figure 17.10. getsockopt system call. 

 

 

598-633

The code should look pretty familiar by now. getsock locates the socket, the size of the option 
buffer is copied into the kernel, and sogetopt is called to get the value of the requested option. 
The data returned by sogetopt is copied out to the buffer in the process along with the possibly 
new length of the buffer. It is possible that the data will be silently truncated if the process did not 
provide a large enough buffer. As usual, the mbuf holding the option data is released before the 
function returns. 

sogetopt Function

As with sosetopt, the sogetopt function handles the socket-level options and passes any 
other options to the protocol associated with the socket. The beginning and end of the function are 
shown in Figure 17.11. 
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Figure 17.11. sogetopt function: overview. 

 

 

856-871

As with sosetopt, options that do not pertain to the socket level are immediately passed to the 
protocol level through the PRCO_GETOPT protocol request. The protocol returns the requested 
option in the mbuf pointed to by *mp.

For socket-level options, a standard mbuf is allocated to hold the option value, which is normally an 
integer, so m_len is set to the size of an integer. The appropriate option is copied into the mbuf by 
the code in the switch statement. 

918-925

If the default case is taken by the switch, the mbuf is released and ENOPROTOOPT 
returned. Otherwise, after the switch statement, the pointer to the mbuf is saved in *mp. When 
this function returns, getsockopt copies the option from the mbuf to the process and releases the 
mbuf. 

In Figure 17.12 the linger option and the options that are implemented as boolean flags are processed. 
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Figure 17.12. sogetopt function: SO_LINGER and boolean options. 

 

 

872-877

The SO_LINGER option requires two copies, one for the flag into l_onoff and a second for the 
linger time into l_linger.

878-887

The remaining options are implemented as boolean flags. so_options is masked with 
optname, which results in a nonzero value if the option is on and 0 if the option is off. Notice that 
the return value is not necessarily 1 when the flag is on. 

In the next part of sogetopt (Figure 17.13), the integer-valued options are copied into the mbuf. 

Figure 17.13. sogetopt function: integer valued options. 
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888-906

Each option is copied as an integer into the mbuf. Notice that some of the options are stored as shorts 
in the kernel (e.g., the high-water and low-water marks) but returned as integers. Also, so_error 
is cleared once the value is copied into the mbuf. This is the only time that a call to getsockopt 
changes the state of the socket. 

The third and last part of sogetopt is shown in Figure 17.14, where the SO_SNDTIMEO and 
SO_RCVTIMEO options are handled. 

Figure 17.14. sogetopt function: timeout options. 

 

 

907-917

The sb_timeo value from the send or receive buffer is copied into var. A timeval structure 
is constructed in the mbuf based on the clock ticks in val.

There is a bug in the calculation of tv_usec. The expression should be "(val
% hz) * tick".

17.5. fcntl and ioctl System Calls 

Due more to history than intent, several features of the sockets API can be accessed from either 
ioctl or fcntl. We have already discussed many of the ioctl commands and have 
mentioned fcntl several times. 

Figure 17.15 highlights the functions described in this chapter. 
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Figure 17.15. fcntl and ioctl functions. 

 

 

The prototypes for ioctl and fcntl are: 

    int ioctl(int fd, unsigned long result, char *argp);

    int fcntl(int fd, int cmd, ... /* int arg */); 
 

Figure 17.16 summarizes the features of these two system calls as they relate to sockets. We show the 
traditional constants in Figure 17.16, since they appear in the code. For Posix compatibility, 
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O_NONBLOCK can be used instead of FNONBLOCK, and O_ASYNC can be used instead of 
FASYNC.

Figure 17.16. fcntl and ioctl commands. 

 

 
 

fcntl Code

Figure 17.17 shows an overview of the fcntl function. 

Figure 17.17. fcntl system call: overview. 
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133-153

After verifying that the descriptor refers to an open file, the switch statement processes the 
requested command. 

253-257

If the command is not recognized, fcntl returns EINVAL.

Figure 17.18 shows only the cases from fcntl that are relevant to sockets. 

Figure 17.18. fcntl system call: socket processing. 

 

 

168-185

 564



ptg11539634

 565

F_GETFL returns the current file status flags associated with the descriptor and F_SETFL sets the 
flags. The new settings for FNONBLOCK and FASYNC are passed to the associated socket by 
calling fo_ioctl, which for sockets is the soo_ioctl function described with Figure 17.20. 
The third call to fo_ioctl is made only if the second call fails. It clears the FNONBLOCK flag, 
but should instead restore the flag to its original setting. 

186-209

F_GETOWN returns so_pgid, the process or process group associated with the socket. For a 
descriptor other than a socket, the TIOCGPGRP ioctl command is passed to the associated 
fo_ioctl function. F_SETOWN assigns a new value to so_pgid.

For a descriptor other than a socket, the process group is checked in this function, but for sockets, the 
value is checked just before a signal is sent in sohasoutofband and in sowakeup.

ioctl Code

We skip the ioctl system call itself and start with soo_ioctl in Figure 17.20, since most of 
the code in ioctl duplicates the code we described with Figure 17.17. We’ve already shown that 
this function sends routing commands to rtioctl, interface commands to ifioctl, and any 
remaining commands to the pr_usrreq function of the underlying protocol. 

55-68

A few commands are handled by soo_ioctl directly. FIONBIO turns on nonblocking 
semantics if *data is nonzero, and turns them off otherwise. As we have seen, this flag affects the 
accept, connect, and close system calls as well as the various read and write system 
calls. 

69-79

FIOASYNC enables or disables asynchronous I/O notification. Whenever there is activity on a 
socket, sowakeup gets called and if SS_ASYNC is set, the SIGIO signal is sent to the process 
or process group. 

80-88

FIONREAD returns the number of bytes available in the receive buffer. SIOCSPGRP sets the 
process group associated with the socket, and SIOCGPGRP gets it. so_pgid is used as a target 
for the SIGIO signal as we just described and for the SIGURG signal when out-of-band data arrives 
for a socket. The signal is sent when the protocol layer calls the sohasoutofband function. 

89-92

SIOCATMARK returns true if the socket is at the out-of-band synchronization mark, false otherwise. 

ioctl commands, the FIOxxx and SIOxxx constants, have an internal structure illustrated in 
Figure 17.19. 
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Figure 17.19. The structure of an ioctl command. 

 

 
Figure 17.20. soo_ioctl function. 
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If the third argument to ioctl is used as input, input is set. If the argument is used as output, output 
is set. If the argument is unused, void is set. length is the size of the argument in bytes. Related 
commands are in the same group but each command has its own number within the group. The 
macros in Figure 17.21 extract the components of an ioctl command. 

Figure 17.21. ioctl command macros. 

 

 

93-104

The macro IOCGROUP extracts the 8-bit group from the command. Interface commands are handled 
by ifioctl. Routing commands are processed by rtioctl. All other commands are passed 
to the socket’s protocol through the PRU_CONTROL request. 

As we described in Chapter 19, Net/2 introduced a new interface to the routing tables 
in which messages are passed to the routing subsystem through a socket created in 
the PF_ROUTE domain. This method replaces the ioctl method shown here. 
rtioctl always returns ENOTSUPP in kernels that do not have compatibility 
code compiled in. 

17.6. getsockname System Call 

The prototype for this system call is: 

    int getsockname(int fd, caddr_t asa, int *alen);
 

getsockname retrieves the local address bound to the socket fd and places it in the buffer pointed 
to by asa. This is useful when the kernel has selected an address during an implicit bind or when the 
process specified a wildcard address (Section 22.5) during an explicit call to bind. The 
getsockname system call is shown in Figure 17.22. 
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Figure 17.22. getsockname system call. 

 

 

682-715

getsock locates the file structure for the descriptor. The size of the buffer specified by the 
process is copied from the process into len. This is the first call to m_getclr that we’ve seen
it allocates a standard mbuf and clears it with bzero. The protocol processing layer is responsible 
for returning the local address in m when the PRU_SOCKADDR request is issued. 

If the address is larger than the buffer specified by the process, it is silently truncated when it is copied 
out to the process. *alen is updated to the number of bytes copied out to the process. Finally, the 
mbuf is released and getsockname returns. 

17.7. getpeername System Call 

The prototype for this system call is: 

    int getpeername(int fd, caddr_t asa, int *alen);
 

The getpeername system call returns the address of the remote end of the connection associated 
with the specified socket. This function is often called when a server is invoked through a fork and 
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exec by the process that calls accept (i.e., any server started by inetd). The server doesn’t 
have access to the peer address returned by accept and must use getpeername. The returned 
address is often checked against an access list for the application, and the connection is closed if the 
address is not on the list. 

Some protocols, such as TP4, utilize this function to determine if an incoming connection should be 
rejected or confirmed. In TP4, the connection associated with a socket returned by accept is not 
yet complete and must be confirmed before the connection completes. Based on the address returned 
by getpeername, the server can close the connection or implicitly confirm the connection by 
sending or receiving data. This feature is irrelevant for TCP, since TCP doesn’t make a connection 
available to accept until the three-way handshake is complete. Figure 17.23 shows the 
getpeername function. 

Figure 17.23. getpeername system call. 

 

 

719-753

The code here is almost identical to the getsockname code. getsock locates the socket and 
ENOTCONN is returned if the socket is not yet connected to a peer or if the connection is not in a 
confirmation state (e.g., TP4). If it is connected, the size of the buffer is copied in from the process 
and an mbuf is allocated to hold the address. The PRU_PEERADDR request is issued to get the 
remote address from the protocol layer. The address and the length of the address are copied from the 
kernel mbuf to the buffer in the process. The mbuf is released and the function returns. 
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17.8. Summary 

In this chapter we discussed the six functions that modify the semantics of a socket. Socket options are 
processed by setsockopt and getsockopt. Additional options, some of which are not 
unique to sockets, are handled by fcntl and ioctl. Finally, connection information is available 
through getsockname and getpeername.

Exercises

17.1 Why do you think options are limited to the size of a standard mbuf (MHLEN, 128 
bytes)? 

17.2 Why does the code at the end of Figure 17.7 work for the SO_LINGER option? 

17.3 There is a problem with the suggested code used to test the timeval structure in Figure 
17.9 since tv->tv_sec* hz may cause an overflow. Suggest a change to the code 
to solve this problem. 
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Chapter 18. Radix Tree Routing Tables 

18.1. Introduction 

The routing performed by IP, when it searches the routing table and decides which interface to send a 
packet out on, is a routing mechanism. This differs from a routing policy, which is a set of rules that 
decides which routes go into the routing table. The Net/3 kernel implements the routing mechanism 
while a routing daemon, typically routed or gated, implements the routing policy. The 
structure of the routing table must recognize that the packet forwarding occurs frequently hundre ds 
or thousands of times a second on a busy system w hile routing policy changes are less frequent. 

Routing is a detailed issue and we divide our discussion into three chapters. 

This chapter looks at the structure of the radix tree routing tables used by the Net/3 packet 
forwarding code. The tables are consulted by IP every time a packet is sent (since IP must 
determine which local interface receives the packet) and every time a packet is forwarded. 
Chapter 19 looks at the functions that interface between the kernel and the radix tree 
functions, and also at the routing messages that are exchanged between the kernel and routing 
processes no rmally the routing daemons that implement the routing policy. These messages 
allow a process to modify the kernel’s routing table (add a route, delete a route, etc.) and let 
the kernel notify the daemons when an asynchronous event occurs that might affect the 
routing policy (a redirect is received, an interface goes down, and so on). 
Chapter 20 presents the routing sockets that are used to exchange routing messages between 
the kernel and a process. 

18.2. Routing Table Structure 

Before looking at the internal structure of the Net/3 routing table, we need to understand the type of 
information contained in the table. Figure 18.1 is the bottom half of Figure 1.17: the four systems on 
the author’s Ethernet. 

Figure 18.1. Subnet used for routing table example.

 

 

Figure 18.2 shows the routing table for bsdi in Figure 18.1. 
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Figure 18.2. Routing table on the host bsdi.

 

 

We have modified the "Flags" column from the normal netstat output, making it easier to see 
which flags are set for the various entries. 

The routes in this table were entered as follows. Steps 1, 3, 5, 8, and 9 are performed at system 
initialization when the /etc/netstart shell script is executed. 

1.  A default route is added by the route command to the host sun (140.252.13.33), which 
contains a PPP link to the Internet. 

2.  The entry for network 127 is typically created by a routing daemon such as gated, or it can be 
entered with the route command in the /etc/netstart file. This entry causes all 
packets sent to this network, other than references to the host 127.0.0.1 (which are covered by the 
more specific route entered in the next step), to be rejected by the loopback driver (Figure 5.27). 

3.  The entry for the loopback interface (127.0.0.1) is configured by ifconfig.

4.  The entry for vangogh.cs.berkeley.edu (128.32.33.5) was created by hand using 
the route command. It specifies the same router as the default route (140.252.13.33), but 
having a host-specific route, instead of using the default route for this host, allows routing metrics 
to be stored in this entry. These metrics can optionally be set by the administrator, are used by 
TCP each time a connection is established to the destination host, and are updated by TCP when 
the connection is closed. We describe these metrics in more detail with Figure 27.3. 

5.  The interface 1e0 is initialized using the ifconfig command. This causes the entry for 
network 140.252.13.32 to be entered into the routing table. 

6.  The entries for the other two hosts on the Ethernet, sun (140.252.13.33) and svr4 
(140.252.13.34), were created by ARP, as we describe in Chapter 21. These are temporary entries 
that are removed if they are not used for a certain period of time. 
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7.  The entry for the local host, 140.252.13.35, is created the first time the host’s own IP address is 
referenced. The interface is the loopback, meaning any IP datagrams sent to the host’s own IP 
address are looped back internally. The automatic creation of this entry is new with 4.4BSD, as 
we describe in Section 21.13. 

8.  The entry for the host 140.252.13.65 is created when the SLIP interface is configured by 
ifconfig.

9.  The route command adds the route to network 224 through the Ethernet interface. 

10.  The entry for the multicast group 224.0.0.1 (the all-hosts group) was created by running the Ping 
program, pinging the address 224.0.0.1. This is also a temporary entry that is removed if not used 
for a certain period of time. 

The "Flags" column in Figure 18.2 needs a brief explanation. Figure 18.25 provides a list of all the 
possible flags. 

U The route is up. 

G The route is to a gateway (router). This is called an indirect route. If this flag is not set, the 
destination is directly connected; this is called a direct route.

H The route is to a host, that is, the destination is a complete host address. If this flag is not set, the 
route is to a network, and the destination is a network address: a network ID, or a combination of a 
network ID and a subnet ID. The netstat command doesn’t show it, but each network route 
also contains a network mask. A host route has an implied mask of all one bits. 

S The route is static. The three entries created by the route command in Figure 18.2 are static. 

C The route is cloned to create new routes. Two entries in this routing table have this flag set: (1) the 
route for the local Ethernet (140.252.13.32), which is cloned by ARP to create the host-specific 
routes of other hosts on the Ethernet, and (2) the route for multicast groups (224), which is cloned 
to create specific multicast group routes such as 224.0.0.1 

L The route contains a link-layer address. The host routes that ARP clones from the Ethernet 
network routes all have the link flag set. This applies to unicast and multicast addresses. 

R The loopback driver (the normal interface for routes with this flag) rejects all datagrams that use 
this route.  

The ability to enter a route with the "reject" flag was provided in Net/2. It provides a simple way 
of preventing datagrams destined to network 127 from appearing outside the host. See also 
Exercise 6.6. 

 

Before 4.3BSD Reno, two distinct routing tables were maintained by the kernel for IP addresses: one 
for host routes and one for network routes. A given route was entered into one table or the other, based 
on the type of route. The default route was stored in the network routing table with a destination 
address of 0.0.0.0. There was an implied hierarchy: a search was made for a host route first, and if not 
found a search was made for a network route, and if still not found, a search was made for a default 
route. Only if all three searches failed was the destination unreachable. Section 11.5 of [Leffler et al. 
1989] describes the hash table with linked lists used for the host and network routing tables in Net/1. 
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Major changes took place in the internal representation of the routing table with 4.3BSD Reno 
[Sklower 1991]. These changes allow the same routing table functions to access a routing table for 
other protocol suites, notably the OSI protocols, which use variable-length addresses, unlike the fixed-
length 32-bit Internet addresses. The internal structure was also changed, to provide faster lookups. 

The Net/3 routing table uses a Patricia tree structure [Sedgewick 1990] to represent both host 
addresses and network addresses. (Patricia stands for "Practical Algorithm to Retrieve Information 
Coded in Alphanumeric.") The address being searched for and the addresses in the tree are considered 
as sequences of bits. This allows the same functions to maintain and search one tree containing fixed-
length 32-bit Internet addresses, another tree containing fixed-length 48-bit XNS addresses, and 
another tree containing variable-length OSI addresses. 

The idea of using Patricia trees for the routing table is attributed to Van Jacobson in [Sklower 1991]. 
These are actually binary radix tries with one-way branching removed. 

An example is the easiest way to describe the algorithm. The goal of routing lookup is to find the most 
specific address that matches the given destination: the search key. The term most specific implies that 
a host address is preferred over a network address, which is preferred over a default address. 

Each entry has an associated network mask, although no mask is stored with a host route; instead host 
routes have an implied mask of all one bits. An entry in the routing table matches a search key if the 
search key logically ANDed with the network mask of the entry equals the entry itself. A given search 
key might match multiple entries in the routing table, so with a single table for both network route and 
host routes, the table must be organized so that more-specific routes are considered before less-
specific routes. 

Consider the examples in Figure 18.3. The two search keys are 127.0.0.1 and 127.0.0.2, which we 
show in hexadecimal since the logical ANDing is easier to illustrate. The two routing table entries are 
the host entry for 127.0.0.1 (with an implied mask of 0xffffffff) and the network entry for 
127.0.0.0 (with a mask of 0xff000000). 

Figure 18.3. Example routing table lookups for the two search keys 127.0.0.1 

and 127.0.0.2.

 

 

Since the search key 127.0.0.1 matches both routing table entries, the routing table must be organized 
so that the more-specific entry (127.0.0.1) is tried first. 

Figure 18.4 shows the internal representation of the Net/3 routing table corresponding to Figure 18.2. 
This table was built from the output of the netstat command with the -A flag, which dumps the 
tree structure of the routing tables. 
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Figure 18.4. Net/3 routing table corresponding to Figure 18.2.

 

 

The two shaded boxes labeled "end" are leaves with special flags denoting the end of the tree. The left 
one has a key of all zero bits and the right one has a key of all one bits. The two boxes stacked 
together at the left, labeled "end" and "default," are a special representation used for duplicate keys, 
which we describe in Section 18.9. 

The square-cornered boxes are called internal nodes or just nodes, and the boxes with rounded corners 
are called leaves. Each internal node corresponds to a bit to test in the search key, and a branch is 
made to the left or the right. Each leaf corresponds to either a host address or a network address. If 
there is a hexadecimal number beneath a leaf, that leaf is a network address and the number specifies 
the network mask for the leaf. The absence of a hexadecimal mask beneath a leaf node implies that the 
leaf is a host address with an implied mask of 0xffffffff.

Some of the internal nodes also contain network masks, and we’ll see how these are used in 
backtracking. Not shown in this figure is that every node also contains a pointer to its parent, to 
facilitate backtracking, deletion, and nonrecursive walks of the tree. 

The bit comparisons are performed on socket address structures, so the bit positions given in Figure 
18.4 are from the start of the socket address structure. Figure 18.5 shows the bit positions for a 
sockaddr_in structure. 

Figure 18.5. Bit offsets in Internet socket address structure.

 

 

The highest-order bit of the IP address is at bit position 32 and the lowest-order bit is at bit position 
63. We also show the length as 16 and the address family as 2 (AF_INET), as we’ll encounter these 
two values throughout our examples. 
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To work through the examples we also need to show the bit representations of the various IP addresses 
in the tree. These are shown in Figure 18.6 along with some other IP addresses that are used in the 
examples that follow. The bit positions used in Figure 18.4 as branching points are shown in a bolder 
font. 

Figure 18.6. Bit representations of the IP addresses in Figures 18.2 and 18.4.

 

 

We now provide some specific examples of how the routing table searches are performed. 

Example—Host Match

Assume the host address 127.0.0.1 is the search key the destination address being looked up. Bit 32 
is off, so the left branch is made from the top of the tree. Bit 33 is on, so the right branch is made from 
the next node. Bit 63 is on, so the right branch is made from the next node. This next node is a leaf, so 
the search key (127.0.0.1) is compared to the address in the leaf (127.0.0.1). They match exactly so 
this routing table entry is returned by the lookup function. 

Example—Host Match

Next assume the search key is the address 140.252.13.35. Bit 32 is on, so the right branch is made 
from the top of the tree. Bit 33 is off, bit 36 is on, bit 57 is off, bit 62 is on, and bit 63 is on, so the 
search ends at the leaf on the bottom labeled 140.252.13.35. The search key matches the routing table 
key exactly. 

Example—Network Match

The search key is 127.0.0.2. Bit 32 is off, bit 33 is on, and bit 63 is off so the search ends up at the leaf 
labeled 127.0.0.0. The search key and the routing table key don’t match exactly, so a network match is 
tried. The search key is logically ANDed with the network mask (0xff000000) and since the 
result equals the routing table key, this entry is considered a match. 

 576



ptg11539634

 577

Example—Default Match

The search key is 10.1.2.3. Bit 32 is off and bit 33 is off, so the search ends up at the leaf with the 
duplicate keys labeled "end" and "default." The routing table key that is duplicated in these two leaves 
is 0.0.0.0. The search key and the routing table key don’t match exactly, so a network match is tried. 
This match is tried for all duplicate keys that have a network mask. The first key (the end marker) 
doesn’t have a network mask, so it is skipped. The next key (the default entry) has a mask of 
0x00000000. The search key is logically ANDed with this mask and since the result equals the 
routing table key (0), this entry is considered a match. The default route is used. 

Example—Network Match with Backtracking

The search key is 127.0.0.3. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends up at the leaf 
labeled 127.0.0.1. The search key and the routing table key don’t match exactly. A network match 
cannot be attempted since this leaf does not have a network mask. Backtracking now takes place. 

The backtracking algorithm is to move up the tree, one level at a time. If an internal node is 
encountered that contains a mask, the search key is logically ANDed with the mask and another search 
is made of the subtree starting at the node with the mask, looking for a match with the ANDed key. If 
a match isn’t found, the backtrack keeps moving up the tree, until the top is reached. 

In this example the search moves up one level to the node for bit 63 and this node contains a mask. 
The search key is logically ANDed with the mask (0xff000000), giving a new search key of 
127.0.0.0. Another search is made starting at this node for 127.0.0.0. Bit 63 is off, so the left branch is 
taken to the leaf labeled 127.0.0.0. The new search key is compared to the routing table key and since 
they’re equal, this leaf is the match. 

Example—Backtracking Multiple Levels

The search key is 112.0.0.1. Bit 32 is off, bit 33 is on, and bit 63 is on, so the search ends up at the leaf 
labeled 127.0.0.1. The keys are not equal and the routing table entry does not have a network mask, so 
backtracking takes place. 

The search moves up one level to the node for bit 63, which contains a mask. The search key is 
logically ANDed with the mask of 0xff000000 and another search is made starting at that node. 
Bit 63 is off in the new search key, so the left branch is made to the leaf labeled 127.0.0.0. A 
comparison is made but the ANDed search key (112.0.0.0) doesn’t equal the search key in the table. 

Backtracking continues up one level from the bit-63 node to the bit-33 node. But this node does not 
have a mask, so the backtracking continues upward. The next level is the top of the tree (bit 32) and it 
has a mask. The search key (112.0.0.1) is logically ANDed with the mask (0x00000000) and a 
new search started from that point. Bit 32 is off in the new search key, as is bit 33, so the search ends 
up at the leaf labeled "end" and "default." The list of duplicate keys is traversed and the default key 
matches the new search key, so the default route is used. 

As we can see in this example, if a default route is present in the routing table, when the backtrack 
ends up at the top node in the tree, its mask is all zero bits, which causes the search to proceed to the 
leftmost leaf in the tree for a match with the default. 

Example—Host Match with Backtracking and Cloning

The search key is 224.0.0.5. Bit 32 is on, bit 33 is on, bit 35 is off, and bit 63 is on, so the search ends 
up at the leaf labeled 224.0.0.1. This routing table key does not equal the search key, and the routing 
table entry does not contain a network mask, so backtracking takes place. 
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The backtrack moves one level up to the node that tests bit 63. This node contains the mask 
0xff000000, so the search key ANDed with the mask yields a new search key of 224.0.0.0. 
Another search is made, starting at this node. Since bit 63 is off in the ANDed key, the left branch is 
taken to the leaf labeled 224.0.0.0. This routing table key matches the ANDed search key, so this entry 
is a match. 

This route has the "clone" flag set (Figure 18.2), so a new leaf is created for the address 224.0.0.5. The 
new routing table entry is 

   Destination     Gateway            Flags     Refs
Use  Interface 
   224.0.0.5       link#l             UHL         0
0  le0 
 

and Figure 18.7 shows the new arrangement of the right side of the routing table tree from Figure 
18.4, starting with the node for bit 35. Notice that whenever a new leaf is added to the tree, two nodes 
are needed: one for the leaf and one for the internal node specifying the bit to test. 

Figure 18.7. Modification of Figure 18.4 after inserting entry for 224.0.0.5.

 

 

This newly created entry is the one returned to the caller who was searching for 224.0.0.5. 

The Big Picture

Figure 18.8 shows a bigger picture of all the data structures involved. The bottom portion of this 
figure is from Figure 3.32. 
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Figure 18.8. Data structures involved with routing tables.

 

 

There are numerous points about this figure that we’ll note now and describe in detail later in this 
chapter. 

rt_tables is an array of pointers to radix_node_head structures. There is one 
entry in the array for each address family. rt_tables[AF_INET] points to the top of 
the Internet routing table tree. 

The radix_node_head structure contains three radix_node structures. These 
structures are built when the tree is initialized and the middle of the three is the top of the tree. 
This corresponds to the top box in Figure 18.4, labeled "bit 32." The first of the three 
radix_node structures is the leftmost leaf in Figure 18.4 (the shared duplicate with the 
default route) and the third of the three is the rightmost leaf. An empty routing table consists 
of just these three radix_node structures; we’ll see how it is constructed by the 
rn_inithead function. 
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The global mask_rnhead also points to a radix_node_head structure. This is the 
head of a separate tree of all the masks. Notice in Figure 18.4 that of the eight masks shown, 
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one is duplicated four times and two are duplicated once. By keeping a separate tree for the 
masks, only one copy of each unique mask is maintained. 
The routing table tree is built from rtentry structures, and we show two of these in 
Figure 18.8. Each rtentry structure contains two radix_node structures, because 
each time a new entry is inserted into the tree, two nodes are required: an internal node 
corresponding to a bit to be tested, and a leaf node corresponding to a host route or a network 
route. In each rtentry structure we also show which bit test the internal node corresponds 
to and the address contained in the leaf node. 

The remainder of the rtentry structure is the focal point of information for this route. We 
show only a single pointer from this structure to the corresponding ifnet structure for the 
route, but this structure also contains a pointer to the ifaddr structure, the flags for the 
route, a pointer to another rtentry structure if this entry is an indirect route, the metrics 
for the route, and so on. 

Protocol control blocks (Chapter 22), of which one exists for each UDP and TCP socket 
(Figure 22.1), contain a route structure that points to an rtentry structure. The UDP 
and TCP output functions both pass a pointer to the route structure in a PCB as the third 
argument to ip_output, each time an IP datagram is sent. PCBs that use the same route 
point to the same routing table entry. 

18.3. Routing Sockets 

When the routing table changes were made with 4.3BSD Reno, the interaction of processes with the 
routing subsystem also changed the concept of routing sockets was introduced. Prior to 4.3BSD 
Reno, fixed-length ioctls were issued by a process (such as the route command) to modify the 
routing table. 4.3BSD Reno changed this to a more generalized message-passing scheme using the 
new PF_ROUTE domain. A process creates a raw socket in the PF_ROUTE domain and can send 
routing messages to the kernel, and receives routing messages from the kernel (e.g., redirects and 
other asynchronous notifications from the kernel). 

Figure 18.9 shows the 12 different types of routing messages. The message type is the rtm_type 
field in the rt_msghdr structure, which we describe in Figure 19.16. Only five of the messages 
can be issued by a process (a write to a routing socket), but all 12 can be received by a process. 

Figure 18.9. Types of messages exchanged across a routing socket.

 

 

We’ll defer our discussion of these routing messages until Chapter 19. 
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18.4. Code Introduction 

Three headers and five C files define the various structures and functions used for routing. These are 
summarized in Figure 18.10. 

Figure 18.10. Files discussed in this chapter.

 

 

In general, the prefix rn_ denotes the radix node functions that search and manipulate the Patricia 
trees, the raw_ prefix denotes the routing control block functions, and the three prefixes route_,
rt_, and rt denote the general routing functions. 

We use the term routing control blocks instead of raw control blocks in all the 
routing chapters, even though the files and functions begin with the prefix raw. 
This is to avoid confusion with the raw IP control blocks and functions, which we 
discuss in Chapter 32. Although the raw control blocks and their associated functions 
are used for more than just routing sockets in Net/3 (one of the raw OSI protocols 
uses these structures and functions), our use in this text is only with routing sockets 
in the PF_ROUTE domain. 

Figure 18.11 shows the primary routing functions and their relationships. The shaded ellipses are the 
ones we cover in this chapter and the next two. We also show where each of the 12 routing message 
types are generated. 
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Figure 18.11. Relationships between the various routing functions.

 

 

rtalloc is the function called by the Internet protocols to look up routes to destinations. We’ve 
already encountered rtalloc in the ip_rtaddr, ip_forward, ip_output, and 
ip_setmoptions functions. We’ll also encounter it later in the in_pcbconnect and 
tcp_mss functions. 

We also show in Figure 18.11 that five programs typically create sockets in the routing domain: 

arp manipulates the ARP cache, which is stored in the IP routing table in Net/3 (Chapter 
21), 
gated and routed are routing daemons that communicate with other routers and 
manipulate the kernel’s routing table as the routing environment changes (routers and links go 
up or down), 
route is a program typically executed by start-up scripts or by the system administrator to 
add or delete routes, and 
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rwhod issues a routing sysct1 on start-up to determine the attached interfaces. 

Naturally, any process (with superuser privilege) can open a routing socket to send and receive 
messages to and from the routing subsystem; we show only the common system programs in Figure 
18.11. 

Global Variables

The global variables introduced in the three routing chapters are shown in Figure 18.12. 

Figure 18.12. Global variables in the three routing chapters.

 

 
 

Statistics

Some routing statistics are maintained in the global structure rtstat, described in Figure 18.13. 

Figure 18.13. Routing statistics maintained in the rtstat structure.

 

 

We’ll see where these counters are incremented as we proceed through the code. None are used by 
SNMP. 

Figure 18.14 shows some sample output of these statistics from the netstat -rs command, 
which displays this structure. 
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Figure 18.14. Sample routing statistics.

 

 
 

SNMP Variables

Figure 18.15 shows the IP routing table, named ipRouteTable, and the kernel variables that 
supply the corresponding value. 

Figure 18.15. IP routing table: ipRouteTable.

 

 

For ipRouteType, if the RTF_GATEWAY flag is set in rt_flags, the route is remote (4); 
otherwise the route is direct (3). For ipRouteProto, if either the RTF_DYNAMIC or 
RTF_MODIFIED flag is set, the route was created or modified by ICMP (4), otherwise the value is 
other (1). Finally, if the rt_mask pointer is null, the returned mask is all one bits (i.e., a host route). 

18.5. Radix Node Data Structures 
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In Figure 18.8 we see that the head of each routing table is a radix_node_head and all the 
nodes in the routing tree, both the internal nodes and the leaves, are radix_node structures. The 
radix_node_head structure is shown in Figure 18.16. 
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Figure 18.16. radix_node_head structure: the top of each routing tree.

 

 

92

rnh_treetop points to the top radix_node structure for the routing tree. Notice that three 
of these structures are allocated at the end of the radix_node_head, and the middle one of 
these is initialized as the top of the tree (Figure 18.8). 

93-94

rnh_addrsize and rnh_pktsize are not currently used. 

rnh_addrsize is to facilitate porting the routing table code to systems that 
don’t have a length byte in the socket address structure. rnh_pktsize is to allow 
using the radix node machinery to examine addresses in packet headers without 
having to copy the address into a socket address structures. 

95-110

The seven function pointers, rnh_addaddr through rnh_walktree, point to functions that 
are called to operate on the tree. Only four of these pointers are initialized by rn_inithead and 
the other three are never used by Net/3, as shown in Figure 18.17. 
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Figure 18.17. The seven function pointers in the radix_node_head structure.

 

 

111-112

Figure 18.18 shows the radix_node structure that forms the nodes of the tree. In Figure 18.8 we 
see that three of these are allocated in the radix_node_head and two are allocated in each 
rtentry structure. 

Figure 18.18. radix_node structure: the nodes of the routing tree.

 

 

41-45

 586

The first five members are common to both internal nodes and leaves, followed by a union defining 
three members if the node is a leaf, or a different three members if the node is internal. As is common 
throughout the Net/3 code, a set of #define statements provide shorthand names for the members 
in the union.
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41-42

rn_mklist is the head of a linked list of masks for this node. We describe this field in Section 
18.9. rn_p points to the parent node. 

43

If rn_b is greater than or equal to 0, the node is an internal node, else the node is a leaf. For the 
internal nodes, rn_b is the bit number to test: for example, its value is 32 in the top node of the tree 
in Figure 18.4. For leaves, rn_b is negative and its value is -1 minus the index of the network mask. 
This index is the first bit number where a 0 occurs. Figure 18.19 shows the indexes of the masks from 
Figure 18.4. 

Figure 18.19. Example of mask indexes.

 

 

As we can see, the index of the all-zero mask is handled specially: its index is 0, not 32. 

44

rn_bmask is a 1-byte mask used with the internal nodes to test whether the corresponding bit is on 
or off. Its value is 0 in leaves. We’ll see how this member is used with the rn_off member shortly. 

45

Figure 18.20 shows the three values for the rn_flags member. 

Figure 18.20. rn_flags values.

 

 

The RNF_ROOT flag is set only for the three radix nodes in the radix_node_head structure: 
the top of the tree and the left and right end nodes. These three nodes can never be deleted from the 
routing tree. 

48-49
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For a leaf, rn_key points to the socket address structure and rn_mask points to a socket address 
structure containing the mask. If rn_mask is null, the implied mask is all one bits (i.e., this route is 
to a host, not to a network). 

Figure 18.21 shows an example corresponding to the leaf for 140.252.13.32 in Figure 18.4. 

Figure 18.21. radix_node structure corresponding to leaf for 140.252.13.32 in 

Figure 18.4.

 

 

This example also shows a radix_mask structure, which we describe in Figure 18.22. We draw 
this latter structure with a smaller width, to help distinguish it as a different structure from the 
radix_node; we’ll encounter both structures in many of the figures that follow. We describe the 
reason for the radix_mask structure in Section 18.9. 

Figure 18.22. radix_mask structure.

 

 

The rn_b of —60 corresponds to an index of 59. rn_key points to a sockaddr_in, with a 
length of 16 and an address family of 2 (AF_INET). The mask structure pointed to by rn_mask
and rm_mask has a length of 8 and a family of 0 (this family is AF_UNSPEC, but it is never 
even looked at). 
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The rn_dupedkey pointer is used when there are multiple leaves with the same key. We describe 
these in Section 18.9. 

52-58

We describe rn_off in Section 18.8. rn_1 and rn_r are the left and right pointers for the 
internal node. 

Figure 18.22 shows the radix_mask structure. 

76-83

Each of these structures contains a pointer to a mask: rm_mask, which is really a pointer to a 
socket address structure containing the mask. Each radix_node structure points to a linked list of 
radix_mask structures, allowing multiple masks per node: rn_mklist points to the first, and 
then each rm_mklist points to the next. This structure definition also declares the global 
rn_mkfreelist, which is the head of a linked list of available structures. 

18.6. Routing Structures 

The focal points of access to the kernel’s routing information are 

1. the rtalloc function, which searches for a route to a destination, 
2. the route structure that is filled in by this function, and 
3. the rtentry structure that is pointed to by the route structure. 

Figure 18.8 showed that the protocol control blocks (PCBs) used by UDP and TCP (Chapter 22) 
contain a route structure, which we show in Figure 18.23. 

Figure 18.23. route structure.

 

 

ro_dst is declared as a generic socket address structure, but for the Internet protocols it is a 
sockaddr_in. Notice that unlike most references to this type of structure, ro_dst is the 
structure itself, not a pointer to one. 

At this point it is worth reviewing Figure 8.24, which shows the use of these routes every time an IP 
datagram is output. 

If the caller passes a pointer to a route structure, that structure is used. Otherwise a local 
route structure is used and it is set to 0, setting ro_rt to a null pointer. UDP and TCP 
pass a pointer to the route structure in their PCB to ip_output.
If the 
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route structure points to an rtentry structure (the ro_rt pointer is nonnull), 
and if the referenced interface is still up, and if the destination address in the route 
structure equals the destination address of the IP datagram, that route is used. Otherwise the 
socket address structure so_dst is filled in with the destination IP address and rtalloc 
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is called to locate a route to that destination. For a TCP connection the destination address of 
the datagram never changes from the destination address of the route, but a UDP application 
can send a datagram to a different destination with each sendto. 
If rtalloc returns a null pointer in ro_rt, a route was not found and ip_output 
returns an error. 
If the RTF_GATEWAY flag is set in the rtentry structure, the route is indirect (the G 
flag in Figure 18.2). The destination address (dst) for the interface output function becomes 
the IP address of the gateway, the rt_gateway member, not the destination address of 
the IP datagram. 

Figure 18.24 shows the rtentry structure. 

Figure 18.24. rtentry structure.

 

 

83-84

Two radix_node structures are contained within this structure. As we noted in the example with 
Figure 18.7, each time a new leaf is added to the routing tree a new internal node is also added. 
rt_nodes[0] contains the leaf entry and rt_nodes[1] contains the internal node. The two 
#define statements at the end of Figure 18.24 provide a shorthand access to the key and mask of 
this leaf node. 

86

Figure 18.25 shows the various constants stored in rt_flags and the corresponding character 
output by netstat in the "Flags" column (Figure 18.2). 
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Figure 18.25. rt_flags values.

 

 

The RTF_BLACKHOLE flag is not output by netstat and the two with lowercase flag 
characters, RTF_DONE and RTF_MASK, are used in routing messages and not normally stored in 
the routing table entry. 

85

If the RTF_GATEWAY flag is set, rt_gateway contains a pointer to a socket address structure 
containing the address (e.g., the IP address) of that gateway. Also, rt_gwroute points to the 
rtentry for that gateway. This latter pointer was used in ether_output (Figure 4.15). 

87

rt_refcnt counts the "held" references to this structure. We describe this counter at the end of 
Section 19.3. This counter is output as the "Refs" column in Figure 18.2. 

88

rt_use is initialized to 0 when the structure is allocated; we saw it incremented in Figure 8.24 each 
time an IP datagram was output using the route. This counter is also the value printed in the "Use" 
column in Figure 18.2. 

89-90

rt_ifp and rt_ifa point to the interface structure and the interface address structure, 
respectively. Recall from Figure 6.5 that a given interface can have multiple addresses, so minimally 
the rt_ifa is required. 

92

The rt_llinfo pointer allows link-layer protocols to store pointers to their protocol-specific 
structures in the routing table entry. This pointer is normally used with the RTF_LLINFO flag. 
Figure 21.1 shows how ARP uses this pointer. 
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93

Figure 18.26 shows the rt_metrics structure, which is contained within the rtentry 
structure. Figure 27.3 shows that TCP uses six members in this structure. 

Figure 18.26. rt_metrics structure.

 

 

54-65

rmx_locks is a bitmask telling the kernel which of the eight metrics that follow must not be 
modified. The values for this bitmask are shown in Figure 20.13. 

rmx_expire is used by ARP (Chapter 21) as a timer for each ARP entry. Contrary to the 
comment with rmx_expire, it is not used for redirects. 

Figure 18.28 summarizes the structures that we’ve described, their relationships, and the various types 
of socket address structures they reference. The rtentry that we show is for the route to 
128.32.33.5 in Figure 18.2. The other radix_node contained in the rtentry is for the bit 36 
test right above this node in Figure 18.4. The two sockaddr_dl structures pointed to by the first 
ifaddr were shown in Figure 3.38. Also note from Figure 6.5 that the ifnet structure is 
contained within an le_softc structure, and the second ifaddr structure is contained within an 
in_ifaddr structure. 

18.7. Initialization: route_init and rtable_init
Functions

The initialization of the routing tables is somewhat obscure and takes us back to the domain 
structures in Chapter 7. Before outlining the function calls, Figure 18.27 shows the relevant fields 
from the domain structure (Figure 7.5) for various protocol families. 
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Figure 18.27. Members of domain structure relevant to routing.

 

 

The PF_ROUTE domain is the only one with an initialization function. Also, only the domains that 
require a routing table have a dom_rtattach function, and it is always rn_inithead. The 
routing domain and the Unix domain protocols do not require a routing table. 

The dom_rtoffset member is the offset, in bits, (from the beginning of the domain’s socket 
address structure) of the first bit to be examined for routing. The size of this structure in bytes is given 
by dom_maxrtkey. We saw earlier in this chapter that the offset of the IP address in the 
sockaddr_in structure is 32 bits. The dom_maxrtkey member is the size in bytes of the 
protocol’s socket address structure: 16 for sockaddr_in.

Figure 18.29 outlines the steps involved in initializing the routing tables. 
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Figure 18.28. Summary of routing structures.
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Figure 18.29. Steps involved in initialization of routing tables.

 

 

domaininit is called once by the kernel’s main function when the system is initialized. The 
linked list of domain structures is built by the ADDDOMAIN macro and the linked list is traversed, 
calling each domain’s dom_init function, if defined. As we saw in Figure 18.27, the only 
dom_init function is route_init, which is shown in Figure 18.30. 
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Figure 18.30. route_init function.

 

 

The function rn_init, shown in Figure 18.32, is called only once. 

The function rtable_init, shown in Figure 18.31, is also called only once. It in turn calls all 
the dom_rtattach functions, which initialize a routing table tree for that domain. 

Figure 18.31. rtable_init function: call each domain's dom_rtattach
function.

 

 

We saw in Figure 18.27 that the only dom_rtattach function is rn_inithead, which we 
describe in the next section. 

18.8. Initialization: rn_init and rn_inithead Functions 

The function rn_init, shown in Figure 18.32, is called once by route_init to initialize 
some of the globals used by the radix functions. 

Figure 18.32. rn_init function.
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Determine max_keylen

750-761

All the domain structures are examined and the global max_keylen is set to the largest value of 
dom_maxrtkey. In Figure 18.27 the largest value is 32 for AF_ISO, but in a typical system 
that excludes the OSI and XNS protocols, max_keylen is 16, the size of a sockaddr_in 
structure. 

Allocate and initialize rn_zeros, rn_ones, and maskedKey

762-769

A buffer three times the size of max_keylen is allocated and the pointer stored in the global 
rn_zeros. R_Malloc is a macro that calls the kernel’s malloc function, specifying a type 
of M_RTABLE and M_DONTWAIT. We’ll also encounter the macros Bcmp, Bcopy, 
Bzero, and Free, which call kernel functions of similar names, with the arguments 
appropriately type cast. 

This buffer is divided into three pieces, and each piece is initialized as shown in Figure 18.33. 

Figure 18.33. rn_zeros, rn_ones, and maskedKey arrays.

 

 

rn_zeros is an array of all zero bits, rn_ones is an array of all one bits, and maskedKey is 
an array used to hold a temporary copy of a search key that has been masked. 
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Initialize tree of masks

770-772

The function rn_inithead is called to initialize the head of the routing tree for the address 
masks; the radix_node_head structure pointed to by the global mask_rnhead in Figure 
18.8. 

From Figure 18.27 we see that rn_inithead is also the dom_attach function for all the 
protocols that require a routing table. Instead of showing the source code for this function, Figure 
18.34 shows the radix_node_head structure that it builds for the Internet protocols. 

Figure 18.34. radix_node_head structure built by rn_inithead for Internet 

protocols.

 

 

The three radix_node structures form a tree: the middle of the three is the top (it is pointed to by 
rnh_treetop), the first of the three is the leftmost leaf of the tree, and the last of the three is the 
rightmost leaf of the tree. The parent pointer of all three nodes (rn_p) points to the middle node. 
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The value 32 for rnh_nodes[1].rn_b is the bit position to test. It is from the 
dom_rtoffset member of the Internet domain structure (Figure 18.27). Instead of performing 
shifts and masks during forwarding, the byte offset and corresponding byte mask are precomputed. 
The byte offset from the start of a socket address structure is in the rn_off member of the 
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radix_node structure (4 in this case) and the byte mask is in the rn_bmask member (0x80 
in this case). These values are computed whenever a radix_node structure is added to the tree, to 
speed up the comparisons during forwarding. As additional examples, the offset and byte mask for the 
two nodes that test bit 33 in Figure 18.4 would be 4 and 0x40, respectively. The offset and byte 
mask for the two nodes that test bit 63 would be 7 and 0x01.

The value of -33 for the rn_b member of both leaves is negative one minus the index of the leaf. 

The key of the leftmost node is all zero bits (rn_zeros) and the key of the rightmost node is all 
one bits (rn_ones). 

All three nodes have the RNF_ROOT flag set. (We have omitted the RNF_ prefix.) This indicates 
that the node is one of the three original nodes used to build the tree. These are the only nodes with 
this flag. 

One detail we have not mentioned is that the Network File System (NFS) also uses 
the routing table functions. For each mount point on the local host a 
radix_node_head structure is allocated, along with an array of pointers to 
these structures (indexed by the protocol family), similar to the rt_tables array. 
Each time this mount point is exported, the protocol address of the host that can 
mount this filesystem is added to the appropriate tree for the mount point. 

18.9. Duplicate Keys and Mask Lists 

Before looking at the source code that looks up entries in a routing table we need to understand two 
fields in the radix_node structure: rn_dupedkey, which forms a linked list of additional 
radix_node structures containing duplicate keys, and rn_mklist, which starts a linked list 
of radix_mask structures containing network masks. 

We first return to Figure 18.4 and the two boxes on the far left of the tree labeled "end" and "default." 
These are duplicate keys. The leftmost node with the RNF_ROOT flag set (rnh_nodes[0] in 
Figure 18.34) has a key of all zero bits, but this is the same key as the default route. We would have 
the same problem with the rightmost end node in the tree, which has a key of all one bits, if an entry 
were created for 255.255.255.255, but this is the limited broadcast address, which doesn’t appear in 
the routing table. In general, the radix node functions in Net/3 allow any key to be duplicated, if each 
occurrence has a unique mask. 

Figure 18.35 shows the two nodes with a duplicate key of all zero bits. In this figure we have removed 
the RNF_ prefix for the rn_flags and omit nonnull parent, left, and right pointers, which add 
nothing to the discussion. 
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Figure 18.35. Duplicated nodes with a key of all zero bits.

 

 

The top node is the top of the routing tree the node for bit 32 at the top of Figure 18.4. The next two 
nodes are leaves (their rn_b values are negative) with the rn_dupedkey member of the first 
pointing to the second. The first of these two leaves is the rnh_nodes[0] structure from Figure 
18.34, which is the left end marker of the tree i ts RNF_ROOT flag is set. Its key was explicitly set 
by rn_inithead to rn_zeros.

The second of these leaves is the entry for the default route. Its rn_key points to a 
sockaddr_in with the value 0.0.0.0, and it has a mask of all zero bits. Its rn_mask points to 
rn_zeros, since equivalent masks in the mask table are shared. 

Normally keys are not shared, let alone shared with masks. The rn_key pointers 
of the two end markers (those with the RNF_ROOT flag) are special since they are 
built by rn_inithead (Figure 18.34). The key of the left end marker points to 
rn_zeros and the key of the right end marker points to rn_ones.

 600

The final structure is a radix_mask structure and is pointed to by both the top node of the tree 
and the leaf for the default route. The list from the top node of the tree is used with the backtracking 
algorithm when the search is looking for a network mask. The list of radix_mask structures with 
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an internal node specifies the masks that apply to subtrees starting at that node. In the case of duplicate 
keys, a mask list also appears with the leaves, as we’ll see in the following example. 

We now show a duplicate key that is added to the routing tree intentionally and the resulting mask list. 
In Figure 18.4 we have a host route for 127.0.0.1 and a network route for 127.0.0.0. The default mask 
for the class A network route is 0xff000000, as we show in the figure. If we divide the 24 bits 
following the class A network ID into a 16-bit subnet ID and an 8-bit host ID, we can add a route for 
the subnet 127.0.0 with a mask of 0xffffff00:

   bsdi $ route add 127.0.0.0 -netmask 0xffffff00 
140.252.13.33

 

Although it makes little practical sense to use network 127 in this fashion, our interest is in the 
resulting routing table structure. Although duplicate keys are not common with the Internet protocols 
(other than the previous example with the default route), duplicate keys are required to provide routes 
to subnet 0 of any network. 

There is an implied priority in these three entries with a network ID of 127. If the search key is 
127.0.0.1 it matches all three entries, but the host route is selected because it is the most specific: its 
mask (0xffffffff) has the most one bits. If the search key is 127.0.0.2 it matches both network 
routes, but the route for subnet 0, with a mask of 0xffffff00, is more specific than the route 
with a mask of 0xff000000. The search key 127.1.2.3 matches only the entry with a mask of 
0xff000000.

Figure 18.36 shows the resulting tree structure, starting at the internal node for bit 33 from Figure 
18.4. We show two boxes for the entry with the key of 127.0.0.0 since there are two leaves with this 
duplicate key. 

Figure 18.36. Routing tree showing duplicate keys for 127.0.0.0.

 

 

Figure 18.37 shows the resulting radix_node and radix_mask structures. 
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Figure 18.37. Example routing table structures for the duplicate keys for 

network 127.0.0.0.

 

 

First look at the linked list of radix_mask structures for each radix_node. The mask list 
for the top node (bit 63) consists of the entry for 0xffffff00 followed by 0xff000000. The 
more-specific mask comes first in the list so that it is tried first. The mask list for the second 
radix_node (the one with the rn_b of -57) is the same as that of the first. But the list for the 
third radix_node consists of only the entry with a mask of 0xff000000.

Notice that masks with the same value are shared but keys with the same value are not. This is 
because the masks are maintained in their own routing tree, explicitly to be shared, because equal 
masks are so common (e.g., every class C network route has the same mask of 0xffffff00), 
while equal keys are infrequent. 
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18.10. rn_match Function 

We now show the rn_match function, which is called as the rnh_matchaddr function for 
the Internet protocols. We’ll see that it is called by the rtalloc1 function, which is called by the 
rtalloc function. The algorithm is as follows: 

1. Start at the top of the tree and go to the leaf corresponding to the bits in the search key. Check 
the leaf for an exact match (Figure 18.38). 

Figure 18.38. rn_match function: go down tree, check for exact host 

match.

 

 

2. Check the leaf for a network match (Figure 18.40). 
3. Backtrack (Figure 18.43). 

Figure 18.38 shows the first part of rn_match.

135-145
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The first argument v_arg is a pointer to a socket address structure, and the second argument head 
is a pointer to the radix_node_head structure for the protocol. All protocols call this function 
(Figure 18.17) but each calls it with a different head argument. 

In the assignment statements, off is the rn_off member of the top node of the tree (4 for Internet 
addresses, from Figure 18.34), and vlen is the length field from the socket address structure of the 
search key (16 for Internet addresses). 

Go down the tree to the corresponding leaf

146-155

This loop starts at the top of the tree and moves down the left and right branches until a leaf is 
encountered (rn_b is less than 0). Each test of the appropriate bit is made using the precomputed 
byte mask in rn_bmask and the corresponding precomputed offset in rn_off. For Internet 
addresses, rn_off will be 4, 5, 6, or 7. 

Check for exact match

156-164

When the leaf is encountered, a check is first made for an exact match. All bytes of the socket address 
structure, starting at the rn_off value for the protocol family, are compared. This is shown in 
Figure 18.39 for an Internet socket address structure. 

Figure 18.39. Variables during comparison of sockaddr_in structures.

 

 

As soon as a mismatch is found, a jump is made to on1.

Normally the final 8 bytes of the sockaddr_in are 0 but proxy ARP (Section 
21.12) sets one of these bytes nonzero. This allows two routing table entries for a 
given IP address: one for the normal IP address (with the final 8 bytes of 0) and a 
proxy ARP entry for the same IP address (with one of the final 8 bytes nonzero). 

The length byte in Figure 18.39 was assigned to vlen at the beginning of the function, and we’ll see 
that rtalloc1 uses the family member to select the routing table to search. The port is never used 
by the routing functions. 
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Explicit check for default

165-172

Figure 18.35 showed that the default route is stored as a duplicate leaf with a key of 0. The first of the 
duplicate leaves has the RNF_ROOT flag set. Hence if the RNF_ROOT flag is set in the matching 
node and the leaf contains a duplicate key the value of the pointer rn_dupedkey is returned (i.e., 
the pointer to the node containing the default route in Figure 18.35). If a default route has not been 
entered and the search matches the left end marker (a key of all zero bits), or if the search encounters 
the right end marker (a key of all one bits), the returned pointer t points to a node with the 
RNF_ROOT flag set. We’ll see that rtalloc1 explicitly checks whether the matching node has 
this flag set, and considers such a match an error. 

At this point in rn_match a leaf has been reached but it is not an exact match with the search key. 
The next part of the function, shown in Figure 18.40, checks whether the leaf is a network match. 

Figure 18.40. rn_match function: check for network match.

 

 

173-174

cp points to the unequal byte in the search key. matched_off is set to the offset of this byte 
from the start of the socket address structure. 

175-183

The do while loop iterates through all duplicate leaves and each one with a network mask is 
compared. Let’s work through the code with an example. Assume we’re looking up the IP address 
140.252.13.60 in the routing table in Figure 18.4. The search will end up at the node labeled 
140.252.13.32 (bits 62 and 63 are both off), which contains a network mask. Figure 18.41 shows the 
structures when the for loop in Figure 18.40 starts executing. 
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Figure 18.41. Example for network mask comparison.

 

 

The search key and the routing table key are both sockaddr_in structures, but the length of the 
mask is different. The mask length is the minimum number of bytes containing nonzero values. All 
the bytes past this point, up through max_keylen, are 0. 

184-190

The search key is exclusive ORed with the routing table key, and the result logically ANDed with the 
network mask, one byte at a time. If the resulting byte is ever nonzero, the loop terminates because 
they don’t match (Exercise 18.1). If the loop terminates normally, however, the search key ANDed 
with the network mask matches the routing table entry. The pointer to the routing table entry is 
returned. 

Figure 18.42 shows how this example matches, and how the IP address 140.252.13.188 does not 
match, looking at just the fourth byte of the IP address. The search for both IP addresses ends up at 
this node since both addresses have bits 57, 62, and 63 off. 

Figure 18.42. Example of search key match using network mask.

 

 

The first example (140.252.13.60) matches since the result of the logical AND is 0 (and all the 
remaining bytes in the address, the key, and the mask are all 0). The other example does not match 
since the result of the logical AND is nonzero. 

191

If the routing table entry has duplicate keys, the loop is repeated for each key. 
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The final portion of rn_match, shown in Figure 18.43, backtracks up the tree, looking for a 
network match or a match with the default. 

Figure 18.43. rn_match function: backtrack up the tree.

 

 

193-195

The do while loop continues up the tree, checking each level, until the top has been checked. 

196

The pointer t is replaced with the pointer to the parent node, moving up one level. Having the parent 
pointer in each node simplifies backtracking. 

197-210

Each level is checked only if the internal node has a nonnull list of masks. rn_mklist is a pointer 
to a linked list of radix_mask structures, each containing a mask that applies to the subtree 
starting at that node. The inner do while loop iterates through each radix_mask structure on 
the list. 

Using the previous example, 140.252.13.188, Figure 18.44 shows the various data structures when the 
innermost for loop starts. This loop logically ANDs each byte of the search key with each byte of 
the mask, storing the result in the global maskedKey. The mask value is 0xffffffe0 and the 
search would have backtracked from the leaf for 140.252.13.32 in Figure 18.4 two levels to the node 
that tests bit 62. 
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Figure 18.44. Preparation to search again using masked search key.

 

 

Once the for loop completes, the masking is complete, and rn_search (shown in Figure 18.48) 
is called with maskedKey as the search key and the pointer t as the top of the subtree to search. 
Figure 18.45 shows the value of maskedKey for our example. 

Figure 18.45. maskedKey when rn_search is called.

 

 

The byte 0xa0 is the logical AND of 0xbc (188, the search key) and 0xe0 (the mask). 

211

rn_search proceeds down the tree from its starting point, branching right or left depending on the 
key, until a leaf is reached. In this example the search key is the 9 bytes shown in Figure 18.45 and the 
leaf that’s reached is the one labeled 140.252.13.32 in Figure 18.4, since bits 62 and 63 are off in the 
byte 0xa0. Figure 18.46 shows the data structures when Bcmp is called to check if a match has 
been found. 
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Figure 18.46. Comparison of maskedKey and new leaf.

 

 

Since the 9-byte strings are not the same, the comparison fails. 

212-221

This while loop handles duplicate keys, each with a different mask. The only key of the duplicates 
that is compared is the one whose rn_mask pointer equals m->rm_mask. As an example, recall 
Figures 18.36 and 18.37. If the search starts at the node for bit 63, the first time through the inner do
while loop m points to the radix_mask structure for 0xffffff00. When rn_search 
returns the pointer to the first of the duplicate leaves for 127.0.0.0, the rm_mask of this leaf equals 
m->rm_mask, so Bcmp is called. If the comparison fails, m is replaced with the pointer to the 
next radix_mask structure on the list (the one with a mask of 0xff000000) and the do
while loop iterates around again with the new mask. rn_search again returns the pointer to the 
first of the duplicate leaves for 127.0.0.0, but its rn_mask does not equal m->rm_rnask. The 
while steps to the next of the duplicate leaves and its rn_mask is the right one. 

Returning to our example with the search key of 140.252.13.188, since the search from the node that 
tests bit 62 failed, the backtracking continues up the tree until the top is reached, which is the next 
node up the tree with a nonnull rn_mklist.

Figure 18.47 shows the data structures when the top node of the tree is reached. At this point 
maskedKey is computed (it is all zero bits) and rn_search starts at this node (the top of the 
tree) and continues down the two left branches to the leaf labeled "default" in Figure 18.4. 
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Figure 18.47. Backtrack to top of tree and rn_search that locates default leaf.

 

 

When rn_search returns, x points to the radix_node with an rn_b of -33, which is the 
first leaf encountered after the two left branches from the top of the tree. But x->rn_mask (which 
is null) does not equal m->rm_mask, so x is replaced with x->rn_dupedkey. The test of 
the while loop occurs again, but now x->rn_mask equals m->rm_mask, so the while 
loop terminates. Bcmp compares the 12 bytes of 0 starting at mstart with the 12 bytes of 0 stating 
at x->rn_key plus 4, and since they’re equal, the function returns the pointer x, which points to 
the entry for the default route. 

18.11. rn_search Function 

rn_search was called in the previous section from rn_match to search a subtree of the 
routing table. 
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Figure 18.48. rn_search function.

 

 

This loop is similar to the one in Figure 18.38. It compares one bit in the search key at each node, 
branching left if the bit is off or right if the bit is on, terminating when a leaf is encountered. The 
pointer to that leaf is returned. 

18.12. Summary 

Each routing table entry is identified by a key: the destination IP address in the case of the Internet 
protocols, which is either a host address or a network address with an associated network mask. Once 
the entry is located by searching for the key, additional information in the entry specifies the IP 
address of a router to which datagrams should be sent for the destination, a pointer to the interface to 
use, metrics, and so on. 

The information maintained by the Internet protocols is the route structure, composed of just two 
elements: a pointer to a routing table entry and the destination address. We’ll encounter one of these 
route structures in each of the Internet protocol control blocks used by UDP, TCP, and raw IP. 

The Patricia tree data structure is well suited to routing tables. Routing table lookups occur much more 
frequently than adding or deleting routes, so from a performance standpoint using Patricia trees for the 
routing table makes sense. Patricia trees provide fast lookups at the expense of additional work in 
adding and deleting. Measurements in [Sklower 1991] comparing the radix tree approach to the Net/1 
hash table show that the radix tree method is about two times faster in building a test tree and four 
times faster in searching. 

Exercises

18.1 We said with Figure 18.3 that the general condition for matching a routing table entry is 
that the search key logically ANDed with the routing table mask equal the routing table 
key. But in Figure 18.40 a different test is used. Build a logic truth table showing that the 
two tests are the same. 

18.2 Assume a Net/3 system needs a routing table with 20,000 entries (IP addresses). 
Approximately how much memory is required for this, ignoring the space required for the 
masks? 
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18.3 What is the limit imposed on the length of a routing table key by the radix_node  
structure? 
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Chapter 19. Routing Requests and Routing Messages 

19.1. Introduction 

The various protocols within the kernel don’t access the routing trees directly, using the functions from 
the previous chapter, but instead call a few functions that we describe in this chapter: rtalloc and 
rtalloc1 are two that perform routing table lookups, rtrequest adds and deletes routing 
table entries, and rtinit is called by most interfaces when the interface goes up or down. 

Routing messages communicate information in two directions. A process such as the route 
command or one of the routing daemons (routed or gated) writes routing messages to a routing 
socket, causing the kernel to add a new route, delete an existing route, or modify an existing route. 
The kernel also generates routing messages that can be read by any routing socket when events occur 
in which the processes might be interested: an interface has gone down, a redirect has been received, 
and so on. In this chapter we cover the formats of these routing messages and the information 
contained therein, and we save our discussion of routing sockets until the next chapter. 

Another interface provided by the kernel to the routing tables is through the sysctl system call, 
which we describe at the end of this chapter. This system call allows a process to read the entire 
routing table or a list of all the configured interfaces and interface addresses. 

19.2. rtalloc and rtalloc1 Functions 

rtalloc and rtalloc1 are the functions normally called to look up an entry in the routing 
table. Figure 19.1 shows rtalloc.

Figure 19.1. rtalloc function.

 

 

58-65

The argument ro is often the pointer to a route structure contained in an Internet PCB (Chapter 
22) which is used by UDP and TCP. If ro already points to an rtentry structure (ro_rt is 
nonnull), and that structure points to an interface structure, and the route is up, the function returns. 
Otherwise rtalloc1 is called with a second argument of 1. We’ll see the purpose of this argument 
shortly. 

rtalloc1, shown in Figure 19.2, calls the rnh_matchaddr function, which is always 
rn_match (Figure 18.17) for Internet addresses. 
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Figure 19.2. rtalloc1 function.

 

 

66-76

The first argument is a pointer to a socket address structure containing the address to search for. The 
sa_family member selects the routing table to search. 

Call rn_match

77-78

If the following three conditions are met, the search is successful. 

1. A routing table exists for the protocol family, 
2. rn_match returns a nonnull pointer, and 
3. the matching radix_node does not have the RNF_ROOT flag set. 

Remember that the two leaves that mark the end of the tree both have the RNF_ROOT flag set. 
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Search fails

94-101

If the search fails because any one of the three conditions is not met, the statistic rts_unreach is 
incremented and if the second argument to rtalloc1 (report) is nonzero, a routing message is 
generated that can be read by any interested processes on a routing socket. The routing message has 
the type RTM_MISS, and the function returns a null pointer. 

79

If all three of the conditions are met, the lookup succeeded and the pointer to the matching 
radix_node is stored in rt and newrt. Notice that in the definition of the rtentry 
structure (Figure 18.24) the two radix_node structures are at the beginning, and, as shown in 
Figure 18.8, the first of these two structures contains the leaf node. Therefore the pointer to a 
radix_node structure returned by rn_match is really a pointer to an rtentry structure, 
which is the matching leaf node. 

Create clone entries

80-82

If the caller specified a nonzero second argument, and if the RTF_CLONING flag is set, 
rtrequest is called with a command of RTM_RESOLVE to create a new rtentry structure 
that is a clone of the one that was located. This feature is used by ARP and for multicast addresses. 

Clone creation fails

83-87

If rtrequest returns an error, newrt is set back to the entry returned by rn_match and its 
reference count is incremented. A jump is made to miss where an RTM_MISS message is 
generated. 

Check for external resolution

88-91

If rtrequest succeeds but the newly cloned entry has the RTF_XRESOLVE flag set, a jump is 
made to miss, this time to generate an RTM_RESOLVE message. The intent of this message is to 
notify a user process when the route is created, and it could be used with the conversion of IP 
addresses to X.121 addresses. 

Increment reference count for normal successful search

92-93

When the search succeeds but the RTF_CLONING flag is not set, this statement increments the 
entry’s reference count. This is the normal flow through the function, which then returns the nonnull 
pointer. 
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For a small function, rtalloc1 has many options in how it operates. There are seven different 
flows through the function, summarized in Figure 19.3. 

Figure 19.3. Summary of operation of rtalloc1.

 

 

We note that the first two rows (entry not found) are impossible if a default route exists. Also we show 
rt_refcnt being incremented in the fifth and sixth rows when the call to rtrequest with a 
command of RTM_RESOLVE is OK. The increment is done by rtrequest.

19.3. RTFREE Macro and rtfree Function 

The RTFREE macro, shown in Figure 19.4, calls the rtfree function only if the reference count is 
less than or equal to 1, otherwise it just decrements the reference count. 

Figure 19.4. RTFREE macro.

 

 

209-213

The rtfree function, shown in Figure 19.5, releases an rtentry structure when there are no 
more references to it. We’ll see in Figure 22.7, for example, that when a process control block is 
released, if it points to a routing entry, rtfree is called. 
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Figure 19.5. rtfree function: release an rtentry structure.

 

 

105-115

The entry’s reference count is decremented and if it is less than or equal to 0 and the route is not 
usable, the entry can be released. If either of the flags RNF_ACTIVE or RNF_ROOT are set, this is 
an internal error. If RNF_ACTIVE is set, this structure is still part of the routing table tree. If 
RNF_ROOT is set, this structure is one of the end markers built by rn_inithead.

116

rttrash is a debugging counter of the number of routing entries not in the routing tree, but not 
released. It is incremented by rtrequest when it begins deleting a route, and then decremented 
here. Its value should normally be 0. 

Release interface reference

117-122

A check is made that the reference count is not negative, and then IFAFREE decrements the 
reference count for the ifaddr structure and releases it by calling ifafree when it reaches 0. 

Release routing memory

123-124

The memory occupied by the routing entry key and its gateway is released. We’ll see in 
rt_setgate that the memory for both is allocated in one contiguous chunk, allowing both to be 
released with a single call to Free. Finally the rtentry structure itself is released. 
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Routing Table Reference Counts

The handling of the routing table reference count, rt_refcnt, differs from most other reference 
counts. We see in Figure 18.2 that most routes have a reference count of 0, yet the routing table entries 
without any references are not deleted. We just saw the reason in rtfree: an entry with a 
reference count of 0 is not deleted unless the entry’s RTF_UP flag is not set. The only time this flag 
is cleared is by rtrequest when a route is deleted from the routing tree. 

Most routes are used in the following fashion. 

If the route is created automatically as a route to an interface when the interface is configured 
(which is typical for Ethernet interfaces, for example), then rtinit calls rtrequest 
with a command of RTM_ADD, creating the new entry and setting the reference count to 1. 
rtinit then decrements the reference count to 0 before returning. 

A point-to-point interface follows a similar procedure, so the route starts with a reference 
count of 0. 

If the route is created manually by the route command or by a routing daemon, a similar 
procedure occurs, with route_output calling rtrequest with a command of 
RTM_ADD, setting the reference count to 1. This is then decremented by 
route_output to 0 before it returns. 

Therefore all newly created routes start with a reference count of 0. 

When an IP datagram is sent on a socket, be it TCP or UDP, we saw that ip_output calls 
rtalloc, which calls rtalloc1. In Figure 19.3 we saw that the reference count is 
incremented by rtalloc1 if the route is found. 

The located route is called a held route, since a pointer to the routing table entry is being held 
by the protocol, normally in a route structure contained within a protocol control block. 
An rtentry structure that is being held by someone else cannot be deleted, which is why 
rtfree doesn’t release the structure until its reference count reaches 0. 

A protocol releases a held route by calling RTFREE or rtfree. We saw this in Figure 
8.24 when ip_output detects a change in the destination address. We’ll encounter it in 
Chapter 22 when a protocol control block that holds a route is released. 

Part of the confusion we’ll encounter in the code that follows is that rtalloc1 is often called to 
look up a route in order to verify that a route to the destination exists, but when the caller doesn’t want 
to hold the route. Since rtalloc1 increments the counter, the caller immediately decrements it. 

Consider a route being deleted by rtrequest. The RTF_UP flag is cleared, and if no one is 
holding the route (its reference count is 0), rtfree should be called. But rtfree considers it an 
error for the reference count to go below 0, so rtrequest checks whether its reference count is 
less than or equal to 0, and, if so, increments it and calls rtfree. Normally this sets the reference 
count to 1 and rtfree decrements it to 0 and deletes the route. 

19.4. rtrequest Function 

The rtrequest function is the focal point for adding and deleting routing table entries. Figure 
19.6 shows some of the other functions that call it. 
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Figure 19.6. Summary of functions that call rtrequest.

 

 

rtrequest is a switch statement with one case per command: RTM_ADD,
RTM_DELETE, and RTM_RESOLVE. Figure 19.7 shows the start of the function and the 
RTM_DELETE command. 

Figure 19.7. rtrequest function: RTM_DELETE command.
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290-307

The second argument, dst, is a socket address structure specifying the key to be added or deleted 
from the routing table. The sa_family from this key selects the routing table. If the flags 
argument indicates a host route (instead of a route to a network), the netmask pointer is set to null, 
ignoring any value the caller may have passed. 

Delete from routing tree

309-315

The rnh_deladdr function (rn_delete from Figure 18.17) deletes the entry from the 
routing table tree and returns a pointer to the corresponding rtentry structure. The RTF_UP flag 
is cleared. 

Remove reference to gateway routing table entry

316-320

If the entry is an indirect route through a gateway, RTFREE decrements the rt_refcnt member 
of the gateway’s entry and deletes it if the count reaches 0. The rt_gwroute pointer is set to null 
and rt is set back to point to the entry that was deleted. 

Call interface request function

321-322

If an ifa_rtrequest function is defined for this entry, that function is called. This function is 
used by ARP, for example, in Chapter 21 to delete the corresponding ARP entry. 

Return pointer or release reference

323-330

The rttrash global is incremented because the entry may not be released in the code that follows. 
If the caller wants the pointer to the rtentry structure that was deleted from the routing tree (if 
ret_nrt is nonnull), then that pointer is returned, but the entry cannot be released: it is the caller’s 
responsibility to call rtfree when it is finished with the entry. If ret_nrt is null, the entry can 
be released: if the reference count is less than or equal to 0, it is incremented, and rtfree is called. 
The break causes the function to return. 

Figure 19.8 shows the next part of the function, which handles the RTM_RESOLVE command. This 
function is called with this command only from rtalloc1, when a new entry is to be created 
from an entry with the RTF_CLONING flag set. 
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Figure 19.8. rtrequest function: RTM_RESOLVE command.

 

 

331-339

The final argument, ret_nrt, is used differently for this command: it contains the pointer to the 
entry with the RTF_CLONING flag set (Figure 19.2). The new entry will have the same rt_ifa
pointer, the same flags (with the RTF_CLONING flag cleared), and the same rt_gateway. If 
the entry being cloned has a null rt_genmask pointer, the new entry has its RTF_HOST flag set, 
because it is a host route; otherwise the new entry is a network route and the network mask of the new 
entry is copied from the rt_genmask value. We give an example of cloned routes with a network 
mask at the end of this section. This case continues at the label makeroute, which is in the 
next figure. 

Figure 19.9 shows the RTM_ADD command. 
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Figure 19.9. rtrequest function: RTM_ADD command.

 

 
 

Locate corresponding interface

340-342

The function ifa_ifwithroute finds the appropriate local interface for the destination (dst), 
returning a pointer to its ifaddr structure. 
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Allocate memory for routing table entry

343-348

An rtentry structure is allocated. Recall that this structure contains both the two radix_node 
structures for the routing tree and the other routing information. The structure is zeroed and the 
rt_flags are set from the caller’s flags, including the RTF_UP flag. 

Allocate and copy gateway address

349-352

The rt_setgate function (Figure 19.11) allocates memory for both the routing table key (dst) 
and its gateway. It then copies gateway into the new memory and sets the pointers 
rt_key, rt_gateway, and rt_gwroute.

Copy destination address

353-357

The destination address (the routing table key dst) must now be copied into the memory pointed to 
by rn_key. If a network mask is supplied, rt_maskedcopy logically ANDs dst and 
netmask, forming the new key. Otherwise dst is copied into the new key. The reason for 
logically ANDing dst and netmask is to guarantee that the key in the table has already been 
ANDed with its mask, so when a search key is compared against the key in the table only the search 
key needs to be ANDed. For example, the following command adds another IP address (an alias) to 
the Ethernet interface le0, with subnet 12 instead of 13: 

   bsdi $ ifconfig le0 inet 140.252.12.63 netmask 
0xffffffe0 alias

 

The problem is that we’ve incorrectly specified all one bits for the host ID. Nevertheless, when the key 
is stored in the routing table we can verify with netstat that the address is first logically ANDed 
with the mask: 

   Destination      Gateway             Flags     Refs
Use  Interface 
   140.252.12.32    link#1              U C         0
0  le0 
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Add entry to routing tree

358-366

The rnh_addaddr function (rn_addroute from Figure 18.17) adds this rtentry 
structure, with its destination and mask, to the routing table tree. If an error occurs, the structures are 
released and EEXIST returned (i.e., the entry is already in the routing table). 

Store interface pointers

367-369

The ifaddr structure’s reference count is incremented and the pointers to its ifaddr and 
ifnet structures are stored. 

Copy metrics for newly cloned route

370-371

If the command was RTM_RESOLVE (not RTM_ADD), the entire metrics structure is copied from 
the cloned entry into the new entry. If the command was RTM_ADD, the caller can set the metrics 
after this function returns. 

Call interface request function

372-373

If an ifa_rtrequest function is defined for this entry, that function is called. ARP uses this to 
perform additional processing for both the RTM_ADD and RTM_RESOLVE commands (Section 
21.13). 

Return pointer and increment reference count

374-378

If the caller wants a copy of the pointer to the new structure, it is returned through ret_nrt and the 
rt_refcnt reference count is incremented from 0 to 1. 

Example: Cloned Routes with Network Masks

The only use of the rt_genmask value is with cloned routes created by the RTM_RESOLVE 
command in rtrequest. If an rt_genmask pointer is nonnull, then the socket address 
structure pointed to by this pointer becomes the network mask of the newly created route. In our 
routing table, Figure 18.2, the cloned routes are for the local Ethernet and for multicast addresses. The 
following example from [Sklower 1991] provides a different use of cloned routes. Another example is 
in Exercise 19.2. 

Consider a class B network, say 128.1, that is behind a point-to-point link. The subnet mask is 
0xffffff00, the typical value that uses 8 bits for the subnet ID and 8 bits for the host ID. We 
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need a routing table entry for all possible 254 subnets, with a gateway value of a router that is directly 
connected to our host and that knows how to reach the link to which the 128.1 network is connected. 

The easiest solution, assuming the gateway router isn’t our default router, is a single entry with a 
destination of 128.1.0.0 and a mask of 0xffff0000. Assume, however, that the topology of the 
128.1 network is such that each of the possible 254 subnets can have different operational 
characteristics: RTTs, MTUs, delays, and so on. If a separate routing table entry were used for each 
subnet, we would see that whenever a connection is closed, TCP would update the routing table entry 
with statistics about that route its RTT, RTT variance, and so on (Figure 27.3). While we could 
create up to 254 entries by hand using the route command, one per subnet, a better solution is to 
use the cloning feature. 

One entry is created by the system administrator with a destination of 128.1.0.0 and a network mask 
of 0xffff0000. Additionally, the RTF_CLONING flag is set and the genmask is set to 
0xffffff00, which differs from the network mask. If the routing table is searched for 128.1.2.3, 
and an entry does not exist for the 128.1.2 subnet, the entry for 128.1 with the mask of 
0xffff0000 is the best match. A new entry is created (since the RTF_CLONING flag is set) 
with a destination of 128.1.2 and a network mask of 0xffffff00 (the genmask value). The next 
time any host on this subnet is referenced, say 128.1.2.88, it will match this newly created entry. 

19.5. rt_setgate Function 

Each leaf in the routing tree has a key (rt_key, which is just the rn_key member of the 
radix_node structure contained at the beginning of the rtentry structure), and an associated 
gateway (rt_gateway). Both are socket address structures specified when the routing table entry 
is created. Memory is allocated for both structures by rt_setgate, as shown in Figure 19.10. 
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Figure 19.10. Example of routing table keys and associated gateways.

 

 

This example shows two of the entries from Figure 18.2, the ones with keys of 127.0.0.1 and 
140.252.13.33. The former’s gateway member points to an Internet socket address structure, while the 
latter’s points to a data-link socket address structure that contains an Ethernet address. The former was 
entered into the routing table by the route system when the system was initialized, and the latter 
was created by ARP. 

We purposely show the two structures pointed to by rt_key one right after the other, since they are 
allocated together by rt_setgate, which we show in Figure 19.11. 
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Figure 19.11. rt_setgate function.

 

 
 

Set lengths from socket address structures

384-391

dlen is the length of the destination socket address structure, and glen is the length of the gateway 
socket address structure. The ROUNDUP macro rounds the value up to the next multiple of 4 bytes, 
but the size of most socket address structures is already a multiple of 4. 

Allocate memory

392-397

If memory has not been allocated for this routing table key and gateway yet, or if glen is greater 
than the current size of the structure pointed to by rt_gateway, a new piece of memory is 
allocated and rn_key is set to point to the new memory. 
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Use memory already allocated for key and gateway

398-401

An adequately sized piece of memory is already allocated for the key and gateway, so new is set to 
point to this existing memory. 

Copy new gateway

402

The new gateway structure is copied and rt_gateway is set to point to the socket address 
structure. 

Copy key from old memory to new memory

403-406

If a new piece of memory was allocated, the routing table key (dst) is copied right before the 
gateway field that was just copied. The old piece of memory is released. 

Release gateway routing pointer

407-412

If the routing table entry contains a nonnull rt_gwroute pointer, that structure is released by 
RTFREE and the rt_gwroute pointer is set to null. 

Locate and store new gateway routing pointer

413-415

If the routing table entry is an indirect route, rtalloc1 locates the entry for the new gateway, 
which is stored in rt_gwroute. If an invalid gateway is specified for an indirect route, an error 
is not returned by rt_setgate, but the rt_gwroute pointer will be null. 

19.6. rtinit Function 

There are four calls to rtinit from the Internet protocols to add or delete routes associated with 
interfaces. 

in_control calls rtinit twice when the destination address of a point-to-point 
interface is set (Figure 6.21). The first call specifies RTM_DELETE to delete any existing 
route to the destination; the second call specifies RTM_ADD to add the new route. 
in_ifinit calls rtinit to add a network route for a broadcast network or a host route 
for a point-to-point link (Figure 6.19). If the route is for an Ethernet interface, the 
RTF_CLONING flag is automatically set by in_ifinit. 
in_ifscrub calls rtinit to delete an existing route for an interface. 
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Figure 19.12 shows the first part of the rtinit function. The cmd argument is always RTM_ADD 
or RTM_DELETE.

Figure 19.12. rtinit function: call rtrequest to handle command.

 

 
 

Get destination address for route

452

If the route is to a host, the destination address is the other end of the point-to-point link. Otherwise 
we’re dealing with a network route and the destination address is the unicast address of the interface 
(masked with ifa_netmask). 

Mask network address with network mask

453-459

If a route is being deleted, the destination must be looked up in the routing table to locate its routing 
table entry. If the route being deleted is a network route and the interface has an associated network 
mask, an mbuf is allocated and the destination address is copied into the mbuf by 
rt_maskedcopy, logically ANDing the caller’s address with the mask. dst is set to point to 
the masked copy in the mbuf, and that is the destination looked up in the next step. 
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Search for routing table entry

460-469

rtalloc1 searches the routing table for the destination address. If the entry is found, its reference 
count is decremented (since rtalloc1 incremented the reference count). If the pointer to the 
interface’s ifaddr in the routing table does not equal the caller’s argument, an error is returned. 

Process request

470-473

rtrequest executes the command, either RTM_ADD or RTM_DELETE. When it returns, if an 
mbuf was allocated earlier, it is released. 

Figure 19.13 shows the second half of rtinit.

Figure 19.13. rtinit function: second half.

 

 
 

Generate routing message on successful delete

474-480

If a route was deleted, and rtrequest returned 0 along with a pointer to the rtentry structure 
that was deleted (in nrt), a routing socket message is generated by rt_newaddrmsg. If the 
reference count is less than or equal to 0, it is incremented and the route is released by rtfree.
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Successful add

481-482

If a route was added, and rtrequest returned 0 along with a pointer to the rtentry structure 
that was added (in nrt), the reference count is decremented (since rtrequest incremented it). 

Incorrect interface

483-494

If the pointer to the interface’s ifaddr in the new routing table entry does not equal the caller’s 
argument, an error occurred. Recall that rtrequest determines the ifa pointer that is stored in 
the new entry by calling ifa_ifwithroute (Figure 19.9). When this error occurs the following 
steps take place: an error message is output to the console, the ifa_rtrequest function is called 
(if defined) with a command of RTM_DELETE, the ifaddr structure is released, the rt_ifa 
pointer is set to the value specified by the caller, the interface reference count is incremented, and the 
new interface’s ifa_rtrequest function (if defined) is called with a command of RTM_ADD.

Generate routing message

495

A routing socket message is generated by rt_newaddrmsg for the RTM_ADD command. 

19.7. rtredirect Function 

When an ICMP redirect is received, icmp_input calls rtredirect and then calls 
pfctlinput (Figure 11.27). This latter function calls udp_ctlinput and 
tcp_ctlinput, which go through all the UDP and TCP protocol control blocks. If the PCB is 
connected to the foreign address that has been redirected, and if the PCB holds a route to that foreign 
address, the route is released by rtfree. The next time any of these control blocks is used to send 
an IP datagram to that foreign address, rtalloc will be called and the destination will be looked 
up in the routing table, possibly finding a new (redirected) route. 

The purpose of rtredirect, the first half of which is shown in Figure 19.14, is to validate the 
information in the redirect, update the routing table immediately, and then generate a routing socket 
message. 
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Figure 19.14. rtredirect function: validate received redirect.

 

 

147-157

The arguments are dst, the destination IP address of the datagram that caused the redirect (HD in 
Figure 8.18); gateway, the IP address of the router to use as the new gateway field for the 
destination (R2 in Figure 8.18); netmask, which is a null pointer; flags, which is 
RTF_GATEWAY and RTF_HOST; src, the IP address of the router that sent the redirect (R1 
in Figure 8.18); and rtp, which is a null pointer. We indicate that netmask and rtp are both 
null pointers when called by icmp_input, but these arguments might be nonnull when called 
from other protocols. 

New gateway must be directly connected

158-162

The new gateway must be directly connected or the redirect is invalid. 
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Locate routing table entry for destination and validate redirect

163-177

rtalloc1 searches the routing table for a route to the destination. The following conditions must 
all be true, or the redirect is invalid and an error is returned. Notice that icmp_input ignores any 
error return from rtredirect. ICMP does not generate an error in response to an invalid 
redirect it  just ignores it. 

the RTF_DONE flag must not be set; 
rtalloc must have located a routing table entry for dst; 
the address of the router that sent the redirect (src) must equal the current rt_gateway
for the destination; 
the interface for the new gateway (the ifa returned by ifa_ifwithnet) must equal 
the current interface for the destination (rt_ifa), that is, the new gateway must be on the 
same network as the current gateway; and 
the new gateway cannot redirect this host to itself, that is, there cannot exist an attached 
interface with a unicast address or a broadcast address equal to gateway. 

Must create a new route

178-185

If a route to the destination was not found, or if the routing table entry that was located is the default 
route, a new entry is created for the destination. As the comment indicates, a host with access to 
multiple routers can use this feature to learn of the correct router when the default is not correct. The 
test for finding the default route is whether the routing table entry has an associated mask and if the 
length field of the mask is less than 2, since the mask for the default route is rn_zeros (Figure 
18.35). 

Figure 19.15 shows the second half of this function. 
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Figure 19.15. rtredirect function: second half.

 

 
 

Create new host route

186-195

If the current route to the destination is a network route and the redirect is a host redirect and not a 
network redirect, a new host route is created for the destination and the existing network route is left 
alone. We mentioned that the flags argument always specifies RTF_HOST since the Net/3 ICMP 
considers all received redirects as host redirects. 
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Create route

196-201

rtrequest creates the new route, setting the RTF_GATEWAY and RTF_DYNAMIC flags. The 
netmask argument is a null pointer, since the new route is a host route with an implied mask of all 
one bits. stat points to a counter that is incremented later. 

Modify existing host route

202-211

This code is executed when the current route to the destination is already a host route. A new entry is 
not created, but the existing entry is modified. The RTF_MODIFIED flag is set and 
rt_setgate changes the rt_gateway field of the routing table entry to the new gateway 
address. 

Ignore if destination is directly connected

212-213

If the current route to the destination is a direct route (the RTF_GATEWAY flag is not set), it is a 
redirect for a destination that is already directly connected. EHOSTUNREACH is returned. 

Return pointer and increment statistic

214-225

If a routing table entry was located, it is either returned (if rtp is nonnull and there were no errors) or 
released by rtfree. The appropriate statistic is incremented. 

Generate routing message

226-232

An rt_addrinfo structure is cleared and a routing socket message is generated by 
rt_missmsg. This message is sent by raw_input to any processes interested in the redirect. 

19.8. Routing Message Structures 

Routing messages consist of a fixed-length header followed by up to eight socket address structures. 
The fixed-length header is one of the following three structures: 

rt_msghdr
if_msghdr
ifa_msghdr
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Figure 18.11 provided an overview of which functions generated the different messages and Figure 
18.9 showed which structure is used by each message type. The first three members of the three 
structures have the same data type and meaning: the message length, version, and type. This allows 
the receiver of the message to decode the message. Also, each structure has a member that encodes 
which of the eight potential socket address structures follow the structure (a bitmask): the 
rtm_addrs, ifm_addrs, and ifam_addrs members. 

Figure 19.16 shows the most common of the structures, rt_msghdr. The RTM_IFINFO 
message uses an if_msghdr structure, shown in Figure 19.17. The RTM_NEWADDR and 
RTM_DELADDR messages use an ifa_msghdr structure, shown in Figure 19.18. 

Figure 19.16. rt_msghdr structure.

 

 

Figure 19.17. if_msghdr structure.

 

 

Figure 19.18. ifa_msghdr structure.
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Note that the first three members across the three different structures have the same data types and 
meanings. 

The three variables rtm_addrs, ifm_addrs, and ifam_addrs are bitmasks defining 
which socket address structures follow the header. Figure 19.19 shows the constants used with these 
bitmasks. 

Figure 19.19. Constants used to refer to members of rti_info array.

 

 

The bitmask value is always the constant 1 left shifted by the number of bits specified by the array 
index. For example, 0x20 (RTA_IFA) is 1 left shifted by five bits (RTAX_IFA). We’ll see this 
fact used in the code. 

The socket address structures that are present always occur in order of increasing array index, one 
right after the other. For example, if the bitmask is 0x87, the first socket address structure contains 
the destination, followed by the gateway, followed by the network mask, followed by the broadcast 
address. 

The array indexes in Figure 19.19 are used within the kernel to refer to its rt_addrinfo 
structure, shown in Figure 19.20. This structure holds the same bitmask that we described, indicating 
which addresses are present, and pointers to those socket address structures. 

Figure 19.20. rt_addrinfo structure: encode which addresses are present and 

pointers to them.

 

 

For example, if the RTA_GATEWAY bit is set in the rti_addrs member, then the member 
rti_info[RTAX_GATEWAY] is a pointer to a socket address structure containing the 
gateway’s address. In the case of the Internet protocols, the socket address structure is a 
sockaddr_in containing the gateway’s IP address. 

The fifth column in Figure 19.19 shows the names used for the corresponding members of an 
rti_info array throughout the file rtsock.c. These definitions look like 
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    #define dst   info.rti_info[RTAX_DST] 
 

We’ll encounter these names in many of the source files later in this chapter. The RTAX_AUTHOR 
element is not assigned a name because it is never passed from a process to the kernel. 

We’ve already encountered this rt_addrinfo structure twice: in rtalloc1 (Figure 19.2) and 
rtredirect (Figure 19.14). Figure 19.21 shows the format of this structure when built by 
rtalloc1, after a routing table lookup fails, when rt_missmsg is called. 

Figure 19.21. rt_addrinfo structure passed by rtalloc1 to rt_missmsg.

 

 

All the unused pointers are null because the structure is set to 0 before it is used. Also note that the 
rti_addrs member is not initialized with the appropriate bitmask because when this structure is 
used within the kernel, a null pointer in the rti_info array indicates a nonexistent socket address 
structure. The bitmask is needed only for messages between a process and the kernel. 

Figure 19.22 shows the format of the structure built by rtredirect when it calls 
rt_missmsg.

Figure 19.22. rt_addrinfo structure passed by rtredirect to rt_missmsg.

 

 

The following sections show how these structures are placed into the messages sent to a process. 

Figure 19.23 shows the route_cb structure, which we’ll encounter in the following sections. It 
contains four counters; one each for the IP, XNS, and OSI protocols, and an "any" counter. Each 
counter is the number of routing sockets currently in existence for that domain. 
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Figure 19.23. route_cb structure: counters of routing socket listeners.

 

 

203-208

By keeping track of the number of routing socket listeners, the kernel avoids building a routing 
message and calling raw_input to send the message when there aren’t any processes waiting for a 
message. 

19.9. rt_missmsg Function 

The function rt_missmsg, shown in Figure 19.24, takes the structures shown in Figures 19.21 
and 19.22, calls rt_msg1 to build a corresponding variable-length message for a process in an 
mbuf chain, and then calls raw_input to pass the mbuf chain to all appropriate routing sockets. 

Figure 19.24. rt_missmsg function.

 

 

516-525

If there aren’t any routing socket listeners, the function returns immediately. 
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Build message in mbuf chain

526-528

rt_msg1 (Section 19.12) builds the appropriate message in an mbuf chain, and returns the pointer 
to the chain. Figure 19.25 shows an example of the resulting mbuf chain, using the rt_addrinfo 
structure from Figure 19.22. The information needs to be in an mbuf chain because raw_input 
calls sbappendaddr to append the mbuf chain to a socket’s receive buffer. 

Figure 19.25. Mbuf chain built by rt_msg1 corresponding to Figure 19.22.

 

 
 

Finish building message

529-532

The two members rtm_flags and rtm_errno are set to the values passed by the caller. The 
rtm_addrs member is copied from the rti_addrs value. We showed this value as 0 in 
Figures 19.21 and 19.22, but rt_msg1 calculates and stores the appropriate bitmask, based on 
which pointers in the rti_info array are nonnull. 
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Set protocol of message, call raw_input

533-534

The final three arguments to raw_input specify the protocol, source, and destination of the 
routing message. These three structures are initialized as 

    struct  sockaddr  route_dst = { 2, PF_ROUTE, }; 
    struct  sockaddr  route_src = { 2, PF_ROUTE, }; 
    struct  sockproto route_proto = { PF_ROUTE, }; 
 

The first two structures are never modified by the kernel. The sockproto structure, shown in 
Figure 19.26, is one we haven’t seen before. 

Figure 19.26. sockproto structure.

 

 

The family is never changed from its initial value of PF_ROUTE, but the protocol is set each time 
raw_input is called. When a process creates a routing socket by calling socket, the third 
argument (the protocol) specifies the protocol in which the process is interested. The caller of 
raw_input sets the sp_protocol member of the route_proto structure to the protocol 
of the routing message. In the case of rt_missmsg, it is set to the sa_family of the 
destination socket address structure (if specified by the caller), which in Figures 19.21 and 19.22 
would be AF_INET.

19.10. rt_ifmsg Function 

In Figure 4.30 we saw that if_up and if_down both call rt_ifmsg, shown in Figure 19.27, 
to generate a routing socket message when an interface goes up or down. 
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Figure 19.27. rt_ifmsg function.

 

 

547-548

If there aren’t any routing socket listeners, the function returns immediately. 

Build message in mbuf chain

549-552

An rt_addrinfo structure is set to 0 and rt_msg1 builds an appropriate message in an mbuf 
chain. Notice that all socket address pointers in the rt_addrinfo structure are null, so only the 
fixed-length if_msghdr structure becomes the routing message; there are no addresses. 

Finish building message

553-557

The interface’s index, flags, and if_data structure are copied into the message in the mbuf and the 
ifm_addrs bitmask is set to 0. 

Set protocol of message, call raw_input

558-559

The protocol of the routing message is set to 0 because this message can apply to all protocol suites. It 
is a message about an interface, not about some specific destination. raw_input delivers the 
message to the appropriate listeners. 
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19.11. rt_newaddrmsg Function 

In Figure 19.13 we saw that rtinit calls rt_newaddrmsg with a command of RTM_ADD or 
RTM_DELETE when an interface has an address added or deleted. Figure 19.28 shows the first half 
of the function. 

Figure 19.28. rt_newaddrmsg function: first half: create ifa_msghdr
message.

 

 

580-581

If there aren’t any routing socket listeners, the function returns immediately. 

Generate two routing messages

582

The for loop iterates twice because two messages are generated. If the command is RTM_ADD, 
the first message is of type RTM_NEWADDR and the second message is of type RTM_ADD. If the 
command is RTM_DELETE, the first message is of type RTM_DELETE and the second message 
is of type RTM_DELADDR. The RTM_NEWADDR and RTM_DELADDR messages are built from 
an ifa_msghdr structure, while the RTM_ADD and RTM_DELETE messages are built from an 
rt_msghdr structure. The function generates two messages because one message provides 
information about the interface and the other about the addresses. 
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583

An rt_addrinfo structure is set to 0. 

Generate message with up to four addresses

588-591

Pointers to four socket address structures containing information about the interface address that has 
been added or deleted are stored in the rti_info array. Recall from Figure 19.19 that 
ifaaddr, ifpaddr, netmask, and brdaddr reference elements in the rti_info
array named in info. rt_msg1 builds the appropriate message in an mbuf chain. Notice that 
sa is set to point to the ifa_addr structure, and we’ll see at the end of the function that the family 
of this socket address structure becomes the protocol of the routing message. 

Finish building message 

Remaining members of the ifa_msghdr structure are filled in with the interface’s index, metric, 
and flags, along with the bitmask set by rt_msg1.

Figure 19.29 shows the second half of rt_newaddrmsg, which creates an rt_msghdr 
message with information about the routing table entry that was added or deleted. 

Figure 19.29. rt_newaddrmsg function: second half, create rt_msghdr
message.
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Build message

600-609

Pointers to three socket address structures are stored in the rti_info array: the rt_mask,
rt_key, and rt_gateway structures. sa is set to point to the destination address, and its 
family becomes the protocol of the routing message. rt_msg1 builds the appropriate message in an 
mbuf chain. 

Additional fields in the rt_msghdr structure are filled in, including the bitmask set by 
rt_msg1.

Set protocol of message, call raw_input

616-619

The protocol of the routing message is set and raw_input passes the message to the appropriate 
listeners. The function returns after two iterations through the loop. 

19.12. rt_msg1 Function 

The functions described in the previous three sections each called rt_msg1 to build the appropriate 
routing message. In Figure 19.25 we showed the mbuf chain that was built by rt_msg1 from the 
rt_msghdr and rt_addrinfo structures in Figure 19.22. Figure 19.30 shows the function. 



ptg11539634

Figure 19.30. rt_msg1 function: obtain and initialize mbuf.

 

 
 

Get mbuf and determine fixed size of message

399-422

An mbuf with a packet header is obtained and the length of the fixed-size message is stored in len. 
Two of the message types in Figure 18.9 use an ifa_msghdr structure, one uses an 
if_msghdr structure, and the remaining nine use an rt_msghdr structure. 
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Verify structure fits in mbuf

423-424

The size of the fixed-length structure must fit entirely within the data portion of the packet header 
mbuf, because the mbuf pointer is cast to a structure pointer using mtod and the structure is then 
referenced through the pointer. The largest of the three structures is if_msghdr, which at 84 
bytes is less than MHLEN (100). 

Initialize mbuf packet header and zero structure

425-428

The two fields in the packet header are initialized and the structure in the mbuf is set to 0. 

Copy socket address structures into mbuf chain

429-436

The caller passes a pointer to an rt_addrinfo structure. The socket address structures 
corresponding to all the nonnull pointers in the rti_info are copied into the mbuf by 
m_copyback. The value 1 is left shifted by the RTAX_xxx index to generate the corresponding 
RTA_xxx bitmask (Figure 19.19), and each individual bitmask is logically ORed into the 
rti_addrs member, which the caller can store on return into the corresponding member of the 
message structure. The ROUNDUP macro rounds the size of each socket address structure up to the 
next multiple of 4 bytes. 

437-440

If, when the loop terminates, the length in the mbuf packet header does not equal len, the function 
m_copyback wasn’t able to obtain a required mbuf. 

Store length, version, and type

441-445

The length, version, and message type are stored in the first three members of the message structure. 
Again, all three xxx_msghdr structures start with the same three members, so this code works with 
all three structures even though the pointer rtm is a pointer to an rt_msghdr structure. 

19.13. rt_msg2 Function 

rt_msg1 constructs a routing message in an mbuf chain, and the three functions that called it then 
called raw_input to append the mbuf chain to one or more socket’s receive buffer. rt_msg2 is 
different it  builds a routing message in a memory buffer, not an mbuf chain, and has as an argument 
a pointer to a walkarg structure that is used when rt_msg2 is called by the two functions that 
handle the sysctl system call for the routing domain. rt_msg2 is called in two different 
scenarios: 

1. from route_output to process the RTM_GET command, and 
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2. from sysctl_dumpentry and sysctl_iflist to process a sysctl system 
call. 

Before looking at rt_msg2, Figure 19.31 shows the walkarg structure that is used in scenario 
2. We go through all these members as we encounter them. 

Figure 19.31. walkarg structure: used with the sysctl system call in the 

routing domain.

 

 

Figure 19.32 shows the first half of the rt_msg2 function. This portion is similar to the first half of 
rt_msg1.
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Figure 19.32. rt_msg2 function: copy socket address structures.

 

 

446-455

Since this function stores the resulting message in a memory buffer, the caller specifies the start of 
that buffer in the cp argument. It is the caller’s responsibility to ensure that the buffer is large enough 
for the message that is generated. To help the caller determine this size, if the cp argument is null, 
rt_msg2 doesn’t store anything but processes the input and returns the total number of bytes 
required to hold the result. We’ll see that route_output uses this feature and calls this function 
twice: first to determine the size and then to store the result, after allocating a buffer of the correct 
size. When rt_msg2 is called by route_output, the final argument is null. This final 
argument is nonnull when called as part of the sysctl system call processing. 

Determine size of structure

458-470

The size of the fixed-length message structure is set based on the message type. If the cp pointer is 
nonnull, it is incremented by this size. 
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Copy socket address structures

471-482

The for loop goes through the rti_info array, and for each element that is a nonnull pointer it 
sets the appropriate bit in the rti_addrs bitmask, copies the socket address structure (if cp is 
nonnull), and updates the length. 

Figure 19.33 shows the second half of rt_msg2, most of which handles the optional walkarg 
structure. 

Figure 19.33. rt_msg2 function: handle optional walkarg argument.

 

 

483-484

This if statement is true only when a pointer to a walkarg structure was passed and this is the 
first loop through the function. The variable second_time was initialized to 0 but can be set to 1 
within this if statement, and a jump made back to the label again in Figure 19.32. The test for cp 
being a null pointer is superfluous since whenever the w pointer is nonnull, the cp pointer is null, and 
vice versa. 

Check if data to be stored

485-486

w_needed is incremented by the size of the message. This variable is initialized to 0 minus the size 
of the user’s buffer to the sysctl function. For example, if the buffer size is 500 bytes, 

 650



ptg11539634

w_needed is initialized to —500. As long as it remains negative, there is room in the buffer. 
w_where is a pointer to the buffer in the calling process. It is null if the process doesn’t want the 
result the process just wants sysctl to return the size of the result, so the process can allocate a 
buffer and call sysctl again. rt_msg2 doesn’t copy the data back to the process that  is up to 
the caller b ut if the w_where pointer is null, there’s no need for rt_msg2 to malloc a buffer to 
hold the result and loop back through the function again, storing the result in this buffer. There are 
really five different scenarios that this function handles, summarized in Figure 19.34. 

Figure 19.34. Summary of different scenarios for rt_msg2.

 

 
 

Allocate buffer first time or if message length increases

487-493

w_tmemsize is the size of the buffer pointed to by w_tmem. It is initialized to 0 by 
sysctl_rtable, so the first time rt_msg2 is called for a given sysctl request, the 
buffer must be allocated. Also, if the size of the result increases, the existing buffer must be released 
and a new (larger) buffer allocated. 

Go around again and store result

494-499

If w_tmem is nonnull, a buffer already exists or one was just allocated. cp is set to point to this 
buffer, second_time is set to 1, and a jump is made to again. The if statement at the 
beginning of this figure won’t be true during this second pass, since second_time is now 1. If 
w_tmem is null, the call to malloc failed, so the pointer to the buffer in the process is set to null, 
preventing anything from being returned. 

Store length, version, and type

502-509

If cp is nonnull, the first three elements of the message header are stored. The function returns the 
length of the message. 

19.14. sysctl_rtable Function 

This function handles the sysctl system call on a routing socket. It is called by net_sysctl 
as shown in Figure 18.11. 
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Before going through the source code, Figure 19.35 shows the typical use of this system call with 
respect to the routing table. This example is from the arp program. 

Figure 19.35. Example of sysctl with routing table.

 

 

The first three elements in the mib array cause the kernel to call sysctl_rtable to process the 
remaining elements. 

mib[4] specifies the operation. Three operations are supported. 

1. NET_RT_DUMP: return the routing table corresponding to the address family specified by 
mib[3]. If the address family is 0, all routing tables are returned. 

An RTM_GET routing message is returned for each routing table entry containing two, three, 
or four socket address structures per message: those addresses pointed to by rt_key,
rt_gateway, rt_netmask, and rt_genmask. The final two pointers might 
be null. 

2. NET_RT_FLAGS: the same as the previous command except mib[5] specifies an 
RTF_xxx flag (Figure 18.25), and only entries with this flag set are returned. 

3. NET_RT_IFLIST: return information on all the configured interfaces. If the mib[5] 
value is nonzero it specifies an interface index and only the interface with the corresponding 
if_index is returned. Otherwise all interfaces on the ifnet linked list are returned. 

For each interface one RTM_IFINFO message is returned, with information about the 
interface itself, followed by one RTM_NEWADDR message for each ifaddr structure on 
the interface’s if_addrlist linked list. If the mib[3] value is nonzero, 
RTM_NEWADDR messages are returned for only the addresses with an address family that 
matches the mib[3] value. Otherwise mib[3] is 0 and information on all addresses is 
returned. 
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This operation is intended to replace the SIOCGIFCONF ioctl 
(Figure 4.26). 

One problem with this system call is that the amount of information returned can vary, depending on 
the number of routing table entries or the number of interfaces. Therefore the first call to sysctl 
typically specifies a null pointer as the third argument, which means: don’t return any data, just return 
the number of bytes of return information. As we see in Figure 19.35, the process then calls 
malloc, followed by sysctl to fetch the information. This second call to sysctl again 
returns the number of bytes through the fourth argument (which might have changed since the 
previous call), and this value provides the pointer lim that points just beyond the final byte of data 
that was returned. The process then steps through the routing messages in the buffer, using the 
rtm_msglen member to step to the next message. 

Figure 19.36 shows the values for these six mib variables that various Net/3 programs specify to 
access the routing table and interface list. 

Figure 19.36. Examples of programs that call sysctl to obtain routing table 

and interface list.

 

 

The first three programs fetch entries from the routing table and the last three fetch the interface list. 
The routed program supports only the Internet routing protocols, so it specifies a mib[3] value 
of AF_INET, while gated supports other protocols, so its value for mib[3] is 0. 

Figure 19.37 shows the organization of the three sysctl_xxx functions that we cover in the 
following sections. 
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Figure 19.37. Functions that support the sysctl system call for routing 

sockets.

 

 

Figure 19.38 shows the sysctl_rtable function. 
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Figure 19.38. sysctl_rtable function: process sysctl system call requests.

 

 

 
 

Validate arguments

705-719

The new argument is used when the process is calling sysctl to set the value of a variable, which 
isn’t supported with the routing tables. Therefore this argument must be a null pointer. 
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720-721

namelen must be 3 because at this point in the processing of the system call, three elements in the 
name array remain: name[0], the address family (what the process specifies as mib[3]); 
name[1], the operation (mib[4]); and name[2], the flags (mib[5]). 

Initialize walkarg structure

723-728

A walkarg structure (Figure 19.31) is set to 0 and the following members are initialized: 
w_where is the address in the calling process of the buffer for the results (this can be a null pointer, 
as we mentioned); w_given is the size of the buffer in bytes (this is meaningless on input if 
w_where is a null pointer, but it must be set on return to the amount of data that would have been 
returned); w_needed is set to the negative of the buffer size; w_op is the operation (the 
NET_RT_xxx value); and w_arg is the flags value. 

Dump routing table

731-738

The NET_RT_DUMP and NET_RT_FLAGS operations are handled the same way: a loop is made 
through all the routing tables (the rt_tables array), and if the routing table is in use and either 
the address family argument was 0 or the address family argument matches the family of this routing 
table, the rnh_walktree function is called to process the entire routing table. In Figure 18.17 we 
show that this function is normally rn_walktree. The second argument to this function is the 
address of another function that is called for each leaf of the routing tree (sysctl_dumpentry). 
The third pointer is just a pointer to anything that rn_walktree passes to the 
sysctl_dumpentry function. This argument is a pointer to the walkarg structure that 
contains all the information about this sysctl call. 

Return interface list

739-740

The NET_RT_IFLIST operation calls the function sysctl_iflist, which goes through all 
the ifnet structures. 

Release buffer

743-744

If a buffer was allocated by rt_msg2 to contain a routing message, it is now released. 

Update w_needed

745

The size of each message was added to w_needed by rt_msg2. Since this variable was 
initialized to the negative of w_given, its value can now be expressed as 
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   w_needed = 0 - w_given + totalbytes 
 

where totalbytes is the sum of all the message lengths added by rt_msg2. By adding the 
value of w_given back into w_needed, we get 

   w_needed = 0 - w_given + totalbytes + w_given 
            = totalbytes 
 

the total number of bytes. Since the two values of w_given in this equation end up canceling each 
other, when the process specifies w_where as a null pointer it need not initialize the value of 
w_given. Indeed, we see in Figure 19.35 that the variable needed was not initialized. 

Return actual size of message

746-749

If where is nonnull, the number of bytes stored in the buffer is returned through the given 
pointer. If this value is less than the size of the buffer specified by the process, an error is returned 
because the return information has been truncated. 

Return estimated size of message

750-752

When the where pointer is null, the process just wants the total number of bytes returned. A 10% 
fudge factor is added to the size, in case the size of the desired tables increases between this call to 
sysctl and the next. 

19.15. sysctl_dumpentry Function 

In the previous section we described how this function is called by rn_walktree, which in turn 
is called by sysctl_rtable. Figure 19.39 shows the function. 

Figure 19.39. sysctl_dumpentry function: process one routing table entry.
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623-630

Each time this function is called, its first argument points to a radix_node structure, which is 
also a pointer to a rtentry structure. The second argument points to the walkarg structure that 
was initialized by sysctl_rtable.

Check flags of routing table entry

631-632

If the process specified a flag value (mib[5]), this entry is skipped if the rt_flags member 
doesn’t have the desired flag set. We see in Figure 19.36 that the arp program uses this to select only 
those entries with the RTF_LLINFO flag set, since these are the entries of interest to ARP. 

Form routing message

633-638

The following four pointers in the rti_info array are copied from the routing table entry: dst,
gate, netmask, and genmask. The first two are always nonnull, but the other two can be 
null. rt_msg2 forms an RTM_GET message. 
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Copy message back to process

639-651

If the process wants the message returned and a buffer was allocated by rt_msg2, the remainder 
of the routing message is formed in the buffer pointed to by w_tmem and copyout copies the 
message back to the process. If the copy was successful, w_where is incremented by the number of 
bytes copied. 

19.16. sysctl_iflist Function 

This function, shown in Figure 19.40, is called directly by sysctl_rtable to return the 
interface list to the process. 

Figure 19.40. sysctl_iflist function: return list of interfaces and their 

addresses.
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This function is a for loop that iterates through each interface starting with the one pointed to by 
ifnet. Then a while loop proceeds through the linked list of ifaddr structures for each 
interface. An RTM_IFINFO routing message is generated for each interface and an 
RTM_NEWADDR message for each address. 

Check interface index

654-666

The process can specify a nonzero flags argument (mib[5] in Figure 19.36) to select only the 
interface with a matching if_index value. 

Build routing message

667-670

The only socket address structure returned with the RTM_IFINFO message is ifpaddr. The 
message is built by rt_msg2. The pointer ifpaddr in the info structure is then set to 0, since 
the same info structure is used for generating the subsequent RTM_NEWADDR messages. 

Copy message back to process

671-681

If the process wants the message returned, the remainder of the if_msghdr structure is filled in, 
copyout copies the buffer to the process, and w_where is incremented. 

Iterate through address structures, check address family

682-684

Each ifaddr structure for the interface is processed and the process can specify a nonzero address 
family (mib[3] in Figure 19.36) to select only the interface addresses of the given family. 
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Build routing message

685-688

Up to three socket address structures are returned in each RTM_NEWADDR message: ifaaddr,
netmask, and brdaddr. The message is built by rt_msg2.

Copy message back to process

689-699

If the process wants the message returned, the remainder of the ifa_msghdr structure is filled in, 
copyout copies the buffer to the process, and w_where is incremented. 

701

These three pointers in the info array are set to 0, since the same array is used for the next interface 
message. 

19.17. Summary 

Routing messages all have the same format a fi xed-length structure followed by a variable number 
of socket address structures. There are three different types of messages, each corresponding to a 
different fixed-length structure, and the first three elements of each structure identify the length, 
version, and type of message. A bitmask in each structure identifies which socket address structures 
follow the fixed-length structure. 

These messages are passed between a process and the kernel in two different ways. Messages can be 
passed in either direction, one message per read or write, across a routing socket. This allows a 
superuser process complete read and write access to the kernel’s routing tables. This is how routing 
daemons such as routed and gated implement their desired routing policy. 

Alternatively any process can read the contents of the kernel’s routing tables using the sysctl 
system call. This does not involve a routing socket and does not require special privileges. The entire 
result, normally consisting of many routing messages, is returned as part of the system call. Since the 
process does not know the size of the result, a method is provided for the system call to return this size 
without returning the actual result. 

Exercises

19.1 What is the difference in the RTF_DYNAMIC and RTF_MODIFIED flags? Can both 
be set for a given routing table entry? 

19.2 What happens when the default route is entered with the command of the form  
     bsdi $ route add default -cloning -genmask 
255.255.255.255 sun



ptg11539634

 662

19.3 Estimate the space required by sysctl to dump a routing table that contains 15 ARP 
entries and 20 routes. 
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Chapter 20. Routing Sockets 

20.1. Introduction 

A process sends and receives the routing messages described in the previous chapter by using a socket 
in the routing domain. The socket system call is issued specifying a family of PF_ROUTE and a 
socket type of SOCK_RAW.

The process can then send five routing messages to the kernel: 

1. RTM_ADD: add a new route. 
2. RTM_DELETE: delete an existing route. 
3. RTM_GET: fetch all the information about a route. 
4. RTM_CHANGE: change the gateway, interface, or metrics of an existing route. 
5. RTM_LOCK: specify which metrics the kernel should not modify. 

Additionally, the process can receive any of the other seven types of routing messages that are 
generated by the kernel when some event, such as interface down, redirect received, etc., occurs. 

This chapter looks at the routing domain, the routing control blocks that are created for each routing 
socket, the function that handles messages from a process (route_output), the function that 
sends routing messages to one or more processes (raw_input), and the various functions that 
support all the socket operations on a routing socket. 

20.2. routedomain and protosw Structures 

Before describing the routing socket functions, we need to discuss additional details about the routing 
domain; the SOCK_RAW protocol supported in the routing domain; and routing control blocks, one 
of which is associated with each routing socket. 

Figure 20.1 lists the domain structure for the PF_ROUTE domain, named routedomain.

Figure 20.1. routedomain structure.

 

 

Unlike the Internet domain, which supports multiple protocols (TCP, UDP, ICMP, etc.), only one 
protocol (of type SOCK_RAW) is supported in the routing domain. Figure 20.2 lists the protocol 
switch entry for the PF_ROUTE domain. 
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Figure 20.2. The routing protocol protosw structure.

 

 

20.3. Routing Control Blocks 

Each time a routing socket is created with a call of the form 

    socket(PF_ROUTE, SOCK_RAW, protocol);
 

the corresponding PRU_ATTACH request to the protocol’s user-request function 
(route_usrreq) allocates a routing control block and links it to the socket structure. The 
protocol can restrict the messages sent to the process on this socket to one particular family. If a 
protocol of AF_INET is specified, for example, only routing messages containing Internet addresses 
will be sent to the process. A protocol of 0 causes all routing messages from the kernel to be sent on 
the socket. 

Recall that we call these structures routing control blocks, not raw control blocks, to 
avoid confusion with the raw IP control blocks in Chapter 32. 

Figure 20.3 shows the definition of the rawcb structure. 

Figure 20.3. rawcb structure.

 

 

Additionally, a global of the same name, rawcb, is allocated as the head of the doubly linked list. 
Figure 20.4 shows the arrangement. 
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Figure 20.4. Relationship of raw protocol control blocks to other data structures.

 

 

39-47

We showed the sockproto structure in Figure 19.26. Its sp_family member is set to 
PF_ROUTE and its sp_protocol member is set to the third argument to the socket system 
call. The rcb_faddr member is permanently set to point to route_src, which we described 
with Figure 19.26. rcb_laddr is always a null pointer. 

20.4. raw_init Function 

The raw_init function, shown in Figure 20.5, is the protocol initialization function in the 
protosw structure in Figure 20.2. We described the entire initialization of the routing domain with 
Figure 18.29. 

Figure 20.5. raw_init function: initialize doubly linked list of routing control 

blocks.
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38-42

The function initializes the doubly linked list of routing control blocks by setting the next and 
previous pointers of the head structure to point to itself. 

20.5. route_output Function 

As we showed in Figure 18.11, route_output is called when the PRU_SEND request is issued 
to the protocol’s user-request function, which is the result of a write operation by a process to a routing 
socket. In Figure 18.9 we indicated that five different types of routing messages are accepted by the 
kernel from a process. 

Since this function is invoked as a result of a write by a process, the data from the process (the routing 
message to process) is in an mbuf chain from sosend. Figure 20.6 shows an overview of the 
processing steps, assuming the process sends an RTM_ADD command, specifying three addresses: 
the destination, its gateway, and a network mask (hence this is a network route, not a host route). 
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Figure 20.6. Example processing of an RTM_ADD command from a process.

 

 

There are numerous points to note in this figure, most of which we’ll cover as we proceed through the 
source code for route_output. Also note that, to save space, we omit the RTAX_ prefix for 
each array index in the rt_addrinfo structure. 

The process specifies which socket address structures follow the fixed-length rt_msghdr 
structure by setting the bitmask rtm_addrs. We show a bitmask of 0x07, which 
corresponds to a destination address, a gateway address, and a network mask (Figure 19.19). 
The RTM_ADD command requires the first two; the third is optional. Another optional 
address, the genmask specifies the mask to be used for generating cloned routes. 
The write system call (the sosend function) copies the buffer from the process into an 
mbuf chain in the kernel. 
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m_copydata copies the mbuf chain into a buffer that route_output obtains using 
malloc. It is easier to access all the information in the structure and the socket address 
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structures that follow when stored in a single contiguous buffer than it is when stored in an 
mbuf chain. 
The function rt_xaddrs is called by route_output to take the bitmask and build 
the rt_addrinfo structure that points into the buffer. The code in route_output 
references these structures using the names shown in the fifth column in Figure 19.19. The 
bitmask is also copied into the rti_addrs member. 
route_output normally modifies the rt_msghdr structure. If an error occurs, the 
corresponding errno value is returned in rtm_errno (for example, EEXIST if the 
route already exists); otherwise the flag RTF_DONE is logically ORed into the 
rtm_flags supplied by the process. 
The rt_msghdr structure and the addresses that follow become input to 0 or more 
processes that are reading from a routing socket. The buffer is first converted back into an 
mbuf chain by m_copyback. raw_input goes through all the routing PCBs and 
passes a copy to the appropriate processes. We also show that a process with a routing socket 
receives a copy of each message it writes to that socket unless it disables the 
SO_USELOOPBACK socket option. 

To avoid receiving a copy of their own routing messages, some programs, 
such as route, call shutdown with a second argument of 0 to prevent 
any data from being received on the routing socket. 

We examine the source code for route_output in seven parts. Figure 20.7 shows an overview 
of the function. 

Figure 20.7. Summary of route_output processing steps.
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The first part of route_output is shown in Figure 20.8. 
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Figure 20.8. route_output function: initial processing, copy message from 

mbuf chain.

 

 
 

Check mbuf for validity

113-136

The mbuf chain is checked for validity: its length must be at least the size of an rt_msghdr 
structure. The first longword is fetched from the data portion of the mbuf, which contains the 
rtm_msglen value. 
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Allocate buffer

137-142

A buffer is allocated to hold the entire message and m_copydata copies the message from the 
mbuf chain into the buffer. 

Check version number

143-146

The version of the message is checked. In the future, should a new version of the routing messages be 
introduced, this member could be used to provide support for older versions. 

147-149

The process ID is copied into rtm_pid and the bitmask supplied by the process is copied into 
info.rti_addrs, a structure local to this function. The function rt_xaddrs (shown in the 
next section) fills in the eight socket address pointers in the info structure to point into the buffer 
now containing the message. 

Destination address required

150-151

A destination address is a required address for all commands. If the 
info.rti_info[RTAX_DST] element is a null pointer, EINVAL is returned. Remember 
that dst refers to this array element (Figure 19.19). 

Handle optional genmask

152-159

A genmask is optional and is used as the network mask for routes created when the 
RTF_CLONING flag is set (Figure 19.8). rn_addmask adds the mask to the tree of masks, first 
searching for an existing entry for the mask and then referencing that entry if found. If the mask is 
found or added to the mask tree, an additional check is made that the entry in the mask tree really 
equals the genmask value, and, if so, the genmask pointer is replaced with a pointer to the mask 
in the mask tree. 

Figure 20.9 shows the next part of route_output, which handles the RTM_ADD and 
RTM_DELETE commands. 
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Figure 20.9. route_output function: process RTM_ADD and RTM_DELETE
commands.

 

 

162-163

An RTM_ADD command requires the process to specify a gateway. 

164-165

rtrequest processes the request. The netmask pointer can be null if the route being entered is 
a host route. If all is OK, the pointer to the new routing table entry is returned through 
saved_nrt.

166-172

The rt_metrics structure is copied from the caller’s buffer into the routing table entry. The 
reference count is decremented and the genmask pointer is stored (possibly a null pointer). 

173-176

Processing the RTM_DELETE command is simple because all the work is done by rtrequest. 
Since the final argument is a null pointer, rtrequest calls rtfree if the reference count is 0, 
deleting the entry from the routing table (Figure 19.7). 

The next part of the processing is shown in Figure 20.10, which handles the common code for the 
RTM_GET, RTM_CHANGE, and RTM_LOCK commands. 
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Figure 20.10. route_output function: common processing for RTM_GET,
RTM_CHANGE, and RTM_LOCK.

 

 
 

Locate existing entry

177-182

Since all three commands reference an existing entry, rtalloc1 locates the entry. If the entry isn’t 
found, ESRCH is returned. 

Do not allow network match

183-187

For the RTM_CHANGE and RTM_LOCK commands, a network match is inadequate: an exact 
match with the routing table key is required. Therefore, if the dst argument doesn’t equal the routing 
table key, the match was a network match and ESRCH is returned. 

Use network mask to find correct entry

188-193

Even with an exact match, if there are duplicate keys, each with a different network mask, the correct 
entry must still be located. If a netmask argument was supplied, it is looked up in the mask table 
(mask_rnhead). If found, the netmask pointer is replaced with the pointer to the mask in the 
mask tree. Each leaf node in the duplicate key list is examined, looking for an entry with an 
rn_mask pointer that equals netmask. This test compares the pointers, not the structures that 
they point to. This works because all masks appear in the mask tree, and only one copy of each unique 
mask is stored in this tree. In the common case, keys are not duplicated, so the for loop iterates 
once. If a host entry is being modified, a mask must not be specified and then both netmask and 
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rn_mask are null pointers (which are equal). But if an entry that has an associated mask is being 
modified, that mask must be specified as the netmask argument. 

194-195

If the for loop terminates without finding a matching network mask, ETOOMANYREFS is 
returned. 

The comment XXX is because this function must go to all this work to find the 
desired entry. All these details should be hidden in another function similar to 
rtalloc1 that detects a network match and handles a mask argument. 

The next part of this function, shown in Figure 20.11, continues processing the RTM_GET command. 
This command is unique among the commands supported by route_output in that it can return 
more data than it was passed. For example, only a single socket address structure is required as input, 
the destination, but at least two are returned: the destination and its gateway. With regard to Figure 
20.6, this means the buffer allocated for m_copydata to copy into might need to be increased in 
size. 

Figure 20.11. route_output function: RTM_GET processing.
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Return destination, gateway, and masks

198-203

Four pointers are stored in the rti_info array: dst, gate, netmask, and genmask. 
The latter two might be null pointers. These pointers in the info structure point to the socket address 
structures that will be returned to the process. 

Return interface information

204-213

The process can set the masks RTA_IFP and RTA_IFA in the rtm_flags bitmask. If either or 
both are set, the process wants to receive the contents of both the ifaddr structures pointed to by 
this routing table entry: the link-level address of the interface (pointed to by rt_ifp-
>if_addrlist) and the protocol address for this entry (pointed to by rt_ifa-
>ifa_addr). The interface index is also returned. 

Construct reply

214-224

rt_msg2 is called with a null third pointer to calculate the length of the routing message 
corresponding to RTM_GET and the addresses pointed to by the info structure. If the length of the 
result message exceeds the length of the input message, then a new buffer is allocated, the input 
message is copied into the new buffer, the old buffer is released, and rtm is set to point to the new 
buffer. 

225-230

rt_msg2 is called again, this time with a nonnull third pointer, which builds the result message in 
the buffer. The final three members in the rt_msghdr structure are then filled in. 

Figure 20.12 shows the processing of the RTM_CHANGE and RTM_LOCK commands. 
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Figure 20.12. route_output function: RTM_CHANGE and RTM_LOCK
processing.

 

 
 

Change gateway

231-233

If a gate address was passed by the process, rt_setgate is called to change the gateway for 
the entry. 
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Locate new interface

234-244

The new gateway (if changed) can also require new rt_ifp and rt_ifa pointers. The process 
can specify these new values by passing either an ifpaddr socket address structure or an 
ifaaddr socket address structure. The former is tried first, and then the latter. If neither is passed 
by the process, the rt_ifp and rt_ifa pointers are left alone. 

Check if interface changed

245-256

If an interface was located (ifa is nonnull), then the existing rt_ifa pointer for the route is 
compared to the new value. If it has changed, new values for rt_ifp and rt_ifa are stored in 
the routing table entry. Before doing this the interface request function (if defined) is called with a 
command of RTM_DELETE. The delete is required because the link-layer information from one 
type of network to another can be quite different, say changing a route from an X.25 network to an 
Ethernet, and the output routines must be notified. 

Update metrics

257-258

The metrics in the routing table entry are updated by rt_setmetrics.

Call interface request function

259-260

If an interface request function is defined, it is called with a command of RTM_ADD.

Store clone generation mask

261-262

If the process specifies the genmask argument, the pointer to the mask that was obtained in Figure 
20.8 is saved in rt_genmask.

Update bitmask of locked metrics

266-270

The RTM_LOCK command updates the bitmask stored in rt_rmx.rmx_locks. Figure 20.13 
shows the values of the different bits in this bitmask, one value per metric. 
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Figure 20.13. Constants to initialize or lock metrics.

 

 

The rmx_locks member of the rt_metrics structure in the routing table entry is the bitmask 
telling the kernel which metrics to leave alone. That is, those metrics specified by rmx_locks 
won’t be updated by the kernel. The only use of these metrics by the kernel is with TCP, as noted with 
Figure 27.3. The rmx_pksent metric cannot be locked or initialized, but it turns out this member 
is never even referenced or updated by the kernel. 

The rtm_inits value in the message from the process specifies the bitmask of which metrics 
were just initialized by rt_setmetrics. The rtm_rmx.rmx_locks value in the 
message specifies the bitmask of which metrics should now be locked. The value of 
rt_rmx.rmx_locks is the bitmask in the routing table of which metrics are currently locked. 
First, any bits to be initialized (rtm_inits) are unlocked. Any bits that are both initialized 
(rtm_inits) and locked (rtm_rmx.rmx_locks) are locked. 

273-275

This default is for the switch at the beginning of Figure 20.9 and catches any of the routing 
commands other than the five that are supported in messages from a process. 

The final part of route_output, shown in Figure 20.14, sends the reply to raw_input.
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Figure 20.14. route_output function: pass results to raw_input.

 

 
 

Return error or OK

276-282

flush is the label jumped to by the senderr macro defined at the beginning of the function. If 
an error occurred it is returned in the rtm_errno member; otherwise the RTF_DONE flag is set. 

Release held route

283-284

If a route is being held, it is released. The call to rtalloc1 at the beginning of Figure 20.10 holds 
the route, if found. 
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No process to receive message

285-296

The SO_USELOOPBACK socket option is true by default and specifies that the sending process is 
to receive a copy of each routing message that it writes to a routing socket. (If the sender doesn’t 
receive a copy, it can’t receive any of the information returned by RTM_GET.) If that option is not 
set, and the total count of routing sockets is less than or equal to 1, there are no other processes to 
receive the message and the sender doesn’t want a copy. The buffer and mbuf chain are both released 
and the function returns. 

Other listeners but no loopback copy

297-299

There is at least one other listener but the sending process does not want a copy. The pointer rp, 
which defaults to null, is set to point to the routing control block for the sender and is also used as a 
flag that the sender doesn’t want a copy. 

Convert buffer into mbuf chain

300-303

The buffer is converted back into an mbuf chain (Figure 20.6) and the buffer released. 

Avoid loopback copy

304-305

If rp is set, some other process might want the message but the sender does not want a copy. The 
sp_family member of the sender’s routing control block is temporarily set to 0, but the 
sp_family of the message (the route_proto structure, shown with Figure 19.26) has a 
family of PF_ROUTE. This trick prevents raw_input from passing a copy of the result to the 
sending process because raw_input does not pass a copy to any socket with an sp_family of 
0. 

Set address family of routing message

306-308

If dst is a nonnull pointer, the address family of that socket address structure becomes the protocol 
of the routing message. With the Internet protocols this value would be PF_INET. A copy is 
passed to the appropriate listeners by raw_input.

309-313

If the sp_family member in the calling process was temporarily set to 0, it is reset to 
PF_ROUTE, its normal value. 
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20.6. rt_xaddrs Function 

The rt_xaddrs function is called only once from route_output (Figure 20.8) after the 
routing message from the process has been copied from the mbuf chain into a buffer and after the 
bitmask from the process (rtm_addrs) has been copied into the rti_info member of an 
rt_addrinfo structure. The purpose of rt_xaddrs is to take this bitmask and set the 
pointers in the rti_info array to point to the corresponding address in the buffer. Figure 20.15 
shows the function. 

Figure 20.15. rt_xaddrs function: fill rti_into array with pointers.

 

 

 

330-340

The array of pointers is set to 0 so all the pointers to address structures not appearing in the bitmask 
will be null. 

341-347

Each of the 8 (RTAX_MAX) possible bits in the bitmask is tested and, if set, a pointer is stored in the 
rti_info array to the corresponding socket address structure. The ADVANCE macro takes the 
sa_len field of the socket address structure, rounds it up to the next multiple of 4 bytes, and 
increments the pointer cp accordingly. 

20.7. rt_setmetrics Function 

This function was called twice from route_output: when a new route was added and when an 
existing route was changed. The rtm_inits member in the routing message from the process 
specifies which of the metrics the process wants to initialize from the rtm_rmx array. The bit 
values in the bitmask are shown in Figure 20.13. 
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Notice that both rtm_addrs and rtm_inits are bitmasks in the message from the process, the 
former specifying the socket address structures that follow, and the latter specifying which metrics are 
to be initialized. Socket address structures whose bits don’t appear in rtm_addrs don’t even 
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appear in the routing message, to save space. But the entire rt_metrics array always appears in 
the fixed-length rt_msghdr structure elements in the array whose bits are not set in 
rtm_inits are ignored. 

Figure 20.16 shows the rt_setmetrics function. 

Figure 20.16. rt_setmetrics function: set elements of the rt_metrics
structure.

 

 

314-318

The which argument is always the rtm_inits member of the routing message from the process. 
in points to the rt_metrics structure from the process, and out points to the rt_metrics 
structure in the routing table entry that is being created or modified. 

319-329

Each of the 8 bits in the bitmask is tested and if set, the corresponding metric is copied. Notice that 
when a new routing table entry is being created with the RTM_ADD command, route_output 
calls rtrequest, which sets the entire routing table entry to 0 (Figure 19.9). Hence, any metrics 
not specified by the process in the routing message default to 0. 

20.8. raw_input Function 

All routing messages destined for a process those  that originate from within the kernel and those that 
originate from a process ar e given to raw_input, which selects the processes to receive the 
message. Figure 18.11 summarizes the four functions that call raw_input.

When a routing socket is created, the family is always PF_ROUTE and the protocol, the third 
argument to socket, can be 0, which means the process wants to receive all routing messages, or a 
value such as AF_INET, which restricts the socket to messages containing addresses of that 
specific protocol family. A routing control block is created for each routing socket (Section 20.3) and 
these two values are stored in the sp_family and sp_protocol members of the 
rcb_proto structure. 
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Figure 20.17 shows the raw_input function. 
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Figure 20.17. raw_input function: pass routing messages to 0 or more 

processes.

 

 

 

51-61
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In all four calls to raw_input that we’ve seen, the proto, src, and dst arguments are 
pointers to the three globals route_proto, route_src, and route_dst, which are 
declared and initialized as shown with Figure 19.26. 

Compare address family and protocol

62-67

The for loop goes through every routing control block checking for a match. The family in the 
control block (normally PF_ROUTE) must match the family in the sockproto structure or the 
control block is skipped. Next, if the protocol in the control block (the third argument to socket) is 
nonzero, it must match the family in the sockproto structure, or the message is skipped. Hence a 
process that creates a routing socket with a protocol of 0 receives all routing messages. 

Compare local and foreign addresses

68-81

These two tests compare the local address in the control block and the foreign address in the control 
block, if specified. Currently the process is unable to set the rcb_laddr or rcb_faddr 
members of the control block. Normally a process would set the former with bind and the latter with 
connect, but that is not possible with routing sockets in Net/3. Instead, we’ll see that 
route_usrreq permanently connects the socket to the route_src socket address structure, 
which is OK since that is always the src argument to this function. 

Append message to socket receive buffer

82-107

If last is nonnull, it points to the most recently seen socket structure that should receive this 
message. If this variable is nonnull, a copy of the message is appended to that socket’s receive buffer 
by m_copy and sbappendaddr, and any processes waiting on this receive buffer are 
awakened. Then last is set to point to this socket that just matched the previous tests. The use of 
last is to avoid calling m_copy (an expensive operation) if only one process is to receive the 
message. 

If N processes are to receive the message, the first N —1 receive a copy and the final one receives the 
message itself. 

The variable sockets that is incremented within this function is not used. Since it is incremented 
only when a message is passed to a process, if it is 0 at the end of the function it indicates that no 
process received the message (but the value isn’t stored anywhere). 

20.9. route_usrreq Function 

route_usrreq is the routing protocol’s user-request function. It is called for a variety of 
operations. Figure 20.18 shows the function. 
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Figure 20.18. route_usrreq function: process PRU_xxx requests.

 

 

 
 

PRU_ATTACH: allocate control block

64-77

The PRU_ATTACH request is issued when the process calls socket. Memory is allocated for a 
routing control block. The pointer returned by MALLOC is stored in the so_pcb member of the 
socket structure, and if the memory was allocated, the rawcb structure is set to 0. 
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PRU_DETACH: decrement counters

78-87

The close system call issues the PRU_DETACH request. If the socket structure points to a 
protocol control block, two of the counters in the route_cb structure are decremented: one is the 
any_count and one is based on the protocol. 

Process request

88-90

The function raw_usrreq is called to process the PRU_xxx request further. 

Increment counters

91-104

If the request is PRU_ATTACH and the socket points to a routing control block, a check is made for 
an error from raw_usrreq. Two of the counters in the route_cb structure are then 
incremented: one is the any_count and one is based on the protocol. 

Connect socket

105-106

The foreign address in the routing control block is set to route_src. This permanently connects 
the new socket to receive routing messages from the PF_ROUTE family. 

Enable SO_USELOOPBACK by default

107-111

The SO_USELOOPBACK socket option is enabled. This is a socket option that defaults to being 
enabled a ll others default to being disabled. 

20.10. raw_usrreq Function 

raw_usrreq performs most of the processing for the user request in the routing domain. It was 
called by route_usrreq in the previous section. The reason the user-request processing is 
divided between these two functions is that other protocols (e.g., the OSI CLNP) call raw_usrreq 
but not route_usrreq. raw_usrreq is not intended to be the pr_usrreq function for 
a protocol. Instead it is a common subroutine called by the various pr_usrreq functions. 

Figure 20.19 shows the beginning and end of the raw_usrreq function. The body of the 
switch is discussed in separate figures following this figure. 
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Figure 20.19. Body of raw_usrreq function.

 

 
 

PRU_CONTROL requests invalid

119-129

The PRU_CONTROL request is from the ioctl system call and is not supported in the routing 
domain. 

Control information invalid

130-133

If control information was passed by the process (using the sendmsg system call) an error is 
returned, since the routing domain doesn’t use this optional information. 

Socket must have a control block

134-137
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If the socket structure doesn’t point to a routing control block, an error is returned. If a new socket 
is being created, it is the caller’s responsibility (i.e., route_usrreq) to allocate this control block 
and store the pointer in the so_pcb member before calling this function. 
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262-269

The default for this switch catches two requests that are not handled by case statements: 
PRU_BIND and PRU_CONNECT. The code for these two requests is present but commented out 
in Net/3. Therefore issuing the bind or connect system calls on a routing socket causes a kernel 
panic. This is a bug. Fortunately it requires a superuser process to create this type of socket. 

We now discuss the individual case statements. Figure 20.20 shows the processing for the 
PRU_ATTACH and PRU_DETACH requests. 

Figure 20.20. raw_usrreq function: PRU_ATTACH and PRU_DETACH requests.

 

 

139-148

The PRU_ATTACH request is a result of the socket system call. A routing socket must be 
created by a superuser process. 

149-150

The function raw_attach (Figure 20.24) links the control block into the doubly linked list. The 
nam argument is the third argument to socket and gets stored in the control block. 

151-159

The PRU_DETACH is issued by the close system call. The test of a null rp pointer is 
superfluous, since the test was already done before the switch statement. 

160-161

raw_detach (Figure 20.25) removes the control block from the doubly linked list. 
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Figure 20.21 shows the processing of the PRU_CONNECT2, PRU_DISCONNECT, and 
PRU_SHUTDOWN requests. 

Figure 20.21. raw_usrreq function: PRU_CONNECT2, PRU_DISCONNECT,
and PRU_SHUTDOWN requests.

 

 

186-188

The PRU_CONNECT2 request is from the socketpair system call and is not supported in the 
routing domain. 

189-196

Since a routing socket is always connected (Figure 20.18), the PRU_DISCONNECT request is 
issued by close before the PRU_DETACH request. The socket must already be connected to a 
foreign address, which is always true for a routing socket. raw_disconnect and 
soisdisconnected complete the processing. 

197-202

The PRU_SHUTDOWN request is from the shutdown system call when the argument specifies 
that no more writes will be performed on the socket. socantsendmore disables further writes. 

The most common request for a routing socket, PRU_SEND, and the PRU_ABORT and 
PRU_SENSE requests are shown in Figure 20.22. 
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Figure 20.22. raw_usrreq function: PRU_SEND, PRU_ABORT, and 

PRU_SENSE requests.

 

 

203-217

The PRU_SEND request is issued by sosend when the process writes to the socket. If a nam 
argument is specified, that is, the process specified a destination address using either sendto or 
sendmsg, an error is returned because route_usrreq always sets rcb_faddr for a 
routing socket. 

218-222

The message in the mbuf chain pointed to by m is passed to the protocol’s pr_output function, 
which is route_output.

223-227

If a PRU_ABORT request is issued, the control block is disconnected, the socket is released, and the 
socket is disconnected. 

228-232

The PRU_SENSE request is issued by the fstat system call. The function returns OK. 

Figure 20.23 shows the remaining PRU_xxx requests. 
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Figure 20.23. raw_usrreq function: final part.

 

 

233-243

These five requests are not supported. 

244-261

The PRU_SOCKADDR and PRU_PEERADDR requests are from the getsockname and 
getpeername system calls respectively. The former always returns an error, since the bind 
system call, which sets the local address, is not supported in the routing domain. The latter always 
returns the contents of the socket address structure route_src, which was set by 
route_usrreq as the foreign address. 

20.11. raw_attach, raw_detach, and 
raw_disconnect Functions 

The raw_attach function, shown in Figure 20.24, was called by raw_input to finish 
processing the PRU_ATTACH request. 
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Figure 20.24. raw_attach function.

 

 

49-64

The caller must have already allocated the raw protocol control block. soreserve sets the high-
water marks for the send and receive buffers to 8192. This should be more than adequate for the 
routing messages. 

65-67

A pointer to the socket structure is stored in the protocol control block along with the 
dom_family (which is PF_ROUTE from Figure 20.1 for the routing domain) and the proto 
argument (which is the third argument to socket). 

68-70

insque adds the control block to the front of the doubly linked list headed by the global rawcb.

The raw_detach function, shown in Figure 20.25, was called by raw_input to finish 
processing the PRU_DETACH request. 

Figure 20.25. raw_detach function.
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75-84

The so_pcb pointer in the socket structure is set to null and the socket is released. The control 
block is removed from the doubly linked list by remque and the memory used for the control block 
is released by free.

The raw_disconnect function, shown in Figure 20.26, was called by raw_input to process 
the PRU_DISCONNECT and PRU_ABORT requests. 

Figure 20.26. raw_disconnect function.

 

 

88-94

If the socket does not reference a descriptor, raw_detach releases the socket and control block. 

20.12. Summary 

A routing socket is a raw socket in the PF_ROUTE domain. Routing sockets can be created only by 
a superuser process. If a nonprivileged process wants to read the routing information contained in the 
kernel, the sysctl system call supported by the routing domain can be used (we described this in 
the previous chapter). 

This chapter was our first encounter with the protocol control blocks (PCBs) that are normally 
associated with each socket. In the routing domain a special rawcb contains information about the 
routing socket: the local and foreign addresses, the address family, and the protocol. We’ll see in 
Chapter 22 that the larger Internet protocol control block (inpcb) is used with UDP, TCP, and raw 
IP sockets. The concepts are the same, however: the socket structure is used by the socket layer, 
and the PCB, a rawcb or an inpcb, is used by the protocol layer. The socket structure points 
to the PCB and vice versa. 

The route_output function handles the five routing requests that can be issued by a process. 
raw_input delivers a routing message to one or more routing sockets, depending on the protocol 
and address family. The various PRU_xxx requests for a routing socket are handled by 
raw_usrreq and route_usrreq. In later chapters we’ll encounter additional 
xxx_usrreq functions, one per protocol (UDP, TCP, and raw IP), each consisting of a switch 
statement to handle each request. 
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Exercises

20.1 List two ways a process can receive the return value from route_output when the 
process writes a message to a routing socket. Which method is more reliable? 

20.2 What happens when a process specifies a nonzero protocol argument to the socket 
system call, since the pr_protocol member of the routesw structure is 0? 

20.3 Routes in the routing table (other than ARP entries) never time out. Implement a timeout 
on routes. 
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Chapter 21. ARP: Address Resolution Protocol 

21.1. Introduction 

ARP, the Address Resolution Protocol, handles the translation of 32-bit IP addresses into the 
corresponding hardware address. For an Ethernet, the hardware addresses are 48-bit Ethernet 
addresses. In this chapter we only consider mapping IP addresses into 48-bit Ethernet addresses, 
although ARP is more general and can work with other types of data links. ARP is specified in RFC 
826 [Plummer 1982]. 

When a host has an IP datagram to send to another host on a locally attached Ethernet, the local host 
first looks up the destination host in the ARP cache, a table that maps a 32-bit IP address into its 
corresponding 48-bit Ethernet address. If the entry is found for the destination, the corresponding 
Ethernet address is copied into the Ethernet header and the datagram is added to the appropriate 
interface’s output queue. If the entry is not found, the ARP functions hold onto the IP datagram, 
broadcast an ARP request asking the destination host for its Ethernet address, and, when a reply is 
received, send the datagram to its destination. 

This simple overview handles the common case, but there are many details that we describe in this 
chapter as we examine the Net/3 implementation of ARP. Chapter 4 of Volume 1 contains additional 
ARP examples. 

21.2. ARP and the Routing Table 

The Net/3 implementation of ARP is tied to the routing table, which is why we postponed discussing 
ARP until we had described the structure of the Net/3 routing tables. Figure 21.1 shows an example 
that we use in this chapter when describing ARP. 
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Figure 21.1. Relationship of ARP to routing table and interface structures.

 

 

The entire figure corresponds to the example network used throughout the text (Figure 1.17). It shows 
the ARP entries on the system bsdi. The ifnet, ifaddr, and in_ifaddr structures are 
simplified from Figures 3.32 and 6.5. We have removed some of the details from these three 
structures, which were covered in Chapters 3 and 6. 

For example, we don’t show the two sockaddr_dl structures that appear after each ifaddr 
structure i nstead we summarize the information contained in these two structures. Similarly, we 
summarize the information contained in the three in_ifaddr structures. 

We briefly summarize some relevant points from this figure, the details of which we cover as we 
proceed through the chapter. 

1. A doubly linked list of llinfo_arp structures contains a minimal amount of information 
for each hardware address known by ARP. The global llinfo_arp is the head of this 
list. Not shown in this figure is that the la_prev pointer of the first entry points to the last 
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entry, and the la_next pointer of the last entry points to the first entry. This linked list is 
processed by the ARP timer function every 5 minutes. 

2. For each IP address with a known hardware address, a routing table entry exists (an 
rtentry structure). The llinfo_arp structure points to the corresponding 
rtentry structure, and vice versa, using the la_rt and rt_llinfo pointers. The 
three routing table entries in this figure with an associated llinfo_arp structure are for 
the hosts sun (140.252.13.33), svr4 (140.252.13.34), and bsdi itself (140.252.13.35). 
These three are also shown in Figure 18.2. 

3. We show a fourth routing table entry on the left, without an llinfo_arp structure, which 
is the entry for the interface route to the local Ethernet (140.252.13.32). We show its 
rt_flags with the C bit on, since this entry is cloned to form the other three routing table 
entries. This entry is created by the call to rtinit when the IP address is assigned to the 
interface by in_ifinit (Figure 6.19). The other three entries are host entries (the H flag) 
and are generated by ARP (the L flag) when a datagram is sent to that IP address. 

4. The rt_gateway member of the rtentry structure points to a sockaddr_dl 
structure. This data-link socket address structure contains the hardware address if the 
sdl_alen member equals 6. 

5. The rt_ifp member of the routing table entry points to the ifnet structure of the 
outgoing interface. Notice that the two routing table entries in the middle, for other hosts on 
the local Ethernet, both point to le_softc[0], but the routing table entry on the right, 
for the host bsdi itself, points to the loopback structure. Since rt_ifp.if_output 
(Figure 8.25) points to the output routine, packets sent to the local IP address are routed to the 
loopback interface. 

6. Each routing table entry also points to the corresponding in_ifaddr structure. (Actually 
the rt_ifa member points to an ifaddr structure, but recall from Figure 6.8 that the 
first member of an in_ifaddr structure is an ifaddr structure.) We show only one of 
these pointers in the figure, although all four point to the same structure. Remember that a 
single interface, say le0, can have multiple IP addresses, each with its own in_ifaddr 
structure, which is why the rt_ifa pointer is required in addition to the rt_ifp pointer. 

7. The la_hold member is a pointer to an mbuf chain. An ARP request is broadcast because 
a datagram is sent to that IP address. While the kernel awaits the ARP reply it holds onto the 
mbuf chain for the datagram by storing its address in la_hold. When the ARP reply is 
received, the mbuf chain pointed to by la_hold is sent. 

8. Finally, we show the variable rmx_expire, which is in the rt_metrics structure 
within the routing table entry. This value is the timer associated with each ARP entry. Some 
time after an ARP entry has been created (normally 20 minutes) the ARP entry is deleted. 

Even though major routing table changes took place with 4.3BSD Reno, the 
ARP cache was left alone with 4.3BSD Reno and Net/2. 4.4BSD, however, 
removed the stand-alone ARP cache and moved the ARP information into 
the routing table. 

The ARP table in Net/2 was an array of structures composed of the 
following members: an IP address, an Ethernet address, a timer, flags, and a 
pointer to an mbuf (similar to the la_hold member in Figure 21.1). We 
see with Net/3 that the same information is now spread throughout multiple 
structures, all of which are linked. 

21.3. Code Introduction 

There are nine ARP functions in a single C file and definitions in two headers, as shown in Figure 
21.2. 
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Figure 21.2. Files discussed in this chapter.

 

 

Figure 21.3 shows the relationship of the ARP functions to other kernel functions. In this figure we 
also show the relationship between the ARP functions and some of the routing functions from Chapter 
19. We describe all these relationships as we proceed through the chapter. 

Figure 21.3. Relationship of ARP functions to rest of kernel.

 

 
 

Global Variables

Ten global variables are introduced in this chapter, which are shown in Figure 21.4. 
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Figure 21.4. Global variables introduced in this chapter.

 

 
 

Statistics

The only statistics maintained by ARP are the two globals arp_inuse and 
arp_allocated, from Figure 21.4. The former counts the number of ARP entries currently in 
use and the latter counts the total number of ARP entries allocated since the system was initialized. 
Neither counter is output by the netstat program, but they can be examined with a debugger. 

The entire ARP cache can be listed using the arp -a command, which uses the sysctl system 
call with the arguments shown in Figure 19.36. Figure 21.5 shows the output from this command, for 
the entries shown in Figure 18.2. 

Figure 21.5. arp -a output corresponding to Figure 18.2.

 

 

Since the multicast group 224.0.0.1 has the L flag set in Figure 18.2, and since the arp program 
looks for entries with the RTF_LLINFO flag set, the multicast groups are output by the program. 
Later in this chapter we’ll see why this entry is marked as "incomplete" and why the entry above it is 
"permanent." 

SNMP Variables

As described in Section 25.8 of Volume 1, the original SNMP MIB defined an address translation 
group that was the system’s ARP cache. MIB-II deprecated this group and instead each network 
protocol group (i.e., IP) contains its own address translation tables. Notice that the change in Net/2 to 
Net/3 from a stand-alone ARP table to an integration of the ARP information within the IP routing 
table parallels this SNMP change. 

Figure 21.6 shows the IP address translation table from MIB-II, named ipNetToMediaTable. 
The values returned by SNMP for this table are taken from the routing table entry and its 
corresponding ifnet structure. 
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Figure 21.6. IP address translation table: ipNetToMediaTable.

 

 

If the routing table entry has an expiration time of 0 it is considered permanent and hence "static." 
Otherwise the entry is considered "dynamic." 

21.4. ARP Structures 

Figure 21.7 shows the format of an ARP packet when transmitted on an Ethernet. 

Figure 21.7. Format of an ARP request or reply when used on an Ethernet.

 

 

The ether_header structure (Figure 4.10) defines the 14-byte Ethernet header; the arphdr 
structure defines the next five fields, which are common to ARP requests and ARP replies on any type 
of media; and the ether_arp structure combines the arphdr structure with the sender and 
target addresses when ARP is used on an Ethernet. 

Figure 21.8 shows the definition of the arphdr structure. Figure 21.7 shows the values of the first 
four fields in this structure when ARP is mapping IP addresses to Ethernet addresses. 

Figure 21.8. arphdr structure: common ARP request/reply header.
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Figure 21.9 shows the combination of the arphdr structure with the fields used with IP addresses 
and Ethernet addresses, forming the ether_arp structure. Notice that ARP uses the terms 
hardware to describe the 48-bit Ethernet address, and protocol to describe the 32-bit IP address. 

Figure 21.9. ether_arp structure.

 

 

One llinfo_arp structure, shown in Figure 21.10, exists for each ARP entry. Additionally, one 
of these structures is allocated as a global of the same name and used as the head of the linked list of 
all these structures. We often refer to this list as the ARP cache, since it is the only data structure in 
Figure 21.1 that has a one-to-one correspondence with the ARP entries. 

Figure 21.10. llinfo_arp structure.

 

 

With Net/2 and earlier systems it was easy to identify the structure called the ARP
cache, since a single structure contained everything for each ARP entry. Since Net/3 
stores the ARP information among multiple structures, no single structure can be 
called the ARP cache. Nevertheless, having the concept of an ARP cache, which is 
the collection of information describing a single ARP entry, simplifies the 
discussion. 

104-106

The first two entries form the doubly linked list, which is updated by the insque and remque 
functions. la_rt points to the associated routing table entry, and the rt_llinfo member of the 
routing table entry points to this structure. 

107
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When ARP receives an IP datagram to send to another host but the destination’s hardware address is 
not in the ARP cache, an ARP request must be sent and the ARP reply received before the datagram 
can be sent. While waiting for the reply the mbuf pointer to the datagram is saved in la_hold. 
When the ARP reply is received, the packet pointed to by la_hold (if any) is sent. 

108-109

la_asked counts how many consecutive times an ARP request has been sent to this IP address 
without receiving a reply. We’ll see in Figure 21.24 that when this counter reaches a limit, that host is 
considered down and another ARP request won’t be sent for a while. 

110

This definition uses the rmx_expire member of the rt_metrics structure in the routing 
table entry as the ARP timer. When the value is 0, the ARP entry is considered permanent. When 
nonzero, the value is the number of seconds since the Unix Epoch when the entry expires. 

21.5. arpwhohas Function 

The arpwhohas function is normally called by arpresolve to broadcast an ARP request. It is 
also called by each Ethernet device driver to issue a gratuitous ARP request when the IP address is 
assigned to the interface (the SIOCSIFADDR ioctl in Figure 6.28). Section 4.7 of Volume 1 
describes gratuitous ARP  it detects if another host on the Ethernet is using the same IP address and 
also allows other hosts with ARP entries for this host to update their ARP entry if this host has 
changed its Ethernet address. arpwhohas simply calls arprequest, shown in the next 
section, with the correct arguments. 

Figure 21.11. arpwhohas function: broadcast an ARP request.

 

 

196-202

The arpcom structure (Figure 3.26) is common to all Ethernet devices and is part of the 
le_softc structure, for example (Figure 3.20). The ac_ipaddr member is a copy of the 
interface’s IP address, which is set by the driver when the SIOCSIFADDR ioctl is executed 
(Figure 6.28). ac_enaddr is the Ethernet address of the device. 

The second argument to this function, addr, is the IP address for which the ARP request is being 
issued: the target IP address. In the case of a gratuitous ARP request, addr equals ac_ipaddr, 
so the second and third arguments to arprequest are the same, which means the sender IP 
address will equal the target IP address in the gratuitous ARP request. 
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21.6. arprequest Function 

The arprequest function is called by arpwhohas to broadcast an ARP request. It builds an 
ARP request packet and passes it to the interface’s output function. 

Before looking at the source code, let’s examine the data structures built by the function. To send the 
ARP request the interface output function for the Ethernet device (ether_output) is called. One 
argument to ether_output is an mbuf containing the data to send: everything that follows the 
Ethernet type field in Figure 21.7. Another argument is a socket address structure containing the 
destination address. Normally this destination address is an IP address (e.g., when ip_output 
calls ether_output in Figure 21.3). For the special case of an ARP request, the sa_family 
member of the socket address structure is set to AF_UNSPEC, which tells ether_output that 
it contains a filled-in Ethernet header, including the destination Ethernet address. This prevents 
ether_output from calling arpresolve, which would cause an infinite loop. We don’t 
show this loop in Figure 21.3, but the "interface output function" below arprequest is 
ether_output. If ether_output were to call arpresolve again, the infinite loop 
would occur. 

Figure 21.12 shows the mbuf and the socket address structure built by this function. We also show the 
two pointers eh and ea, which are used in the function. 

Figure 21.12. sockaddr and mbuf built by arprequest.

 

 

Figure 21.13 shows the arprequest function. 
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Figure 21.13. arprequest function: build an ARP request packet and send it.

 

 
 

Allocate and initialize mbuf

209-223

A packet header mbuf is allocated and the two length fields are set. MH_ALIGN allows room for a 
28-byte ether_arp structure at the end of the mbuf, and sets the m_data pointer accordingly. 
The reason for moving this structure to the end of the mbuf is to allow ether_output to prepend 
the 14-byte Ethernet header in the same mbuf. 

Initialize pointers

224-226

The two pointers ea and eh are set and the ether_arp structure is set to 0. The only purpose of 
the call to bzero is to set the target hardware address to 0, because the other eight fields in this 
structure are explicitly set to their respective value. 
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Fill in Ethernet header

227-229

The destination Ethernet address is set to the Ethernet broadcast address and the Ethernet type field is 
set to ETHERTYPE_ARP. Note the comment that this 2-byte field will be converted from host 
byte order to network byte order by the interface output function. This function also fills in the 
Ethernet source address field. Figure 21.14 shows the different values for the Ethernet type field. 

Figure 21.14. Ethernet type fields.

 

 

RARP maps an Ethernet address to an IP address and is used when a diskless system bootstraps. 
RARP is normally not part of the kernel’s implementation of TCP/IP, so it is not covered in this text. 
Chapter 5 of Volume 1 describes RARP. 

Fill in ARP fields

230-237

All fields in the ether_arp structure are filled in, except the target hardware address, which is 
what the ARP request is looking for. The constant ARPHRD_ETHER, which has a value of 1, 
specifies the format of the hardware addresses as 6-byte Ethernet addresses. To identify the protocol 
addresses as 4-byte IP addresses, arp_pro is set to the Ethernet type field for IP from Figure 21.14. 
Figure 21.15 shows the various ARP operation codes. We encounter the first two in this chapter. The 
last two are used with RARP. 

Figure 21.15. ARP operation codes.
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Fill in sockaddr and call interface output function

238-241

The sa_family member of the socket address structure is set to AF_UNSPEC and the sa_len 
member is set to 16. The interface output function is called, which we said is ether_output.

21.7. arpintr Function 

In Figure 4.13 we saw that when ether_input receives an Ethernet frame with a type field of 
ETHERTYPE_ARP, it schedules a software interrupt of priority NETISR_ARP and appends the 
frame to ARP’s input queue: arpintrq. When the kernel processes the software interrupt, the 
function arpintr, shown in Figure 21.16, is called. 

Figure 21.16. arpintr function: process Ethernet frames containing ARP 

requests or replies.

 

 

319-343

The while loop processes one frame at a time, as long as there are frames on the queue. The frame 
is processed if the hardware type specifies Ethernet addresses, and if the size of the frame is greater 
than or equal to the size of an arphdr structure plus the sizes of two hardware addresses and two 
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protocol addresses. If the type of protocol addresses is either ETHERTYPE_IP or 
ETHERTYPE_IPTRAILERS, the in_arpinput function, shown in the next section, is 
called. Otherwise the frame is discarded. 

Notice the order of the tests within the if statement. The length is checked twice. First, if the length 
is at least the size of an arphdr structure, then the fields in that structure can be examined. The 
length is checked again, using the two length fields in the arphdr structure. 

21.8. in_arpinput Function 

This function is called by arpintr to process each received ARP request or ARP reply. While 
ARP is conceptually simple, numerous rules add complexity to the implementation. The following 
two scenarios are typical: 

1. If a request is received for one of the host’s IP addresses, a reply is sent. This is the normal 
case of some other host on the Ethernet wanting to send this host a packet. Also, since we’re 
about to receive a packet from that other host, and we’ll probably send a reply, an ARP entry 
is created for that host (if one doesn’t already exist) because we have its IP address and 
hardware address. This optimization avoids another ARP exchange when the packet is 
received from the other host. 

2. If a reply is received in response to a request sent by this host, the corresponding ARP entry is 
now complete (the hardware address is known). The other host’s hardware address is stored in 
the sockaddr_dl structure and any queued packet for that host can now be sent. Again, 
this is the normal case. 

ARP requests are normally broadcast so each host sees all ARP requests on the Ethernet, even those 
requests for which it is not the target. Recall from arprequest that when a request is sent, it 
contains the sender's IP address and hardware address. This allows the following tests also to occur. 

3. If some other host sends a request or reply with a sender IP address that equals this host’s IP 
address, one of the two hosts is misconfigured. Net/3 detects this error and logs a message for 
the administrator. (We say "request or reply" here because in_arpinput doesn’t 
examine the operation type. But ARP replies are normally unicast, in which case only the 
target host of the reply receives the reply.) 

4. If this host receives a request or reply from some other host for which an ARP entry already 
exists, and if the other host’s hardware address has changed, the hardware address in the ARP 
entry is updated accordingly. This can happen if the other host is shut down and then rebooted 
with a different Ethernet interface (hence a different hardware address) before its ARP entry 
times out. The use of this technique, along with the other host sending a gratuitous ARP 
request when it reboots, prevents this host from being unable to communicate with the other 
host after the reboot because of an ARP entry that is no longer valid. 

5. This host can be configured as a proxy ARP server. This means it responds to ARP requests 
for some other host, supplying the other host’s hardware address in the reply. The host whose 
hardware address is supplied in the proxy ARP reply must be one that is able to forward IP 
datagrams to the host that is the target of the ARP request. Section 4.6 of Volume 1 discusses 
proxy ARP. 

A Net/3 system can be configured as a proxy ARP server. These ARP entries are added with 
the arp command, specifying the IP address, hardware address, and the keyword pub. 
We’ll see the support for this in Figure 21.20 and we describe it in Section 21.12. 

We examine in_arpinput in four parts. Figure 21.17 shows the first part. 
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Figure 21.17. in_arpinput function: look for matching interface.

 

 

358-375

The length of the ether_arp structure was verified by the caller, so ea is set to point to the 
received packet. The ARP operation (request or reply) is copied into op but it isn’t examined until 
later in the function. The sender’s IP address and target IP address are copied into isaddr and 
itaddr.

Look for matching interface and IP address

376-382

The linked list of Internet addresses for the host is scanned (the list of in_ifaddr structures, 
Figure 6.5). Remember that a given interface can have multiple IP addresses. Since the received 
packet contains a pointer (in the mbuf packet header) to the receiving interface’s ifnet structure, 
the only IP addresses considered in the for loop are those associated with the receiving interface. If 
either the target IP address or the sender’s IP address matches one of the IP addresses for the receiving 
interface, the break terminates the loop. 

383-384

If the loop terminates with the variable maybe_ia equal to 0, the entire list of configured IP 
addresses was searched and not one was associated with the received interface. The function jumps to 
out (Figure 21.19), where the mbuf is discarded and the function returns. This should only happen if 
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an ARP request is received on an interface that has been initialized but has not been assigned an IP 
address. 

385

If the for loop terminates having located a receiving interface (maybe_ia is non-null) but none 
of its IP addresses matched the sender or target IP address, myaddr is set to the final IP address 
assigned to the interface. Otherwise (the normal case) myaddr contains the local IP address that 
matched either the sender or target IP address. 

Figure 21.18 shows the next part of the in_arpinput function, which performs some validation 
of the packet. 

Figure 21.18. in_arpinput function: validate received packet.

 

 
 

Validate sender's hardware address

386-388

If the sender’s hardware address equals the hardware address of the interface, the host received a copy 
of its own request, which is ignored. 

389-395

If the sender’s hardware address is the Ethernet broadcast address, this is an error. The error is logged 
and the packet is discarded. 

Check sender's IP address

396-402

 709

If the sender’s IP address equals myaddr, then the sender is using the same IP address as this host. 
This is also an error pro bably a configuration error by the system administrator on either this host or 
the sending host. The error is logged and the function jumps to reply (Figure 21.19), after setting 
the target IP address to myaddr (the duplicate address). Notice that this ARP packet could have 
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been destined for some other host on the Ethernet i t need not have been sent to this host. 
Nevertheless, if this form of IP address spoofing is detected, the error is logged and a reply generated. 

Figure 21.19. in_arpinput function: create a new ARP entry or update 

existing entry.

 

 

Figure 21.19 shows the next part of in_arpinput.

Search routing table for match with sender's IP address

403

arplookup searches the ARP cache for the sender’s IP address (isaddr). The second argument 
is 1 if the target IP address equals myaddr (meaning create a new entry if an entry doesn’t exist), or 
0 otherwise (do not create a new entry). An entry is always created for the sender if this host is the 
target; otherwise the host is processing a broadcast intended for some other target, so it just looks for 
an existing entry for the sender. As mentioned earlier, this means that if a host receives an ARP 
request for itself from another host, an ARP entry is created for that other host on the assumption that, 
since that host is about to send us a packet, we’ll probably send a reply. 

The third argument is 0, which means do not look for a proxy ARP entry (described later). The return 
value is a pointer to an llinfo_arp structure, or a null pointer if an entry is not found or created. 

Update existing entry or fill in new entry

404

The code associated with the if statement is executed only if the following three conditions are all 
true: 

 710



ptg11539634

 711

1. an ARP entry was found or a new ARP entry was successfully created (la is nonnull), 
2. the ARP entry points to a routing table entry (rt), and 
3. the rt_gateway field of the routing table entry points to a sockaddr_dl structure. 

The first condition is false for every broadcast ARP request not directed to this host, from some other 
host whose IP address is not currently in the routing table. 

Check if sender's hardware addresses changed

405-408

If the link-level address length (sdl_alen) is nonzero (meaning that an existing entry is being 
referenced and not a new entry that was just created), the link-level address is compared to the 
sender’s hardware address. If they are different, the sender’s Ethernet address has changed. This can 
happen if the sending host is shut down, its Ethernet interface card replaced, and it reboots before the 
ARP entry times out. While not common, this is a possibility that must be handled. An informational 
message is logged and the code continues, which will update the hardware address with its new value. 

The sender’s IP address in the log message should be converted to host byte order. 
This is a bug. 

Record sender's hardware address

409-410

The sender’s hardware address is copied into the sockaddr_dl structure pointed to by the 
rt_gateway member of the routing table entry. The link-level address length (sdl_alen) in 
the sockaddr_dl structure is also set to 6. This assignment of the length field is required if this is 
a newly created entry (Exercise 21.3). 

Update newly resolved ARP entry

411-412

When the sender’s hardware address is resolved, the following steps occur. If the expiration time is 
nonzero, it is reset to 20 minutes (arpt_keep) in the future. This test exists because the arp 
command can create permanent entries: entries that never time out. These entries are marked with an 
expiration time of 0. We’ll also see in Figure 21.24 that when an ARP request is sent (i.e., for a 
nonpermanent ARP entry) the expiration time is set to the current time, which is nonzero. 

413-414

The RTF_REJECT flag is cleared and the la_asked counter is set to 0. We’ll see that these last 
two steps are used in arpresolve to avoid ARP flooding. 

415-420

If ARP is holding onto an mbuf awaiting ARP resolution of that host’s hardware address (the 
la_hold pointer), the mbuf is passed to the interface output function. (We show this in Figure 
21.3.) Since this mbuf was being held by ARP, the destination address must be on a local Ethernet so 
the interface output function is ether_output. This function again calls arpresolve, but 
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the hardware address was just filled in, allowing the mbuf to be queued on the actual device’s output 
queue. 

Finished with ARP reply packets

421-426

If the ARP operation is not a request, the received packet is discarded and the function returns. 

The remainder of the function, shown in Figure 21.20, generates a reply to an ARP request. A reply is 
generated in only two instances: 

1. this host is the target of a request for its hardware address, or 
2. this host receives a request for another host’s hardware address for which this host has been 

configured to act as an ARP proxy server. 

Figure 21.20. in_arpinput function: form ARP reply and send it.

 

 

At this point in the function, an ARP request has been received, but since ARP requests are normally 
broadcast, the request could be for any system on the Ethernet. 

This host is the target

427-432

If the target IP address equals myaddr, this host is the target of the request. The source hardware 
address is copied into the target hardware address (i.e., whoever sent it becomes the target) and the 
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Ethernet address of the interface is copied from the arpcom structure into the source hardware 
address. The remainder of the ARP reply is constructed after the else clause. 

Check if this host is a proxy server for target

433-436

Even if this host is not the target, this host can be configured to be a proxy server for the specified 
target. arplookup is called again with the create flag set to 0 (the second argument) and the third 
argument set to SIN_PROXY. This finds an entry in the routing table only if that entry’s 
SIN_PROXY flag is set. If an entry is not found (the typical case where this host receives a copy of 
some other ARP request on the Ethernet), the code at out discards the mbuf and returns. 

Form proxy reply

437-442

To handle a proxy ARP request, the sender’s hardware address becomes the target hardware address 
and the Ethernet address from the ARP entry is copied into the sender hardware address field. This 
value from the ARP entry can be the Ethernet address of any host on the Ethernet capable of sending 
IP datagrams to the target IP address. Normally the host providing the proxy ARP service supplies its 
own Ethernet address, but that’s not required. Proxy entries are created by the system administrator 
using the arp command, with the keyword pub, specifying the target IP address (which becomes 
the key of the routing table entry) and an Ethernet address to return in the ARP reply. 

Complete construction of ARP reply packet

443-444

The remainder of the function completes the construction of the ARP reply. The sender and target 
hardware addresses have been filled in. The sender and target IP addresses are now swapped. The 
target IP address is contained in itaddr, which might have been changed if another host was 
found using this host’s IP address (Figure 21.18). 

445-446

The ARP operation is set to ARPOP_REPLY and the type of protocol address is set to 
ETHERTYPE_IP. The comment "let’s be sure!" is because arpintr also calls this function 
when the type of protocol address is ETHERTYPE_IPTRAILERS, but the use of trailer 
encapsulation is no longer supported. 

Fill in sockaddr with Ethernet header

447-452

A sockaddr structure is filled in with the 14-byte Ethernet header, as shown in Figure 21.12. The 
target hardware address also becomes the Ethernet destination address. 

453-455

The ARP reply is passed to the interface’s output routine and the function returns. 
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21.9. ARP Timer Functions 

ARP entries are normally dynamic th ey are created when needed and time out automatically. It is 
also possible for the system administrator to create permanent entries (i.e., no timeout), and the proxy 
entries we discussed in the previous section are always permanent. Recall from Figure 21.1 and the 
#define at the end of Figure 21.10 that the rmx_expire member of the routing metrics 
structure is used by ARP as a timer. 

arptimer Function

This function, shown in Figure 21.21, is called every 5 minutes. It goes through all the ARP entries to 
see if any have expired. 

Figure 21.21. arptimer function: check all ARP timers every 5 minutes.

 

 
 

Set next timeout

80

We’ll see that the arp_rtrequest function causes arptimer to be called the first time, and 
from that point arptimer causes itself to be called 5 minutes (arpt_prune) in the future. 

Check all ARP entries

81-86

Each entry in the linked list is processed. If the timer is nonzero (it is not a permanent entry) and if the 
timer has expired, arptfree releases the entry. If rt_expire is nonzero, it contains a count of 
the number of seconds since the Unix Epoch when the entry expires. 

arptfree Function

This function, shown in Figure 21.22, is called by arptimer to delete a single entry from the 
linked list of llinfo_arp entries. 
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Figure 21.22. arptfree function: delete or invalidate an ARP entry.

 

 
 

Invalidate (don't delete) entries in use

467-473

If the routing table reference count is greater than 0 and the rt_gateway member points to a 
sockaddr_dl structure, arptfree takes the following steps: 

1. the link-layer address length is set to 0, 
2. the la_asked counter is reset to 0, and 
3. the RTF_REJECT flag is cleared. 

The function then returns. Since the reference count is nonzero, the routing table entry is not deleted. 
But setting sdl_alen to 0 invalidates the entry, so the next time the entry is used, an ARP request 
will be generated. 

Delete unreferenced entries

474-475

rtrequest deletes the routing table entry, and we’ll see in Section 21.13 that it calls 
arp_rtrequest. This latter function frees any mbuf chain held by the ARP entry (the 
la_hold pointer) and deletes the corresponding llinfo_arp entry. 

21.10. arpresolve Function 

We saw in Figure 4.16 that ether_output calls arpresolve to obtain the Ethernet address 
for an IP address. arpresolve returns 1 if the destination Ethernet address is known, allowing 
ether_output to queue the IP datagram on the interface’s output queue. A return value of 0 
means arpresolve does not know the Ethernet address. The datagram is "held" by 
arpresolve (using the la_hold member of the llinfo_arp structure) and an ARP 
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request is sent. If and when an ARP reply is received, in_arpinput completes the ARP entry 
and sends the held datagram. 

arpresolve must also avoid ARP flooding, that is, it must not repeatedly send ARP requests at a 
high rate when an ARP reply is not received. This can happen when several datagrams are sent to the 
same unresolved IP address before an ARP reply is received, or when a datagram destined for an 
unresolved address is fragmented, since each fragment is sent to ether_output as a separate 
packet. Section 11.9 of Volume 1 contains an example of ARP flooding caused by fragmentation, and 
discusses the associated problems. Figure 21.23 shows the first half of arpresolve.

Figure 21.23. arpresolve function: find ARP entry if required.

 

 

252-261

dst is a pointer to a sockaddr_in containing the destination IP address and desten is an 
array of 6 bytes that is filled in with the corresponding Ethernet address, if known. 

Handle broadcast and multicast destinations

262-270

If the M_BCAST flag of the mbuf is set, the destination is filled in with the Ethernet broadcast 
address and the function returns 1. If the M_MCAST flag is set, the 
ETHER_MAP_IP_MULTICAST macro (Figure 12.6) converts the class D address into the 
corresponding Ethernet address. 
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Get pointer to llinfo_arp structure

271-276

The destination address is a unicast address. If a pointer to a routing table entry is passed by the caller, 
la is set to the corresponding llinfo_arp structure. Otherwise arplookup searches the 
routing table for the specified IP address. The second argument is 1, telling arplookup to create 
the entry if it doesn’t already exist; the third argument is 0, which means don’t look for a proxy ARP 
entry. 

277-281

If either rt or la are null pointers, one of the allocations failed, since arplookup should have 
created an entry if one didn’t exist. An error message is logged, the packet released, and the function 
returns 0. 

Figure 21.24 contains the last half of arpresolve. It checks whether the ARP entry is still valid, 
and, if not, sends an ARP request. 

Figure 21.24. arpresolve function: check if ARP entry valid, send ARP 

request if not.
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Check ARP entry for validity

282-291

Even though an ARP entry is located, it must be checked for validity. The entry is valid if the 
following conditions are all true: 

1. the entry is permanent (the expiration time is 0) or the expiration time is greater than the 
current time, and 

2. the family of the socket address structure pointed to by rt_gateway is AF_LINK, and 
3. the link-level address length (sdl_alen) is nonzero. 

Recall that arptfree invalidated an ARP entry that was still referenced by setting sdl_alen to 
0. If the entry is valid, the Ethernet address contained in the sockaddr_dl is copied into 
desten and the function returns 1. 

Hold only most recent IP datagram

292-299

At this point an ARP entry exists but it does not contain a valid Ethernet address. An ARP request 
must be sent. First the pointer to the mbuf chain is saved in la_hold, after releasing any mbuf 
chain that was already pointed to by la_hold. This means that if multiple IP datagrams are sent 
quickly to a given destination, and an ARP entry does not already exist for the destination, during the 
time it takes to send an ARP request and receive a reply only the last datagram is held, and all prior 
ones are discarded. An example that generates this condition is NFS. If NFS sends an 8500-byte IP 
datagram that is fragmented into six IP fragments, and if all six fragments are sent by ip_output 
to ether_output in the time it takes to send an ARP request and receive a reply, the first five 
fragments are discarded and only the final fragment is sent when the reply is received. This in turn 
causes an NFS timeout, and a retransmission of all six fragments. 

Send ARP request but avoid ARP flooding

300-314

RFC 1122 requires ARP to avoid sending ARP requests to a given destination at a high rate when a 
reply is not received. The technique used by Net/3 to avoid ARP flooding is as follows. 

Net/3 never sends more than one ARP request in any given second to a destination. 
If a reply is not received after five ARP requests (i.e., after about 5 seconds), the 
RTF_REJECT flag in the routing table is set and the expiration time is set for 20 seconds in 
the future. This causes ether_output to refuse to send IP datagrams to this destination 
for 20 seconds, returning EHOSTDOWN or EHOSTUNREACH instead (Figure 4.15). 
After the 20-second pause in ARP requests, arpresolve will send ARP requests to that 
destination again. 

If the expiration time is nonzero (i.e., this is not a permanent entry) the RTF_REJECT flag is 
cleared, in case it had been set earlier to avoid flooding. The counter la_asked counts the number 
of consecutive times an ARP request has been sent to this destination. If the counter is 0 or if the 
expiration time does not equal the current time (looking only at the seconds portion of the current 
time), an ARP request might be sent. This comparison avoids sending more than one ARP request 
during any second. The expiration time is then set to the current time in seconds (i.e., the 
microseconds portion, time.tv_usec is ignored). 
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The counter is compared to the limit of 5 (arp_maxtries) and then incremented. If the value 
was less than 5, arpwhohas sends the request. If the request equals 5, however, ARP has reached 
its limit: the RTF_REJECT flag is set, the expiration time is set to 20 seconds in the future, and the 
counter la_asked is reset to 0. 

Figure 21.25 shows an example to explain further the algorithm used by arpresolve and 
ether_output to avoid ARP flooding. 

Figure 21.25. Algorithm used to avoid ARP flooding.

 

 

We show 26 seconds of time, labeled 10 through 36. We assume a process is sending an IP datagram 
every one-half second, causing two datagrams to be sent every second. The datagrams are numbered 1 
through 52. We also assume that the destination host is down, so there are no replies to the ARP 
requests. The following actions take place: 

We assume la_asked is 0 when datagram 1 is written by the process. la_hold is set to 
point to datagram 1, rt_expire is set to the current time (10), la_asked becomes 1, 
and an ARP request is sent. The function returns 0. 
When datagram 2 is written by the process, datagram 1 is discarded and la_hold is set to 
point to datagram 2. Since rt_expire equals the current time (10), nothing else happens 
(an ARP request is not sent) and the function returns 0. 
When datagram 3 is written, datagram 2 is discarded and la_hold is set to point to 
datagram 3. The current time (11) does not equal rt_expire (10), so rt_expire is 
set to 11. la_asked is less than 5, so la_asked becomes 2 and an ARP request is sent. 
When datagram 4 is written, datagram 3 is discarded and la_hold is set to point to 
datagram 4. Since rt_expire equals the current time (11), nothing else happens and the 
function returns 0. 
Similar actions occur for datagrams 5 through 10. After datagram 9 causes an ARP request to 
be sent, la_asked is 5. 
When datagram 11 is written, datagram 10 is discarded and la_hold is set to point to 
datagram 11. The current time (15) does not equal rt_expire (14), so rt_expire is 
set to 15. la_asked is no longer less than 5, so the ARP flooding avoidance algorithm 
takes place: RTF_REJECT flag is set, rt_expire is set to 35 (20 seconds in the 
future), and la_asked is reset to 0. The function returns 0. 
When datagram 12 is written, ether_output notices that the RTF_REJECT flag is 
set and that the current time is less than rt_expire (35) causing EHOSTDOWN to be 
returned to the sender (normally ip_output). 
The EHOSTDOWN error is returned for datagrams 13 through 50. 
When datagram 51 is written, even though the RTF_REJECT flag is set 
ether_output does not return the error because the current time (35) is no longer less 
than rt_expire (35). arpresolve is called and the entire process starts over again: 
five ARP requests are sent in 5 seconds, followed by a 20-second pause. This continues until 
the sending process gives up or the destination host responds to an ARP request. 

 719



ptg11539634

21.11. arplookup Function 

arplookup calls the routing function rtalloc1 to look up an ARP entry in the Internet 
routing table. We’ve seen three calls to arplookup:

1. from in_arpinput to look up and possibly create an entry corresponding to the source 
IP address of a received ARP packet, 

2. from in_arpinput to see if a proxy ARP entry exists for the destination IP address of a 
received ARP request, and 

3. from arpresolve to look up or create an entry corresponding to the destination IP 
address of a datagram that is about to be sent. 

If arplookup succeeds, a pointer is returned to the corresponding llinfo_arp structure; 
otherwise a null pointer is returned. 

arplookup has three arguments. The first is the IP address to search for, the second is a flag that 
is true if the entry is not found and a new entry should be created, and the third is a flag that is true if a 
proxy ARP entry should be searched for and possibly created. 

Proxy ARP entries are handled by defining a different form of the Internet socket address structure, a 
sockaddr_inarp structure, shown in Figure 21.26. This structure is used only by ARP. 

Figure 21.26. sockaddr_inarp structure.

 

 

111-119

The first 8 bytes are the same as a sockaddr_in structure and the sin_family is also set to 
AF_INET. The final 8 bytes, however, are different: the sin_srcaddr, sin_tos, and 
sin_other members. Of these three, only the final one is used, being set to SIN_PROXY (1) if 
the entry is a proxy entry. 

Figure 21.27 shows the arplookup function. 

 720
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Figure 21.27. arplookup function: look up an ARP entry in the routing table.

 

 
 

Initialize sockaddr_inarp to look up

480-489

The sin_addr member is set to the IP address that is being looked up. The sin_other
member is set to SIN_PROXY if the proxy argument is nonzero, or 0 otherwise. 

Look up entry in routing table

490-492

rtalloc1 looks up the IP address in the Internet routing table, creating a new entry if the 
create argument is nonzero. If the entry is not found, the function returns 0 (a null pointer). 

Decrement routing table reference count

493

If the entry is found, the reference count for the routing table entry is decremented. This is because 
ARP is not considered to "hold onto" a routing table entry like the transport layers, so the increment of 
rt_refcnt that was done by the routing table lookup is undone here by ARP. 

494-499

If the RTF_GATEWAY flag is set, or the RTF_LLINFO flag is not set, or the address family of the 
socket address structure pointed to by rt_gateway is not AF_LINK, something is wrong and a 
null pointer is returned. If the entry was created this way, a log message is created. 
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The comment in the log message with the function name arptnew refers to the 
older Net/2 function that created ARP entries. 

If rtalloc1 creates a new entry because the matching entry had the RTF_CLONING flag set, 
the function arp_rtrequest (which we describe in Section 21.13) is also called by 
rtrequest.

21.12. Proxy ARP 

Net/3 supports proxy ARP, as we saw in the previous section. Two different types of proxy ARP 
entries can be added to the routing table. Both are added with the arp command, specifying the pub 
option. Adding a proxy ARP entry always causes a gratuitous ARP request to be issued by 
arp_rtrequest (Figure 21.28) because the RTF_ANNOUNCE flag is set when the entry is 
created. 

Figure 21.28. arp_rtrequest function: RTM_ADD command.
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The first type of proxy ARP entry allows an IP address for a host on an attached network to be entered 
into the ARP cache. Any Ethernet address can be assigned to the entry. These entries are added to the 
routing table with an explicit mask of 0xffffffff. The purpose of this mask is to allow the call 
to rtalloc1 in Figure 21.27 to match this entry, even if the SIN_PROXY flag is set in the 
socket address structure of the search key. This in turn allows the call to arplookup from Figure 
21.20 to match this entry when a search is made for the target address with the SIN_PROXY flag 
set. 

This type of entry can be used if a host H1 that doesn’t implement ARP is on an attached network. The 
host with the proxy entry answers all ARP requests for H1’s hardware address, supplying the Ethernet 
address that was specified when the proxy entry was created (i.e., the Ethernet address of H1). These 
entries are output with the notation "published" by the arp -a command. 

The second type of proxy ARP entry is for a host for which a routing table entry already exists. The 
kernel creates another routing table entry for the destination, with this new entry containing the link-
layer information (i.e., the Ethernet address). The SIN_PROXY flag is set in the sin_other 
member of the sockaddr_inarp structure (Figure 21.26) in the new routing table entry. Recall 
that routing table searches compare 12 bytes of the Internet socket address structure (Figure 18.39). 
This use of the SIN_PROXY flag is the only time the final 8 bytes of the structure are nonzero. 
When arplookup specifies the SIN_PROXY value in the sin_other member of the 
structure passed to rtalloc1, the only entries in the routing table that will match are ones that 
also have the SIN_PROXY flag set. 

This type of entry normally specifies the Ethernet address of the host acting as the proxy server. If the 
proxy entry was created for a host HD, the sequence of steps is as follows. 

1.  The proxy server receives a broadcast ARP request for HD’s hardware address from some other 
host HS. The host HS thinks HD is on the local network. 

2.  The proxy server responds, supplying its own Ethernet address. 

3.  HS sends the datagram with a destination IP address of HD to the proxy server’s Ethernet address.

4.  The proxy server receives the datagram for HD and forwards it, using the normal routing table 
entry for HD. 

This type of entry was used on the router netb in the example in Section 4.6 of Volume 1. These 
entries are output by the arp -a command with the notation "published (proxy only)." 

21.13. arp_rtrequest Function 

Figure 21.3 provides an overview of the relationship between the ARP functions and the routing 
functions. We’ve encountered two calls to the routing table functions from the ARP functions. 

1. arplookup calls rtalloc1 to look up an ARP entry and possibly create a new entry if 
a match isn’t found. 
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If a matching entry is found in the routing table and the RTF_CLONING 
flag is not set (i.e., it is a matching entry for the destination host), the pointer 
to the matching entry is returned. But if the RTF_CLONING bit is set, 
rtalloc1 calls rtrequest with a command of RTM_RESOLVE. 
This is how the entries for 140.252.13.33 and 140.252.13.34 in Figure 18.2 
were created they were cloned from the entry for 140.252.13.32. 

2. arptfree calls rtrequest with a command of RTM_DELETE to delete an entry 
from the routing table that corresponds to an ARP entry. 

Additionally, the arp command manipulates the ARP cache by sending and receiving routing 
messages on a routing socket. The arp command issues routing messages with commands of 
RTM_ADD, RTM_DELETE, and RTM_GET. The first two commands cause rtrequest to 
be called and the third causes rtalloc1 to be called. 

Finally, when an Ethernet device driver has an IP address assigned to the interface, rtinit adds a 
route to the network. This causes rtrequest to be called with a command of RTM_ADD and 
with the flags of RTF_UP and RTF_CLONING. This is how the entry for 140.252.13.32 in Figure 
18.2 was created. 

As described in Chapter 19, each ifaddr structure can contain a pointer to a function (the 
ifa_rtrequest member) that is automatically called when a routing table entry is added or 
deleted for that interface. We saw in Figure 6.17 that in_ifinit sets this pointer to the function 
arp_rtrequest for all Ethernet devices. Therefore, whenever the routing functions are called to 
add or delete a routing table entry for ARP, arp_rtrequest is also called. The purpose of this 
function is to do whatever type of initialization or cleanup is required above and beyond what the 
generic routing table functions perform. For example, this is where a new llinfo_arp structure 
is allocated and initialized whenever a new ARP entry is created. In a similar way, the 
llinfo_arp structure is deleted by this function after the generic routing routines have completed 
processing an RTM_DELETE command. 

Figure 21.28 shows the first part of the arp_rtrequest function. 

Initialize ARP timeout function

92-105

The first time arp_rtrequest is called (when the first Ethernet interface is assigned an IP 
address during system initialization), the timeout function schedules the function arptimer to 
be called in 1 clock tick. This starts the ARP timer code running every 5 minutes, since arptimer 
always calls timeout.

Ignore indirect routes

106-107

If the RTF_GATEWAY flag is set, the function returns. This flag indicates an indirect routing table 
entry and all ARP entries are direct routes. 

108
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The remainder of the function is a switch with three cases: RTM_ADD, 
RTM_RESOLVE, and RTM_DELETE. (The latter two are shown in figures that follow.) 

RTM_ADD command

109

The first case for RTM_ADD is invoked by either the arp command manually creating an ARP 
entry or by an Ethernet interface being assigned an IP address by rtinit (Figure 21.3). 

Backward compatibility

110-117

If the RTF_HOST flag is cleared, this routing table entry has an associated mask (i.e., it is a network 
route, not a host route). If that mask is not all one bits, then the entry is really a route to an interface, 
so the RTF_CLONING flag is set. As the comment indicates, this is for backward compatibility with 
older versions of some routing daemons. Also, the command 

    route add -net 224.0.0.0 -interface bsdi 
 

that is in the file /etc/netstart creates the entry for this network shown in Figure 18.2 that 
has the RTF_CLONING flag set. 

Initialize entry for network route to interface

118-126

If the RTF_CLONING flag is set (which in_ifinit sets for all Ethernet interfaces), this entry 
is probably being added by rtinit. rt_setgate allocates space for a sockaddr_dl 
structure, which is pointed to by the rt_gateway member. This data-link socket address structure 
is the one associated with the routing table entry for 140.252.13.32 in Figure 21.1. The sdl_len 
and sdl_family members are initialized from the static definition of null_sdl at the 
beginning of the function, and the sdl_type (probably IFT_ETHER) and sdl_index 
members are copied from the interface’s ifnet structure. This structure never contains an Ethernet 
address and the sdl_alen member remains 0. 

127-128

Finally, the expiration time is set to the current time, which is simply the time the entry was created, 
and the break causes the function to return. For entries created at system initialization, their 
rmx_expire value is the time at which the system was bootstrapped. Notice in Figure 21.1 that 
this routing table entry does not have an associated llinfo_arp structure, so it is never processed 
by arptimer. Nevertheless this sockaddr_dl structure is used: since it is the 
rt_gateway structure for the entry that is cloned for host-specific entries on this Ethernet, it is 
copied by rtrequest when the newly cloned entries are created with the RTM_RESOLVE 
command. Also, the netstat program prints the sdl_index value as link#n, as we see in 
Figure 18.2. 
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Send gratuitous ARP request

130-135

If the RTF_ANNOUNCE flag is set, this entry is being created by the arp command with the pub 
option. This option has two ramifications: (1) the SIN_PROXY flag will be set in the 
sin_other member of the sockaddr_inarp structure, and (2) the RTF_ANNOUNCE flag 
will be set. Since the RTF_ANNOUNCE flag is set, arprequest broadcasts a gratuitous ARP 
request. Notice that the second and third arguments are the same, which causes the sender IP address 
to equal the target IP address in the ARP request. 

136

The code falls through to the case for the RTM_RESOLVE command. 

Figure 21.29 shows the next part of the arp_rtrequest function, which handles the 
RTM_RESOLVE command. This command is issued when rtalloc1 matches an entry with the 
RTF_CLONING flag set and its second argument is nonzero (the create argument to 
arplookup). A new llinfo_arp structure must be allocated and initialized. 
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Figure 21.29. arp_rtrequest function: RTM_RESOLVE command.

 

 
 

Verify sockaddr_dl Structure

137-144

The family and length of the sockaddr_dl structure pointed to by the rt_gateway pointer 
are verified. The interface type (probably IFT_ETHER) and index are then copied into the new 
sockaddr_dl structure. 
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Handle route changes

145-146

Normally the routing table entry is new and does not point to an llinfo_arp structure. If the la 
pointer is nonnull, however, arp_rtrequest was called when a route changed for an existing 
routing table entry. Since the llinfo_arp structure is already allocated, the break causes the 
function to return. 

Initialize llinfo_arp structure

147-158

An llinfo_arp structure is allocated and its pointer is stored in the rt_llinfo pointer of the 
routing table entry. The two statistics arp_inuse and arp_allocated are incremented and 
the llinfo_arp structure is set to 0. This sets la_hold to a null pointer and la_asked to 
0. 

159-161

The rt pointer is stored in the llinfo_arp structure and the RTF_LLINFO flag is set. In 
Figure 18.2 we see that the three routing table entries created by ARP, 140.252.13.33, 140.252.13.34, 
and 140.252.13.35, all have the L flag enabled, as does the entry for 224.0.0.1. Recall that the arp 
program looks only for entries with this flag (Figure 19.36). Finally the new structure is added to the 
front of the linked list of llinfo_arp structures by insque.

The ARP entry has been created: rtrequest creates the routing table entry (often cloning a 
network-specific entry for the Ethernet) and arp_rtrequest allocates and initializes an 
llinfo_arp structure. All that remains is for an ARP request to be broadcast so that an ARP 
reply can fill in the host’s Ethernet address. In the common sequence of events, arp_rtrequest 
is called because arpresolve called arplookup (the intermediate sequence of function calls 
can be followed in Figure 21.3). When control returns to arpresolve, it broadcasts the ARP 
request. 

Handle local host specially

162-173

This portion of code is a special test that is new with 4.4BSD (although the comment is left over from 
earlier releases). It creates the rightmost routing table entry in Figure 21.1 with a key consisting of the 
local host’s IP address (140.252.13.35). The if test checks whether the routing table key equals the 
IP address of the interface. If so, the entry that was just created (probably as a clone of the interface 
entry) refers to the local host. 
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Make entry permanent and set Ethernet address

174-176

The expiration time is set to 0, making the entry permanent it will never time out. The Ethernet 
address is copied from the arpcom structure of the interface into the sockaddr_dl structure 
pointed to by the rt_gateway member. 

Set interface pointer to loopback interface

177-178

If the global useloopback is nonzero (it defaults to 1), the interface pointer in the routing table 
entry is changed to point to the loopback interface. This means that any datagrams sent to the host’s 
own IP address are sent to the loopback interface instead. Prior to 4.4BSD, the route from the host’s 
own IP address to the loopback interface was established using a command of the form 

    route add 140.252.13.35 127.0.0.1 
 

in the /etc/netstart file. Although this still works with 4.4BSD, it is unnecessary because the 
code we just looked at creates an equivalent route automatically, the first time an IP datagram is sent 
to the host’s own IP address. Also realize that this piece of code is executed only once per interface. 
Once the routing table entry and the permanent ARP entry are created, they don’t expire, so another 
RTM_RESOLVE for this IP address won’t occur. 

The final part of arp_rtrequest, shown in Figure 21.30, handles the RTM_DELETE 
request. From Figure 21.3 we see that this command can be generated from the arp command, to 
delete an entry manually, and from the arptfree function, when an ARP entry times out. 

Figure 21.30. arp_rtrequest function: RTM_DELETE command.
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Verify la pointer

182-183

The la pointer should always be nonnull (that is, the routing table entry should always point to an 
llinfo_arp structure); otherwise the break causes the function to return. 

Delete llinfo_arp structure

184-190

The arp_inuse statistic is decremented and the llinfo_arp structure is removed from the 
doubly linked list by remque. The rt_llinfo pointer is set to 0 and the RTF_LLINFO flag 
is cleared. If an mbuf is held by the ARP entry (i.e., an ARP request is outstanding), that mbuf is 
released. Finally the llinfo_arp structure is released. 

Notice that the switch statement does not provide a default case and does not provide a 
case for the RTM_GET command. This is because the RTM_GET command issued by the arp 
program is handled entirely by the route_output function, and rtrequest is not called. 
Also, the call to rtalloc1 that we show in Figure 21.3, which is caused by an RTM_GET 
command, specifies a second argument of 0; therefore rtalloc1 does not call rtrequest in 
this case. 

21.14. ARP and Multicasting 

If an IP datagram is destined for a multicast group, ip_output checks whether the process has 
assigned a specific interface to the socket (Figure 12.40), and if so, the datagram is sent out that 
interface. Otherwise, ip_output selects the outgoing interface using the normal IP routing table 
(Figure 8.24). Therefore, on a system with more than one multicast-capable interface, the IP routing 
table specifies the default interface for each multicast group. 

We saw in Figure 18.2 that an entry was created in our routing table for the 224.0.0.0 network and 
since that entry has its "clone" flag set, all multicast groups starting with 224 had the associated 
interface (le0) as its default. Additional routing table entries can be created for the other multicast 
groups (the ones beginning with 225-239), or specific entries can be created for particular multicast 
groups to assign an explicit default. For example, a routing table entry could be created for 224.0.1.1 
(the network time protocol) with an interface that differs from the interface for 224.0.0.0. If an entry 
for a multicast group does not exist in the routing table, and the process doesn’t specify an interface 
with the IP_MULTICAST_IF socket option, the default interface for the group becomes the 
interface associated with the "default" route in the table. In Figure 18.2 the entry for 224.0.0.0 isn’t 
really needed, since both it and the default route use the interface le0.

Once the interface is selected, if the interface is an Ethernet, arpresolve is called to convert the 
multicast group address into its corresponding Ethernet address. In Figure 21.23 this was done by 
invoking the macro ETHER_MAP_IP_MULTICAST. Since this simple macro logically ORs the 
low-order 23 bits of the multicast group with a constant (Figure 12.6), an ARP request-reply is not 
required and the mapping does not need to go into the ARP cache. The macro is just invoked each 
time the conversion is required. 

Multicast group addresses appear in the Net/3 ARP cache if the multicast group is cloned from 
another entry, as we saw in Figure 21.5. This is because these entries have the RTF_LLINFO flag 
set. These are not true ARP entries because they do not require an ARP request—reply, and they do not 
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have an associated link-layer address, since the mapping is done when needed by the 
ETHER_MAP_IP_MULTICAST macro. 

The timeout of the ARP entries for these multicast group addresses is different from normal ARP 
entries. When a routing table entry is created for a multicast group, such as the entry for 224.0.0.1 in 
Figure 18.2, rtrequest copies the rt_metrics structure from the entry being cloned (Figure 
19.9). We mentioned with Figure 21.28 that the network entry has an rmx_expire value of the 
time the RTM_ADD command was executed, normally the time the system was initialized. The new 
entry for 224.0.0.1 has this same expiration time. 

This means the ARP entry for a multicast group such as 224.0.0.1 expires the next time arptimer 
executes, because its expiration time is always in the past. The entry is created again the next time it is 
looked up in the routing table. 

21.15. Summary 

ARP provides the dynamic mapping between IP addresses and hardware addresses. This chapter has 
examined an implementation of ARP that maps IP addresses to Ethernet addresses. 

The Net/3 implementation is a major change from previous BSD releases. The ARP information is 
now stored in various structures: the routing table, a data-link socket address structure, and an 
llinfo_arp structure. Figure 21.1 shows the relationships between all the structures. 

Sending an ARP request is simple: the appropriate fields are filled in and the request is sent as a 
broadcast. Processing a received request is more complicated because each host receives all broadcast 
ARP requests. Besides responding to requests for one of the host’s IP addresses, in_arpinput 
also checks that some other host isn’t using the host’s IP address. Since all ARP requests contain the 
sender’s IP and hardware addresses, any host on the Ethernet can use this information to update an 
existing ARP entry for the sender. 

ARP flooding can be a problem on a LAN and Net/3 is the first BSD release to handle this. A 
maximum of one ARP request per second is sent to any given destination, and after five consecutive 
requests without a reply, a 20-second pause occurs before another ARP request is sent to that 
destination. 

Exercises

21.1 What assumption is made in the assignment of the local variable ac in Figure 21.17? 

21.2 If we ping the broadcast address of the local Ethernet and then execute arp -a, we see 
that this causes the ARP cache to be filled with entries for almost every other host on the 
local Ethernet. Why? 

21.3 Follow through the code and explain why the assignment of 6 to sdl_alen is required 
in Figure 21.19. 

21.4 With the separate ARP table in Net/2, independent of the routing table, each time 
arpresolve was called, a search was made of the ARP table. Compare this to the 
Net/3 approach. Which is more efficient? 

21.5 The ARP code in Net/2 explicitly set a timeout of 3 minutes for an incomplete entry in the 
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ARP cache, that is, for an entry that is awaiting an ARP reply. We’ve never explicitly said 
how Net/3 handles this timeout. When does Net/3 time out an incomplete ARP entry? 

21.6 What changes in the avoidance of ARP flooding when a Net/3 system is acting as a router 
and the packets that cause the flooding are from some other host? 

21.7 What are the values of the four rmx_expire variables shown in Figure 21.1? Where 
in the code are the values set? 

21.8 What change would be required to the code in this chapter to cause an ARP entry to be 
created for every host that broadcasts an ARP request? 

21.9 To verify the example in Figure 21.25 the authors ran the sock program from Appendix 
C of Volume 1, writing a UDP datagram every 500 ms to a nonexistent host on the local 
Ethernet. (The -p option of the program was modified to allow millisecond waits.) But 
only 10 UDP datagrams were sent without an error, instead of the 11 shown in Figure 
21.25, before the first EHOSTDOWN error was returned. Why? 

21.10 Modify ARP to hold onto all packets for a destination, awaiting an ARP reply, instead of 
just the most recent one. What are the implications of this change? Should there be a limit, 
as there is for each interface’s output queue? Are any changes required to the data 
structures? 
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Chapter 22. Protocol Control Blocks 

22.1. Introduction 

Protocol control blocks (PCBs) are used at the protocol layer to hold the various pieces of information 
required for each UDP or TCP socket. The Internet protocols maintain Internet protocol control 
blocks and TCP control blocks. Since UDP is connectionless, everything it needs for an end point is 
found in the Internet PCB; there are no UDP control blocks. 

The Internet PCB contains the information common to all UDP and TCP end points: foreign and local 
IP addresses, foreign and local port numbers, IP header prototype, IP options to use for this end point, 
and a pointer to the routing table entry for the destination of this end point. The TCP control block 
contains all of the state information that TCP maintains for each connection: sequence numbers in 
both directions, window sizes, retransmission timers, and the like. 

In this chapter we describe the Internet PCBs used in Net/3, saving TCP’s control blocks until we 
describe TCP in detail. We examine the numerous functions that operate on Internet PCBs, since we’ll 
encounter them when we describe UDP and TCP. Most of the functions begin with the six characters 
in_pcb.

Figure 22.1 summarizes the protocol control blocks that we describe and their relationship to the 
file and socket structures. 
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Figure 22.1. Internet protocol control blocks and their relationship to other structures. 

 

 

There are numerous points to consider in this figure. 

When a socket is created by either socket or accept, the socket layer creates a file 
structure and a socket structure. The file type is DTYPE_SOCKET and the socket type 
is SOCK_DGRAM for UDP end points or SOCK_STREAM for TCP end points. 
The protocol layer is then called. UDP creates an Internet PCB (an inpcb structure) and 
links it to the socket structure: the so_pcb member points to the inpcb structure and 
the inp_socket member points to the socket structure. 
TCP does the same and also creates its own control block (a tcpcb structure) and links it to 
the inpcb using the inp_ppcb and t_inpcb pointers. In the two UDP inpcbs the 
inp_ppcb member is a null pointer, since UDP does not maintain its own control block. 
The four other members of the inpcb structure that we show, inp_faddr through 
inp_lport, form the socket pair for this end point: the foreign IP address and port 
number along with the local IP address and port number. 
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Both UDP and TCP maintain a doubly linked list of all their Internet PCBs, using the 
inp_next and inp_prev pointers. They allocate a global inpcb structure as the 
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head of their list (named udb and tcb) and only use three members in the structure: the 
next and previous pointers, and the local port number. This latter member contains the next 
ephemeral port number to use for this protocol. 

The Internet PCB is a transport layer data structure. It is used by TCP, UDP, and raw IP, but not by IP, 
ICMP, or IGMP. 

We haven’t described raw IP yet, but it too uses Internet PCBs. Unlike TCP and UDP, raw IP does not 
use the port number members in the PCB, and raw IP uses only two of the functions that we describe 
in this chapter: in_pcballoc to allocate a PCB, and in_pcbdetach to release a PCB. We 
return to raw IP in Chapter 32. 

22.2. Code Introduction 

All the PCB functions are in a single C file and a single header contains the definitions, as shown in 
Figure 22.2. 

Figure 22.2. Files discussed in this chapter. 

 

 
 

Global Variables

One global variable is introduced in this chapter, which is shown in Figure 22.3. 

Figure 22.3. Global variable introduced in this chapter. 

 

 
 

Statistics

Internet PCBs and TCP PCBs are both allocated by the kernel’s malloc function with a type of 
M_PCB. This is just one of the approximately 60 different types of memory allocated by the kernel. 
Mbufs, for example, are allocated with a type of M_BUF, and socket structures are allocated 
with a type of M_SOCKET.

Since the kernel can keep counters of the different types of memory buffers that are allocated, various 
statistics on the number of PCBs can be maintained. The command vmstat -m shows the kernel’s 
memory allocation statistics and the netstat -m command shows the mbuf allocation statistics. 
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22.3. inpcb Structure 

Figure 22.4 shows the definition of the inpcb structure. It is not a big structure, and occupies only 
84 bytes. 

Figure 22.4. inpcb structure. 

 

 

43-45

inp_next and inp_prev form the doubly linked list of all PCBs for UDP and TCP. 
Additionally, each PCB has a pointer to the head of the protocol’s linked list (inp_head). For 
PCBs on the UDP list, inp_head always points to udb (Figure 22.1); for PCBs on the TCP list, 
this pointer always points to tcb.

46-49

The next four members, inp_faddr, inp_fport, inp_laddr, and inp_lport, 
contain the socket pair for this IP end point: the foreign IP address and port number and the local IP 
address and port number. These four values are maintained in the PCB in network byte order, not host 
byte order. 

The Internet PCB is used by both transport layers, TCP and UDP. While it makes 
sense to store the local and foreign IP addresses in this structure, the port numbers 
really don’t belong here. The definition of a port number and its size are specified by 
each transport layer and could differ between different transport layers. This problem 
was identified in [Partridge 1987], where 8-bit port numbers were used in version 1 
of RDP, which required reimplementing several standard kernel routines to use 8-bit 
port numbers. Version 2 of RDP [Partridge and Hinden 1990] uses 16-bit port 
numbers. The port numbers really belong in a transport-specific control block, such 
as TCP’s tcpcb. A new UDP-specific PCB would then be required. While doable, 
this would complicate some of the routines we’ll examine shortly. 

50-51

inp_socket is a pointer to the socket structure for this PCB and inp_ppcb is a pointer to 
an optional transport-specific control block for this PCB. We saw in Figure 22.1 that the inp_ppcb 
pointer is used with TCP to point to the corresponding tcpcb, but is not used by UDP. The link 
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between the socket and inpcb is two way because sometimes the kernel starts at the socket 
layer and needs to find the corresponding Internet PCB (e.g., user output), and sometimes the kernel 
starts at the PCB and needs to locate the corresponding socket structure (e.g., processing a 
received IP datagram). 

52

If IP has a route to the foreign address, it is stored in the inp_route entry. We’ll see that when an 
ICMP redirect message is received, all Internet PCBs are scanned and all those with a foreign IP 
address that matches the redirected IP address have their inp_route entry marked as invalid. This 
forces IP to find a new route to the foreign address the next time the PCB is used for output. 

53

Various flags are stored in the inp_flags member. Figure 22.5 lists the individual flags. 

Figure 22.5. inp_flags values. 

 

 

54

A copy of an IP header is maintained in the PCB but only two members are used, the TOS and TTL. 
The TOS is initialized to 0 (normal service) and the TTL is initialized by the transport layer. We’ll see 
that TCP and UDP both default the TTL to 64. A process can change these defaults using the 
IP_TOS or IP_TTL socket options, and the new value is recorded in the inpcb.inp_ip
structure. This structure is then used by TCP and UDP as the prototype IP header when sending IP 
datagrams. 

55-56

A process can set the IP options for outgoing datagrams with the IP_OPTIONS socket option. A 
copy of the caller’s options are stored in an mbuf by the function ip_pcbopts and a pointer to that 
mbuf is stored in the inp_options member. Each time TCP or UDP calls the ip_output 
function, a pointer to these IP options is passed for IP to insert into the outgoing IP datagram. 
Similarly, a pointer to a copy of the user’s IP multicast options is maintained in the 
inp_moptions member. 

22.4. in_pcballoc and in_pcbdetach Functions 

An Internet PCB is allocated by TCP, UDP, and raw IP when a socket is created. A PRU_ATTACH 
request is issued by the socket system call. In the case of UDP, we’ll see in Figure 23.33 that the 
resulting call is 

   struct socket  *so; 
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   int  error; 
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   error = in_pcballoc(so, &udb); 
 

Figure 22.6 shows the in_pcballoc function. 

Figure 22.6. in_pcballoc function: allocate an Internet PCB. 

 

 
 

Allocate PCB and initialize to zero

36-45

in_pcballoc calls the kernel’s memory allocator using the macro MALLOC. Since these PCBs 
are always allocated as the result of a system call, it is OK to wait for one. 

Net/2 and earlier Berkeley releases stored both Internet PCBs and TCP PCBs in 
mbufs. Their sizes were 80 and 108 bytes, respectively. With the Net/3 release, the 
sizes went to 84 and 140 bytes, so TCP control blocks no longer fit into an mbuf. 
Net/3 uses the kernel’s memory allocator instead of mbufs for both types of control 
blocks. 

Careful readers may note that the example in Figure 2.6 shows 17 mbufs allocated 
for PCBs, yet we just said that Net/3 no longer uses mbufs for Internet PCBs or TCP 
PCBs. Net/3 does, however, use mbufs for Unix domain PCBs, and that is what this 
counter refers to. The mbuf statistics output by netstat are for all mbufs in the 
kernel across all protocol suites, not just the Internet protocols. 

bzero sets the PCB to 0. This is important because the IP addresses and port numbers in the PCB 
must be initialized to 0. 
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Link structures together

46-49

The inp_head member points to the head of the protocol’s PCB list (either udb or tcb), the 
inp_socket member points to the socket structure, the new PCB is added to the protocol’s 
doubly linked list (insque), and the socket structure points to the PCB. The insque function 
puts the new PCB at the head of the protocol’s list. 

An Internet PCB is deallocated when a PRU_DETACH request is issued. This happens when the 
socket is closed. The function in_pcbdetach, shown in Figure 22.7, is eventually called. 

Figure 22.7. in_pcbdetach function: deallocate an Internet PCB. 

 

 

252-263

The PCB pointer in the socket structure is set to 0 and that structure is released by sofree. If 
an mbuf with IP options was allocated for this PCB, it is released by m_free. If a route is held by 
this PCB, it is released by rtfree. Any multicast options are also released by 
ip_freemoptions.

264-265

The PCB is removed from the protocol’s doubly linked list by remque and the memory used by the 
PCB is returned to the kernel. 

22.5. Binding, Connecting, and Demultiplexing 

Before examining the kernel functions that bind sockets, connect sockets, and demultiplex incoming 
datagrams, we describe the rules imposed by the kernel on these actions. 
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Binding of Local IP Address and Port Number

Figure 22.8 shows the six different combinations of a local IP address and local port number that a 
process can specify in a call to bind.

Figure 22.8. Combination of local IP address and local port number for bind.

 

 

The first three lines are typical for servers th ey bind a specific port, termed the server’s well-known 
port, whose value is known by the client. The last three lines are typical for clients they don’t care 
what the local port, termed an ephemeral port, is, as long as it is unique on the client host. 

Most servers and most clients specify the wildcard IP address in the call to bind. This is indicated 
in Figure 22.8 by the notation * on lines 3 and 6. 

If a server binds a specific IP address to a socket (i.e., not the wildcard address), then only IP 
datagrams arriving with that specific IP address as the destination IP address be it unicast, broadcast, 
or multicast are delivered to the process. Naturally, when the process binds a specific unicast or 
broadcast IP address to a socket, the kernel verifies that the IP address corresponds to a local interface. 

It is rare, though possible, for a client to bind a specific IP address (lines 4 and 5 in Figure 22.8). 
Normally a client binds the wildcard IP address (the final line in Figure 22.8), which lets the kernel 
choose the outgoing interface based on the route chosen to reach the server. 

What we don’t show in Figure 22.8 is what happens if the client tries to bind a local port that is already 
in use with another socket. By default a process cannot bind a port number if that port is already in 
use. The error EADDRINUSE (address already in use) is returned if this occurs. The definition of in
use is simply whether a PCB exists with that port as its local port. This notion of "in use" is relative to 
a given protocol: TCP or UDP, since TCP port numbers are independent of UDP port numbers. 

Net/3 allows a process to change this default behavior by specifying one of following two socket 
options: 

SO_REUSEADDR Allows the process to bind a port number that is already in use, but the IP 
address being bound (including the wildcard) must not already be bound to that 
same port.  
 
For example, if an attached interface has the IP address 140.252.1.29 then one 
socket can be bound to 140.252.1.29, port 5555; another socket can be bound to 
127.0.0.1, port 5555; and another socket can be bound to the wildcard IP 
address, port 5555. The call to bind for the second and third cases must be 
preceded by a call to setsockopt, setting the so_reuseaddr option. 

SO_REUSEPORT Allows a process to reuse both the IP address and port number, but each binding 
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SO_REUSEADDR Allows the process to bind a port number that is already in use, but the IP 
address being bound (including the wildcard) must not already be bound to that 
same port.  
 
For example, if an attached interface has the IP address 140.252.1.29 then one 
socket can be bound to 140.252.1.29, port 5555; another socket can be bound to 
127.0.0.1, port 5555; and another socket can be bound to the wildcard IP 
address, port 5555. The call to bind for the second and third cases must be 
preceded by a call to setsockopt, setting the so_reuseaddr option. 

of the IP address and port number, including the first, must specify this socket 
option. With SO_REUSEADDR, the first binding of the port number need 
not specify the socket option.  
 
For example, if an attached interface has the IP address 140.252.1.29 and a 
socket is bound to 140.252.1.29, port 6666 specifying the SO_REUSEPORT 
socket option, then another socket can also specify this same socket option and 
bind 140.252.1.29, port 6666. 

 

Later in this section we describe what happens in this final example when an IP datagram arrives with 
a destination address of 140.252.1.29 and a destination port of 6666, since two sockets are bound to 
that end point. 

The SO_REUSEPORT option is new with Net/3 and was introduced with the 
support for multicasting in 4.4BSD. Before this release it was never possible for two 
sockets to be bound to the same IP address and same port number. 

Unfortunately the so_REUSEPORT option was not part of the original Stanford 
multicast sources and is therefore not widely supported. Other systems that support 
multicasting, such as Solaris 2.x, let a process specify SO_REUSEADDR to specify 
that it is OK to bind multiple sockets to the same IP address and same port number. 

Connecting a UDP Socket

We normally associate the connect system call with TCP clients, but it is also possible for a UDP 
client or a UDP server to call connect and specify the foreign IP address and foreign port number 
for the socket. This restricts the socket to exchanging UDP datagrams with that one particular peer. 

There is a side effect when a UDP socket is connected: the local IP address, if not already specified by 
a call to bind, is automatically set by connect. It is set to the local interface address chosen by 
IP routing to reach the specified peer. 

Figure 22.9 shows the three different states of a UDP socket along with the pseudo-code of the 
function calls to end up in that state. 
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Figure 22.9. Specification of local and foreign IP addresses and port numbers for UDP sockets. 

 

 

The first of the three states is called a connected UDP socket and the next two states are called 
unconnected UDP sockets. The difference between the two unconnected sockets is that the first has a 
fully specified local address and the second has a wildcarded local IP address. 

Demultiplexing of Received IP Datagrams by TCP

Figure 22.10 shows the state of three Telnet server sockets on the host sun. The first two sockets 
are in the LISTEN state, waiting for incoming connection requests, and the third is connected to a 
client at port 1500 on the host with an IP address of 140.252.1.11. The first listening socket will 
handle connection requests that arrive on the 140.252.1.29 interface and the second listening socket 
will handle all other interfaces (since its local IP address is the wildcard). 

Figure 22.10. Three TCP sockets with a local port of 23. 

 

 

We show both of the listening sockets with unspecified foreign IP addresses and port numbers because 
the sockets API doesn’t allow a TCP server to restrict either of these values. A TCP server must 
accept the client’s connection and is then told of the client’s IP address and port number after the 
connection establishment is complete (i.e., when TCP’s three-way handshake is complete). Only then 
can the server close the connection if it doesn’t like the client’s IP address and port number. This isn’t a 
required TCP feature, it is just the way the sockets API has always worked. 

When TCP receives a segment with a destination port of 23 it searches through its list of Internet 
PCBs looking for a match by calling in_pcblookup. When we examine this function shortly 
we’ll see that it has a preference for the smallest number of wildcard matches. To determine the 
number of wildcard matches we consider only the local and foreign IP addresses. We do not consider 
the foreign port number. The local port number must match, or we don’t even consider the PCB. The 
number of wildcard matches can be 0, 1 (local IP address or foreign IP address), or 2 (both local and 
foreign IP addresses). 

For example, assume the incoming segment is from 140.252.1.11, port 1500, destined for 
140.252.1.29, port 23. Figure 22.11 shows the number of wildcard matches for the three sockets from 
Figure 22.10. 
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Figure 22.11. Incoming segment from {140.252.1.11, 1500} to {140.252.1.29, 23}. 

 

 

The first socket matches these four values, but with one wildcard match (the foreign IP address). The 
second socket also matches the incoming segment, but with two wildcard matches (the local and 
foreign IP addresses). The third socket is a complete match with no wildcards. Net/3 uses the third 
socket, the one with the smallest number of wildcard matches. 

Continuing this example, assume the incoming segment is from 140.252.1.11, port 1501, destined for 
140.252.1.29, port 23. Figure 22.12 shows the number of wildcard matches. 

Figure 22.12. Incoming segment from {140.252.1.11, 1501} to {140.252.1.29, 23}. 

 

 

The first socket matches with one wildcard match; the second socket matches with two wildcard 
matches; and the third socket doesn’t match at all, since the foreign port numbers are unequal. (The 
foreign port numbers are compared only if the foreign IP address in the PCB is not a wildcard.) The 
first socket is chosen. 

In these two examples we never said what type of TCP segment arrived: we assume that the segment 
in Figure 22.11 contains data or an acknowledgment for an established connection since it is delivered 
to an established socket. We also assume that the segment in Figure 22.12 is an incoming connection 
request (a SYN) since it is delivered to a listening socket. But the demultiplexing code in 
in_pcblookup doesn’t care. If the TCP segment is the wrong type for the socket that it is 
delivered to, we’ll see later how TCP handles this. For now the important fact is that the 
demultiplexing code only compares the source and destination socket pair from the IP datagram 
against the values in the PCB. 

Demultiplexing of Received IP Datagrams by UDP

The delivery of UDP datagrams is more complicated than the TCP example we just examined, since 
UDP datagrams can be sent to a broadcast or multicast address. Since Net/3 (and most systems with 
multicast support) allow multiple sockets to have identical local IP addresses and ports, how are 
multiple recipients handled? The Net/3 rules are: 

1. An incoming UDP datagram destined for either a broadcast IP address or a multicast IP 
address is delivered to all matching sockets. There is no concept of a "best" match here (i.e., 
the one with the smallest number of wildcard matches). 

2. An incoming UDP datagram destined for a unicast IP address is delivered only to one 
matching socket, the one with the smallest number of wildcard matches. If there are multiple 
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sockets with the same "smallest" number of wildcard matches, which socket receives the 
incoming datagram is implementation-dependent. 

Figure 22.13 shows four UDP sockets that we’ll use for some examples. Having four UDP sockets 
with the same local port number requires using either SO_REUSEADDR or SO_REUSEPORT. 
The first two sockets have been connected to a foreign IP address and port number, and the last two 
are unconnected. 

Figure 22.13. Four UDP sockets with a local port of 577. 

 

 

Consider an incoming UDP datagram destined for 140.252.13.63 (the broadcast address on the 
140.252.13 subnet), port 577, from 140.252.13.34, port 1500. Figure 22.14 shows that it is delivered 
to the third and fourth sockets. 

Figure 22.14. Received datagram from {140.252.13.34, 1500} to {140.252.13.63, 577}. 

 

 

The broadcast datagram is not delivered to the first socket because the local IP address doesn’t match 
the destination IP address and the foreign IP address doesn’t match the source IP address. It isn’t 
delivered to the second socket because the foreign IP address doesn’t match the source IP address. 

As the next example, consider an incoming UDP datagram destined for 140.252.1.29 (a unicast 
address), port 577, from 140.252.1.11, port 1500. Figure 22.15 shows to which sockets the datagram is 
delivered. 

Figure 22.15. Received datagram from {140.252.1.11, 1500} to {140.252.1.29, 577}. 

 

 

The datagram matches the first socket with no wildcard matches and also matches the fourth socket 
with two wildcard matches. It is delivered to the first socket, the best match. 
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22.6. in_pcblookup Function 

The function in_pcblookup serves four different purposes. 

1. When either TCP or UDP receives an IP datagram, in_pcblookup scans the protocol’s 
list of Internet PCBs looking for a matching PCB to receive the datagram. This is transport 
layer demultiplexing of a received datagram. 

2. When a process executes the bind system call, to assign a local IP address and local port 
number to a socket, in_pcbbind is called by the protocol to verify that the requested 
local address pair is not already in use. 

3. When a process executes the bind system call, requesting an ephemeral port be assigned to 
its socket, the kernel picks an ephemeral port and calls in_pcbbind to check if the port is 
in use. If it is in use, the next ephemeral port number is tried, and so on, until an unused port 
is located. 

4. When a process executes the connect system call, either explicitly or implicitly, 
in_pcbbind verifies that the requested socket pair is unique. (An implicit call to 
connect happens when a UDP datagram is sent on an unconnected socket. We’ll see this 
scenario in Chapter 23.) 

In cases 2, 3, and 4 in_pcbbind calls in_pcblookup. Two options confuse the logic of the 
function. First, a process can specify either the SO_REUSEADDR or SO_REUSEPORT socket 
option to say that a duplicate local address is OK. 

Second, sometimes a wildcard match is OK (e.g., an incoming UDP datagram can match a PCB that 
has a wildcard for its local IP address, meaning that the socket will accept UDP datagrams that arrive 
on any local interface), while other times a wildcard match is forbidden (e.g., when connecting to a 
foreign IP address and port number). 

In the original Stanford IP multicast code appears the comment that "The logic of 
in_pcblookup is rather opaque and there is not a single comment, "  The 
adjective opaque is an understatement. 

The publicly available IP multicast code available for BSD/386, which is derived 
from the port to 4.4BSD done by Craig Leres, fixed the overloaded semantics of this 
function by using in_pcblookup only for case 1 above. Cases 2 and 4 are 
handled by a new function named in_pcbconflict, and case 3 is handled by 
a new function named in_uniqueport. Dividing the original functionality 
into separate functions is much clearer, but in the Net/3 release, which we’re 
describing in this text, the logic is still combined into the single function 
in_pcblookup.

Figure 22.16 shows the in_pcblookup function. 
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Figure 22.16. in_pcblookup function: search all the PCBs for a match. 

 

 

The function starts at the head of the protocol’s PCB list and potentially goes through every PCB on 
the list. The variable match remembers the pointer to the entry with the best match so far, and 
matchwild remembers the number of wildcards in that match. The latter is initialized to 3, which 
is a value greater than the maximum number of wildcard matches that can be encountered. (Any value 
greater than 2 would work.) Each time around the loop, the variable wildcard starts at 0 and 
counts the number of wildcard matches for each PCB. 
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Compare local port number

416-417

The first comparison is the local port number. If the PCB’s local port doesn’t match the lport 
argument, the PCB is ignored. 

Compare local address

419-427

in_pcblookup compares the local address in the PCB with the laddr argument. If one is a 
wildcard and the other is not a wildcard, the wildcard counter is incremented. If both are not 
wildcards, then they must be the same, or this PCB is ignored. If both are wildcards, nothing changes: 
they can’t be compared and the wildcard counter isn’t incremented. Figure 22.17 summarizes the 
four different conditions. 

Figure 22.17. Four scenarios for the local IP address comparison done by in_pcblookup.

 

 
 

Compare foreign address and foreign port number

428-437

These lines perform the same test that we just described, but using the foreign addresses instead of the 
local addresses. Also, if both foreign addresses are not wildcards then not only must the two IP 
addresses be equal, but the two foreign ports must also be equal. Figure 22.18 summarizes the foreign 
IP comparisons. 

Figure 22.18. Four scenarios for the foreign IP address comparison done by 
in_pcblookup.

 

 

The additional comparison of the foreign port numbers can be performed for the second line of Figure 
22.18 because it is not possible to have a PCB with a nonwildcard foreign address and a foreign port 
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number of 0. This restriction is enforced by connect, which we’ll see shortly requires a 
nonwildcard foreign IP address and a nonzero foreign port. It is possible, however, and common, to 
have a wildcard local address with a nonzero local port. We saw this in Figures 22.10 and 22.13. 

Check if wildcard match allowed

438-439

The flags argument can be set to INPLOOKUP_WILDCARD, which means a match containing 
wildcards is OK. If a match is found containing wildcards (wildcard is nonzero) and this flag was 
not specified by the caller, this PCB is ignored. When TCP and UDP call this function to demultiplex 
an incoming datagram, INPLOOKUP_WILDCARD is always set, since a wildcard match is OK. 
(Recall our examples using Figures 22.10 and 22.13.) But when this function is called as part of the 
connect system call, in order to verify that a socket pair is not already in use, the flags 
argument is set to 0. 

Remember best match, return if exact match found

440-447

These statements remember the best match found so far. Again, the best match is considered the one 
with the fewest number of wildcard matches. If a match is found with one or two wildcards, that 
match is remembered and the loop continues. But if an exact match is found (wildcard is 0), the 
loop terminates, and a pointer to the PCB with that exact match is returned. 

Example—Demultiplexing of Received TCP Segment

Figure 22.19 is from the TCP example we discussed with Figure 22.11. Assume in_pcblookup 
is demultiplexing a received datagram from 140.252.1.11, port 1500, destined for 140.252.1.29, port 
23. Also assume that the order of the PCBs is the order of the rows in the figure. laddr is the 
destination IP address, lport is the destination TCP port, faddr is the source IP address, and 
fport is the source TCP port. 

Figure 22.19. laddr = 140.252.1.29, lport = 23, faddr = 140.252.1.11, fport = 1500. 

 

 

When the first row is compared to the incoming segment, wildcard is 1 (the foreign IP address), 
flags is set to INPLOOKUP_WILDCARD, so match is set to point to this PCB and 
matchwild is set to 1. The loop continues since an exact match has not been found yet. The next 
time around the loop, wildcard is 2 (the local and foreign IP addresses) and since this is greater 
than matchwild, the entry is not remembered, and the loop continues. The next time around the 
loop, wildcard is 0, which is less than matchwild (1), so this entry is remembered in 
match. The loop also terminates since an exact match has been found and the pointer to this PCB is 
returned to the caller. 
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If in_pcblookup were used by TCP and UDP only to demultiplex incoming datagrams, it could 
be simplified. First, there’s no need to check whether the faddr or laddr arguments are 
wildcards, since these are the source and destination IP addresses from the received datagram. Also 
the flags argument could be removed, along with its corresponding test, since wildcard matches 
are always OK. 

This section has covered the mechanics of the in_pcblookup function. We’ll return to this 
function and discuss its meaning after seeing how it is called from the in_pcbbind and 
in_pcbconnect functions. 

22.7. in_pcbbind Function 

The next function, in_pcbbind, binds a local address and port number to a socket. It is called 
from five functions: 

1. from bind for a TCP socket (normally to bind a server’s well-known port); 
2. from bind for a UDP socket (either to bind a server’s well-known port or to bind an 

ephemeral port to a client’s socket); 
3. from connect for a TCP socket, if the socket has not yet been bound to a nonzero port 

(this is typical for TCP clients); 
4. from 1isten for a TCP socket, if the socket has not yet been bound to a nonzero port (this 

is rare, since listen is called by a TCP server, which normally binds a well-known port, 
not an ephemeral port); and 

5. from in_pcbconnect (Section 22.8), if the local IP address and local port number have 
not been set (typical for a call to connect for a UDP socket or for each call to sendto 
for an unconnected UDP socket). 

In cases 3, 4, and 5, an ephemeral port number is bound to the socket and the local IP address is not 
changed (in case it is already set). 

We call cases 1 and 2 explicit binds and cases 3, 4, and 5 implicit binds. We also note that although it 
is normal in case 2 for a server to bind a well-known port, servers invoked using remote procedure 
calls (RPC) often bind ephemeral ports and then register their ephemeral port with another program 
that maintains a mapping between the server’s RPC program number and its ephemeral port (e.g., the 
Sun port mapper described in Section 29.4 of Volume 1). 

We’ll show the in_pcbbind function in three sections. Figure 22.20 is the first section. 
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Figure 22.20. in_pcbbind function: bind a local address and port number. 

 

 

64-67

The first two tests verify that at least one interface has been assigned an IP address and that the socket 
is not already bound. You can’t bind a socket twice. 

68-71

This if statement is confusing. The net result sets the variable wild to 
INPLOOKUP_WILDCARD if neither SO_REUSEADDR or SO_REUSEPORT are set. 

The second test is true for UDP sockets since PR_CONNREQUIRED is false for connectionless 
sockets and true for connection-oriented sockets. 

The third test is where the confusion lies [Torek 1992]. The socket flag SO_ACCEPTCONN is set 
only by the listen system call (Section 15.9), which is valid only for a connection-oriented server. 
In the normal scenario, a TCP server calls socket, bind, and then listen. Therefore, 
when in_pcbbind is called by bind, this socket flag is cleared. Even if the process calls 
socket and then listen, without calling bind, TCP’s PRU_LISTEN request calls 
in_pcbbind to assign an ephemeral port to the socket before the socket layer sets the 
SO_ACCEPTCONN flag. This means the third test in the if statement, testing whether 
SO_ACCEPTCONN is not set, is always true. The if statement is therefore equivalent to 

    if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 
&&
        ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 || 
1)
            wild = INPLOOKUP_WILDCARD; 
 

Since anything logically ORed with 1 is always true, this is equivalent to 
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    if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 
0)
            wild = INPLOOKUP_WILDCARD; 
 

which is simpler to understand: if either of the REUSE socket options is set, wild is left as 0. If 
neither of the REUSE socket options are set, wild is set to INPLOOKUP_WILDCARD. In other 
words, when in_pcblookup is called later in the function, a wildcard match is allowed only if 
neither of the REUSE socket options are on. 

The next section of the in_pcbbind, shown in Figure 22.22, function processes the optional 
nam argument. 

72-75

The nam argument is a nonnull pointer only when the process calls bind explicitly. For an implicit 
bind (a side effect of connect, listen, or in_pcbconnect, cases 3, 4, and 5 from the 
beginning of this section), nam is a null pointer. When the argument is specified, it is an mbuf 
containing a sockaddr_in structure. Figure 22.21 shows the four cases for the nonnull nam 
argument. 

Figure 22.21. Four cases for nam argument to in_pcbbind.

 

 

76-83

The test for the correct address family is commented out, yet the identical test in the 
in_pcbconnect function (Figure 22.25) is performed. We expect either both to be in or both to 
be out. 
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Figure 22.22. in_pcbbind function: process optional nam argument. 

 

 

85-94

Net/3 tests whether the IP address being bound is a multicast group. If so, the SO_REUSEADDR 
option is considered identical to SO_REUSEPORT.

95-99

Otherwise, if the local address being bound by the caller is not the wildcard, ifa_ifwithaddr 
verifies that the address corresponds to a local interface. 

The comment "yech" is probably because the port number in the socket address 
structure must be 0 because ifa_ifwithaddr does a binary comparison of the 
entire structure, not just a comparison of the IP addresses. 
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socket address structure (sin_zero [8]) are nonzero, ifa_ifwithaddr 
will not find the requested interface, and in_pcbbind will return an error. 

100-105

The next if statement is executed when the caller is binding a nonzero port, that is, the process wants 
to bind one particular port number (the second and fourth scenarios from Figure 22.21). If the 
requested port is less than 1024 (IPPORT_RESERVED) the process must have superuser privilege. 
This is not part of the Internet protocols, but a Berkeley convention. A port number less than 1024 is 
called a reserved port and is used, for example, by the rcmd function [Stevens 1990], which in turn 
is used by the rlogin and rsh client programs as part of their authentication with their servers. 

106-109

The function in_pcblookup (Figure 22.16) is then called to check whether a PCB already exists 
with the same local IP address and local port number. The second argument is the wildcard IP address 
(the foreign IP address) and the third argument is a port number of 0 (the foreign port). The wildcard 
value for the second argument causes in_pcblookup to ignore the foreign IP address and foreign 
port in the PCB on ly the local IP address and local port are compared to sin->sin_addr and 
lport, respectively. We mentioned earlier that wild is set to INPLOOKUP_WILDCARD only 
if neither of the REUSE socket options are set. 

111

The caller’s value for the local IP address is stored in the PCB. This can be the wildcard address, if 
that’s the value specified by the caller. In this case the local IP address is chosen by the kernel, but not 
until the socket is connected at some later time. This is because the local IP address is determined by 
IP routing, based on foreign IP address. 

The final section of in_pcbbind handles the assignment of an ephemeral port when the caller 
explicitly binds a port of 0, or when the nam argument is a null pointer (an implicit bind). 

Figure 22.23. in_pcbbind function: choose an ephemeral port. 

 

 

113-122

The next ephemeral port number to use for this protocol (TCP or UDP) is maintained in the head of 
the protocol’s PCB list: tcb or udb. Other than the inp_next and inp_back pointers in the 
protocol’s head PCB, the only other element of the inpcb structure that is used is the local port 
number. Confusingly, this local port number is maintained in host byte order in the head PCB, but in 
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network byte order in all the other PCBs on the list! The ephemeral port numbers start at 1024 
(IPPORT_RESERVED) and get incremented by 1 until port 5000 is used 
(IPPORT_USERRESERVED), then cycle back to 1024. The loop is executed until 
in_pcbbind does not find a match. 

so_reuseaddr Examples

Let’s look at some common examples to see the interaction of in_pcbbind with 
in_pcblookup and the two REUSE socket options. 

1. A TCP or UDP server normally starts by calling socket and bind. Assume a TCP 
server that calls bind, specifying the wildcard IP address and its nonzero well-known port, 
say 23 (the Telnet server). Also assume that the server is not already running and that the 
process does not set the SO_REUSEADDR socket option. 

in_pcbbind calls in_pcblookup with INPLOOKUP_WILDCARD as the final 
argument. The loop in in_pcblookup won’t find a matching PCB, assuming no other 
process is using the server’s well-known TCP port, causing a null pointer to be returned. This 
is OK and in_pcbbind returns 0. 

2. Assume the same scenario as above, but with the server already running when someone tries 
to start the server a second time. 

When in_pcblookup is called it finds the PCB with a local socket of {*, 23}. Since the 
wildcard counter is 0, in_pcblookup returns the pointer to this entry. Since 
reuseport is 0, in_pcbbind returns EADDRINUSE.

3. Assume the same scenario as the previous example, but when the attempt is made to start the 
server a second time, the SO_REUSEADDR socket option is specified. 

Since this socket option is specified, in_pcbbind calls in_pcblookup with a final 
argument of 0. But the PCB with a local socket of {*, 23} is still matched and returned 
because wildcard is 0, since in_pcblookup cannot compare the two wildcard 
addresses (Figure 22.17). in_pcbbind again returns EADDRINUSE, preventing us 
from starting two instances of the server with identical local sockets, regardless of whether 
we specify SO_REUSEADDR or not. 

4. Assume that a Telnet server is already running with a local socket of {*, 23} and we try to 
start another with a local socket of {140.252.13.35, 23}. 

Assuming SO_REUSEADDR is not specified, in_pcblookup is called with a final 
argument of INPLOOKUP_WILDCARD. When it compares the PCB containing * .23, 
the counter wildcard is set to 1. Since a wildcard match is allowed, this match is 
remembered as the best match and a pointer to it is returned after all the TCP PCBs are 
scanned. in_pcbbind returns EADDRINUSE.

5. This example is the same as the previous one, but we specify the SO_REUSEADDR socket 
option for the second server that tries to bind the local socket {140.252.13.35, 23}. 

The final argument to in_pcblookup is now 0, since the socket option is specified. 
When the PCB with the local socket {*, 23} is compared, the wildcard counter is 1, but 
since the final flags argument is 0, this entry is skipped and is not remembered as a match. 
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After comparing all the TCP PCBs, the function returns a null pointer and in_pcbbind 
returns 0. 

6. Assume the first Telnet server is started with a local socket of {140.252.13.35, 23} when we 
try to start a second server with a local socket of {*, 23}. This is the same as the previous 
example, except we’re starting the servers in reverse order this time. 

The first server is started without a problem, assuming no other socket has already bound port 
23. When we start the second server, the final argument to in_pcblookup is 
INPLOOKUP_WILDCARD, assuming the SO_REUSEADDR socket option is not 
specified. When the PCB with the local socket of {140.252.13.35, 23} is compared, the 
wildcard counter is set to 1 and this entry is remembered. After all the TCP PCBs are 
compared, the pointer to this entry is returned, causing in_pcbbind to return 
EADDRINUSE.

7. What if we start two instances of a server, both with a nonwildcard local IP address? Assume 
we start the first Telnet server with a local socket of {140.252.13.35, 23} and then try to start 
a second with a local socket of {127.0.0.1, 23}, without specifying SO_REUSEADDR. 

When the second server calls in_pcbbind, it calls in_pcblookup with a final 
argument of INPLOOKUP_WILDCARD. When the PCB with the local socket of 
{140.252.13.35, 23} is compared, it is skipped because the local IP addresses are not equal. 
in_pcblookup returns a null pointer, and in_pcbbind returns 0. 

From this example we see that the SO_REUSEADDR socket option has no effect on 
nonwildcard IP addresses. Indeed the test on the flags value INPLOOKUP_WILDCARD in 
in_pcblookup is made only when wildcard is greater than 0, that is, when either 
the PCB entry has a wildcard IP address or the IP address being bound is the wildcard. 

8. As a final example, assume we try to start two instances of the same server, both with the 
same nonwildcard local IP address, say 127.0.0.1. 

When the second server is started, in_pcblookup always returns a pointer to the 
matching PCB with the same local socket. This happens regardless of the 
SO_REUSEADDR socket option, because the wildcard counter is always 0 for this 
comparison. Since in_pcblookup returns a nonnull pointer, in_pcbbind returns 
EADDRINUSE.

From these examples we can state the rules about the binding of local IP addresses and the 
SO_REUSEADDR socket option. These rules are shown in Figure 22.24. We assume that localIP1 
and localIP2 are two different unicast or broadcast IP addresses valid on the local host, and that 
localmcastIP is a multicast group. We also assume that the process is trying to bind the same nonzero 
port number that is already bound to the existing PCB. 

Figure 22.24. Effect of SO_REUSEADDR socket option on binding of local IP address. 
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We need to differentiate between a unicast or broadcast address and a multicast address, because we 
saw that in_pcbbind considers SO_REUSEADDR to be the same as SO_REUSEPORT for a 
multicast address. 

SO_REUSEPORT Socket Option

The handling of SO_REUSEPORT in Net/3 changes the logic of in_pcbbind to allow 
duplicate local sockets as long as both sockets specify SO_REUSEPORT. In other words, all the 
servers must agree to share the same local port. 

22.8. in_pcbconnect Function 

The function in_pcbconnect specifies the foreign IP address and foreign port number for a 
socket. It is called from four functions: 

1. from connect for a TCP socket (required for a TCP client); 
2. from connect for a UDP socket (optional for a UDP client, rare for a UDP server); 
3. from sendto when a datagram is output on an unconnected UDP socket (common); and 
4. from tcp_input when a connection request (a SYN segment) arrives on a TCP socket 

that is in the LISTEN state (standard for a TCP server). 

In all four cases it is common, though not required, for the local IP address and local port be 
unspecified when in_pcbconnect is called. Therefore one function of in_pcbconnect is 
to assign the local values when they are unspecified. 

We’ll discuss the in_pcbconnect function in four sections. Figure 22.25 shows the first section. 

Figure 22.25. in_pcbconnect function: verify arguments, check foreign IP address. 
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Validate argument

130-143

The nam argument points to an mbuf containing a sockaddr_in structure with the foreign IP 
address and port number. These lines validate the argument and verify that the caller is not trying to 
connect to a port number of 0. 

Handle connection to 0.0.0.0 and 255.255.255.255 specially

144-160

The test of the global in_ifaddr verifies that an IP interface has been configured. If the foreign 
IP address is 0.0.0.0 (INADDR_ANY), then 0.0.0.0 is replaced with the IP address of the primary IP 
interface. This means the calling process is connecting to a peer on this host. If the foreign IP address 
is 255.255.255.255 (INADDR_BROADCAST) and the primary interface supports broadcasting, then 
255.255.255.255 is replaced with the broadcast address of the primary interface. This allows a UDP 
application to broadcast on the primary interface without having to figure out its IP address i t can 
simply send datagrams to 255.255.255.255, and the kernel converts this to the appropriate IP address 
for the interface. 

The next section of code, Figure 22.26, handles the case of an unspecified local address. This is the 
common scenario for TCP and UDP clients, cases 1, 2, and 3 from the list at the beginning of this 
section. 
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Figure 22.26. in_pcbconnect function: local IP address not yet specified. 

 

 
 

Release route if no longer valid

164-175

If a route is held by the PCB but the destination of that route differs from the foreign address being 
connected to, or the SO_DONTROUTE socket option is set, that route is released. 

To understand why a PCB may have an associated route, consider case 3 from the list at the beginning 
of this section: in_pcbconnect is called every time a UDP datagram is sent on an unconnected 
socket. Each time a process calls sendto, the UDP output function calls in_pcbconnect,
ip_output, and in_pcbdisconnect. If all the datagrams sent on the socket go to the 
same destination IP address, then the first time through in_pcbconnect the route is allocated 
and it can be used from that point on. But since a UDP application can send datagrams to a different 
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IP address with each call to sendto, the destination address must be compared to the saved route 
and the route released when the destination changes. This same test is done in ip_output, which 
seems to be redundant. 

The SO_DONTROUTE socket option tells the kernel to bypass the normal routing decisions and 
send the IP datagram to the locally attached interface whose IP network address matches the network 
portion of the destination address. 

Acquire route

176-185

If the SO_DONTROUTE socket option is not set, and a route to the destination is not held by the 
PCB, try to acquire one by calling rtalloc.

Determine outgoing interface

186-205

The goal in this section of code is to have ia point to an interface address structure (in_ifaddr, 
Section 6.5), which contains the IP address of the interface. If the PCB holds a route that is still valid, 
or if rtalloc found a route, and the route is not to the loopback interface, the corresponding 
interface is used. Otherwise ifa_withdstaddr and ifa_withnet are called to check if 
the foreign IP address is on the other end of a point-to-point link or on an attached network. Both of 
these functions require that the port number in the socket address structure be 0, so it is saved in 
fport across the calls. If this fails, the primary IP address is used (in_ifaddr), and if no 
interfaces are configured (in_ifaddr is zero), an error is returned. 

Figure 22.27 shows the next section of in_pcbconnect, which handles a destination address 
that is a multicast address. 

Figure 22.27. in_pcbconnect function: destination address is a multicast address. 
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206-223

If the destination address is a multicast address and the process has specified the outgoing interface to 
use for multicast packets (using the IP_MULTICAST_IF socket option), then the IP address of 
that interface is used as the local address. A search is made of all IP interfaces for the one matching 
the interface that was specified with the socket option. An error is returned if that interface is no 
longer up. 

224-225

The code that started at the beginning of Figure 22.26 to handle the case of a wildcard local address is 
complete. The pointer to the sockaddr_in structure for the local interface ia is saved in 
ifaddr.

The final section of in_pcblookup is shown in Figure 22.28. 

Figure 22.28. in_pcbconnect function: verify that socket pair is unique. 

 

 
 

Verify that socket pair is unique

227-233

in_pcblookup verifies that the socket pair is unique. The foreign address and foreign port are 
the values specified as arguments to in_pcbconnect. The local address is either the value that 
was already bound to the socket or the value in ifaddr that was calculated in the code we just 
described. The local port can be 0, which is typical for a TCP client, and we’ll see that later in this 
section of code an ephemeral port is chosen for the local port. 

This test prevents two TCP connections to the same foreign address and foreign port from the same 
local address and local port. For example, if we establish a TCP connection with the echo server on 
the host sun and then try to establish another connection to the same server from the same local port 
(8888, specified with the -b option), the call to in_pcblookup returns a match, causing 
connect to return the error EADDRINUSE. (We use the sock program from Appendix C of 
Volume 1.) 
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    bsdi $ sock -b 8888 sun echo & start first one in 
the background
    bsdi $ sock  -A -b 8888 sun echo then try again
    connect () error: Address already in use 
 

We specify the -A option to set the SO_REUSEADDR socket option, which lets the bind succeed, 
but the connect cannot succeed. This is a contrived example, as we explicitly bound the same 
local port (8888) to both sockets. In the normal scenario of two different clients from the host bsdi 
to the echo server on the host sun, the local port will be 0 when the second client calls 
in_pcblookup from Figure 22.28. 

This test also prevents two UDP sockets from being connected to the same foreign address from the 
same local port. This test does not prevent two UDP sockets from alternately sending datagrams to the 
same foreign address from the same local port, as long as neither calls connect, since a UDP 
socket is only temporarily connected to a peer for the duration of a sendto system call. 

Implicit bind and assignment of ephemeral port

234-238

If the local address is still wildcarded for the socket, it is set to the value saved in ifaddr. This is 
an implicit bind: cases 3, 4, and 5 from the beginning of Section 22.7. First a check is made as to 
whether the local port has been bound yet, and if not, in_pcbbind binds an ephemeral port to the 
socket. The order of the call to in_pcbbind and the assignment to inp_laddr is important, 
since in_pcbbind fails if the local address is not the wildcard address. 

Store foreign address and foreign port in PCB

239-240

The final step of this function sets the foreign IP address and foreign port number in the PCB. We are 
guaranteed, on successful return from this function, that both socket pairs in the PCB th e local and 
foreign are f illed in with specific values. 

IP Source Address Versus Outgoing Interface Address

There is a subtle difference between the source address in the IP datagram versus the IP address of the 
interface used to send the datagram. 

The PCB member inp_laddr is used by TCP and UDP as the source address of the IP datagram. 
It can be set by the process to the IP address of any configured interface by bind. (The call to 
ifa_ifwithaddr in in_pcbbind verifies the local address desired by the application.) 
in_pcbconnect assigns the local address only if it is a wildcard, and when this happens the 
local address is based on the outgoing interface (since the destination address is known). 

The outgoing interface, however, is also determined by ip_output based on the destination IP 
address. On a multihomed host it is possible for the source address to be a local interface that is not 
the outgoing interface, when the process explicitly binds a local address that differs from the outgoing 
interface. This is allowed because Net/3 chooses the weak end system model (Section 8.4). 
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22.9. in_pcbdisconnect Function 

A UDP socket is disconnected by in_pcbdisconnect. This removes the foreign association 
by setting the foreign IP address to all 0s (INADDR_ANY) and foreign port number to 0. 

This is done after a datagram has been sent on an unconnected UDP socket and when connect is 
called on a connected UDP socket. In the first case the sequence of steps when the process calls 
sendto is: UDP calls in_pcbconnect to connect the socket temporarily to the destination, 
udp_output sends the datagram, and then in_pcbdisconnect removes the temporary 
connection. 

in_pcbdisconnect is not called when a socket is closed since in_pcbdetach handles 
the release of the PCB. A disconnect is required only when the PCB needs to be reused for a different 
foreign address or port number. 

Figure 22.29 shows the function in_pcbdisconnect.

Figure 22.29. in_pcbdisconnect function: disconnect from foreign address and port 
number.

 

 

If there is no longer a file table reference for this PCB (SS_NOFDREF is set) then 
in_pcbdetach (Figure 22.7) releases the PCB. 

22.10. in_setsockaddr and in_setpeeraddr Functions 

The getsockname system call returns the local protocol address of a socket (e.g., the IP address 
and port number for an Internet socket) and the getpeername system call returns the foreign 
protocol address. Both system calls end up issuing a PRU_SOCKADDR request or a 
PRU_PEERADDR request. The protocol then calls either in_setsockaddr or 
in_setpeeraddr. We show the first of these in Figure 22.30. 
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Figure 22.30. in_setsockaddr function: return local address and port number. 

 

 

The argument nam is a pointer to an mbuf that will hold the result: a sockaddr_in structure that 
the system call copies back to the process. The code fills in the socket address structure and copies the 
IP address and port number from the Internet PCB into the sin_addr and sin_port members. 

Figure 22.31 shows the in_setpeeraddr function. It is nearly identical to Figure 22.30, but 
copies the foreign IP address and port number from the PCB. 

Figure 22.31. in_setpeeraddr function: return foreign address and port number. 

 

 

22.11. in_pcbnotify, in_rtchange, and in_losing
Functions

The function in_pcbnotify is called when an ICMP error is received, in order to notify the 
appropriate process of the error. The "appropriate process" is found by searching all the PCBs for one 
of the protocols (TCP or UDP) and comparing the local and foreign IP addresses and port numbers 
with the values returned in the ICMP error. For example, when an ICMP source quench error is 
received in response to a TCP segment that some router discarded, TCP must locate the PCB for the 
connection that caused the error and slow down the transmission on that connection. 

Before showing the function we must review how it is called. Figure 22.32 summarizes the functions 
called to process an ICMP error. The two shaded ellipses are the functions described in this section. 
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Figure 22.32. Summary of processing of ICMP errors. 

 

 

When an ICMP message is received, icmp_input is called. Five of the ICMP messages are 
classified as errors (Figures 11.1 and 11.2): 

destination unreachable, 
parameter problem, 
redirect, 
source quench, and 
time exceeded. 

Redirects are handled differently from the other four errors. All other ICMP messages (the queries) 
are handled as described in Chapter 11. 

Each protocol defines its control input function, the pr_ctlinput entry in the protosw 
structure (Section 7.4). The ones for TCP and UDP are named tcp_ctlinput and 
udp_ctlinput, and we’ll show their code in later chapters. Since the ICMP error that is 
received contains the IP header of the datagram that caused the error, the protocol that caused the error 
(TCP or UDP) is known. Four of the five ICMP errors cause that protocol’s control input function to 
be called. Redirects are handled differently: the function pfctlinput is called, and it in turn calls 
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the control input functions for all the protocols in the family (Internet). TCP and UDP are the only 
protocols in the Internet family with control input functions. 

Redirects are handled specially because they affect all IP datagrams going to that destination, not just 
the one that caused the redirect. On the other hand, the other four errors need only be processed by the 
protocol that caused the error. 

The final points we need to make about Figure 22.32 are that TCP handles source quenches differently 
from the other errors, and redirects are handled specially by in_pcbnotify: the function 
in_rtchange is called, regardless of the protocol that caused the error. 

Figure 22.33 shows the in_pcbnotify function. When it is called by TCP, the first argument is 
the address of tcb and the final argument is the address of the function tcp_notify. For UDP, 
these two arguments are the address of udb and the address of the function udp_notify.
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Figure 22.33. in_pcbnotify function: pass error notification to processes. 

 

 
 

Verify arguments

306-324

The cmd argument and the address family of the destination are verified. The foreign address is 
checked to ensure it is not 0.0.0.0. 
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Handle redirects specially

325-338

If the error is a redirect it is handled specially. (The error PRC_HOSTDEAD is an old error that was 
generated by the IMPs. Current systems should never see this error it  is a historical artifact.) The 
foreign port, local port, and local address are all set to 0 so that the for loop that follows won’t 
compare them. For a redirect we want that loop to select the PCBs to receive notification based only 
on the foreign IP address, because that is the IP address for which our host received a redirect. Also, 
the function that is called for a redirect is in_rtchange (Figure 22.34) instead of the notify 
argument specified by the caller. 

Figure 22.34. in_rtchange function: invalidate route. 

 

 

339

The global array inetctlerrmap maps one of the protocol-independent error codes (the 
PRC_xxx values from Figure 11.19) into its corresponding Unix errno value (the final column in 
Figure 11.1). 

Call notify function for selected PCBs

340-353

This loop selects the PCBs to be notified. Multiple PCBs can be notified t he loop keeps going even 
after a match is located. The first if statement combines five tests, and if any one of the five is true, 
the PCB is skipped: (1) if the foreign addresses are unequal, (2) if the PCB does not have a 
corresponding socket structure, (3) if the local ports are unequal, (4) if the local addresses are 
unequal, or (5) if the foreign ports are unequal. The foreign addresses must match, while the other 
three foreign and local elements are compared only if the corresponding argument is nonzero. When a 
match is found, the notify function is called. 
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in_rtchange Function

We saw that in_pcbnotify calls the function in_rtchange when the ICMP error is a 
redirect. This function is called for all PCBs with a foreign address that matches the IP address that 
has been redirected. Figure 22.34 shows the in_rtchange function. 

If the PCB holds a route, that route is released by rtfree, and the PCB member is marked as 
empty. We don’t try to update the route at this time, using the new router address returned in the 
redirect. The new route will be allocated by ip_output when this PCB is used next, based on the 
kernel’s routing table, which is updated by the redirect, before pfctlinput is called. 

Redirects and Raw Sockets

Let’s examine the interaction of redirects, raw sockets, and the cached route in the PCB. If we run the 
Ping program, which uses a raw socket, and an ICMP redirect error is received for the IP address 
being pinged, Ping continues using the original route, not the redirected route. We can see this as 
follows. 

We ping the host svr4 on the 140.252.13 network from the host gemini on the 140.252.1 
network. The default router for gemini is gateway, but the packets should be sent to the router 
netb instead. Figure 22.35 shows the arrangement. 

Figure 22.35. Example of ICMP redirect. 

 

 

We expect gateway to send a redirect when it receives the first ICMP echo request. 

    gemini $ ping -sv svr4
    PING 140.252.13.34: 56 data bytes 
    ICMP Host redirect from gateway 140.252.1.4 

 768
      to netb (140.252.1.183) for svr4 (140.252.13.34) 
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    64 bytes from svr4 (140.252.13.34): icmp_seq=0. 
time=572. ms 

    ICMP Host redirect from gateway 140.252.1.4 
      to netb (140.252.1.183) for svr4 (140.252.13.34) 
    64 bytes from svr4   (140.252.13.34): icmp_seq=1. 
time=392. ms 
 

The -s option causes an ICMP echo request to be sent once a second, and the -v option prints every 
received ICMP message (instead of only the ICMP echo replies). 

Every ICMP echo request elicits a redirect, but the raw socket used by ping never notices the redirect 
to change the route that it is using. The route that is first calculated and stored in the PCB, causing the 
IP datagrams to be sent to the router gateway (140.252.1.4), should be updated so that the 
datagrams are sent to the router netb (140.252.1.183) instead. We see that the ICMP redirects are 
received by the kernel on gemini, but they appear to be ignored. 

If we terminate the program and start it again, we never see a redirect: 

    gemini $ ping -sv svr4
    PING 140.252.13.34: 56 data bytes 
    64 bytes from svr4 (140.252.13.34): icmp_seq=0. 
time=388. ms 
    64 bytes from svr4 (140.252.13.34): icmp_seq=1. 
time=363. ms 
 

The reason for this anomaly is that the raw IP socket code (Chapter 32) does not have a control input 
function. Only TCP and UDP have a control input function. When the redirect error is received, ICMP 
updates the kernel’s routing table accordingly, and pfctlinput is called (Figure 22.32). But since 
there is no control input function for the raw IP protocol, the cached route in the PCB associated with 
Ping’s raw socket is never released. When we start the Ping program a second time, however, the route 
that is allocated is based on the kernel’s updated routing table, and we never see the redirects. 

ICMP Errors and UDP Sockets

One confusing part of the sockets API is that ICMP errors received on a UDP socket are not passed to 
the application unless the application has issued a connect on the socket, restricting the foreign IP 
address and port number for the socket. We now see where this limitation is enforced by 
in_pcbnotify.

Consider an ICMP port unreachable, probably the most common ICMP error on a UDP socket. The 
foreign IP address and the foreign port number in the dst argument to in_pcbnotify are the 
IP address and port number that caused the ICMP error. But if the process has not issued a 
connect on the socket, the inp_faddr and inp_fport members of the PCB are both 0, 
preventing in_pcbnotify from ever calling the notify function for this socket. The for 
loop in Figure 22.33 will skip every UDP PCB. 

This limitation arises for two reasons. First, if the sending process has an unconnected UDP socket, 
the only nonzero element in the socket pair is the local port. (This assumes the process did not call 
bind.) This is the only value available to in_pcbnotify to demultiplex the incoming ICMP 
error and pass it to the correct process. Although unlikely, there could be multiple processes bound to 
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the same local port, making it ambiguous which process should receive the error. There’s also the 
possibility that the process that sent the datagram that caused the ICMP error has terminated, with 
another process then starting and using the same local port. This is also unlikely since ephemeral ports 
are assigned in sequential order from 1024 to 5000 and reused only after cycling around (Figure 
22.23). 

The second reason for this limitation is because the error notification from the kernel to the process
an errno value is inadequate. Consider a process that calls sendto on an unconnected UDP 
socket three times in a row, sending a UDP datagram to three different destinations, and then waits for 
the replies with recvfrom. If one of the datagrams generates an ICMP port unreachable error, and 
if the kernel were to return the corresponding error (ECONNREFUSED) to the recvfrom that the 
process issued, the errno value doesn’t tell the process which of the three datagrams caused the 
error. The kernel has all the information required in the ICMP error, but the sockets API doesn’t 
provide a way to return this to the process. 

Therefore the design decision was made that if a process wants to be notified of these ICMP errors on 
a UDP socket, that socket must be connected to a single peer. If the error ECONNREFUSED is 
returned on that connected socket, there’s no question which peer generated the error. 

There is still a remote possibility of an ICMP error being delivered to the wrong process. One process 
sends the UDP datagram that elicits the ICMP error, but it terminates before the error is received. 
Another process then starts up before the error is received, binds the same local port, and connects to 
the same foreign address and foreign port, causing this new process to receive the error. There’s no 
way to prevent this from occurring, given UDP’s lack of memory. We’ll see that TCP handles this with 
its TIME_WAIT state. 

In our preceding example, one way for the application to get around this limitation is to use three 
connected UDP sockets instead of one unconnected socket, and call select to determine when any one 
of the three has a received datagram or an error to be read. 

Here we have a scenario where the kernel has the information but the API (sockets) 
is inadequate. With most implementations of Unix System V and the other popular 
API (TLI), the reverse is true: the TLI function t_rcvuderr can return the peer’s 
IP address, port number, and an error value, but most SVR4 streams implementations 
of TCP/IP don’t provide a way for ICMP to pass the error to an unconnected UDP 
end point. 

In an ideal world, in_pcbnotify delivers the ICMP error to all UDP sockets 
that match, even if the only nonwildcard match is the local port. The error returned to 
the process would include the destination IP address and destination UDP port that 
caused the error, allowing the process to determine if the error corresponds to a 
datagram sent by the process. 

in_losing Function

The final function dealing with PCBs is in_losing, shown in Figure 22.36. It is called by TCP 
when its retransmission timer has expired four or more times in a row for a given connection (Figure 
25.26). 
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Figure 22.36. in_losing function: invalidate cached route information. 

 

 
 

Generate routing message

361-374

If the PCB holds a route, that route is discarded. An rt_addrinfo structure is filled in with 
information about the cached route that appears to be failing. The function rt_missmsg is then 
called to generate a message from the routing socket of type RTM_LOSING, indicating a problem 
with the route. 

Delete or release route

375-384

If the cached route was generated by a redirect (RTF_DYNAMIC is set), the route is deleted by 
calling rtrequest with a request of RTM_DELETE. Otherwise the cached route is released, 
causing the next output on the socket to allocate another route to the destination h opefully a better 
route. 

22.12. Implementation Refinements 

Undoubtedly the most time-consuming algorithm we’ve encountered in this chapter is the linear 
searching of the PCBs done by in_pcblookup. At the beginning of Section 22.6 we noted four 
instances when this function is called. We can ignore the calls to bind and connect, as they 
occur much less frequently than the calls to in_pcblookup from TCP and UDP, to demultiplex 
every received IP datagram. 
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In later chapters we’ll see that TCP and UDP both try to help this linear search by maintaining a 
pointer to the last PCB that the protocol referenced: a one-entry cache. If the local address, local port, 
foreign address, and foreign port in the cached PCB match the values in the received datagram, the 
protocol doesn’t even call in_pcblookup. If the protocol’s data fits the packet train model [Jain 
and Routhier 1986], this simple cache works well. But if the data does not fit this model and, for 
example, looks like data entry into an on-line transaction processing system, the one-entry cache 
performs poorly [McKenney and Dove 1992]. 

One proposal for a better PCB arrangement is to move a PCB to the front of the PCB list when the 
PCB is referenced. ([McKenney and Dove 1992] attribute this idea to Jon Crowcroft; [Partridge and 
Pink 1993] attribute it to Gary Delp.) This movement of the PCB is easy to do since it is a doubly 
linked list and a pointer to the head of the list is the first argument to in_pcblookup.

[McKenney and Dove 1992] compare the original Net/1 implementation (no cache), an enhanced one-
entry send—receive cache, the move-to-the-front heuristic, and their own algorithm that uses hash 
chains. They show that maintaining a linear list of PCBs on hash chains provides an order of 
magnitude improvement over the other algorithms. The only cost for the hash chains is the memory 
required for the hash chain headers and the computation of the hash function. They also consider 
adding the move-to-the-front heuristic to their hash-chain algorithm and conclude that it is easier 
simply to add more hash chains. 

Another comparison of the BSD linear search to a hash table search is in [Hutchinson and Peterson 
1991]. They show that the time required to demultiplex an incoming UDP datagram is constant as the 
number of sockets increases for a hash table, but with a linear search the time increases as the number 
of sockets increases. 

22.13. Summary 

An Internet PCB is associated with every Internet socket: TCP, UDP, and raw IP. It contains 
information common to all Internet sockets: local and foreign IP addresses, pointer to a route 
structure, and so on. All the PCBs for a given protocol are placed on a doubly linked list maintained 
by that protocol. 

In this chapter we’ve looked at numerous functions that manipulate the PCBs, and three in detail. 

1. in_pcblookup is called by TCP and UDP to demultiplex every received datagram. It 
chooses which socket receives the datagram, taking into account wildcard matches. 

This function is also called by in_pcbbind to verify that the local address and local 
process are unique, and by in_pcbconnect to verify that the combination of a local 
address, local process, foreign address, and foreign process are unique. 

2. in_pcbbind explicitly or implicitly binds a local address and local port to a socket. An 
explicit bind occurs when the process calls bind, and an implicit bind occurs when a TCP 
client calls connect without calling bind, or when a UDP process calls sendto or 
connect without calling bind. 

3. in_pcbconnect sets the foreign address and foreign process. If the local address has 
not been set by the process, a route to the foreign address is calculated and the resulting local 
interface becomes the local address. If the local port has not been set by the process, 
in_pcbbind chooses an ephemeral port for the socket. 

Figure 22.37 summarizes the common scenarios for various TCP and UDP applications and the values 
stored in the PCB for the local address and port and the foreign address and port. We have not yet 
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covered all the actions shown in Figure 22.37 for TCP and UDP processes, but will examine the code 
in later chapters. 

Figure 22.37. Summary of in_pcbbind and in_pcbconnect.

 

 
 

Exercises

22.1 What happens in Figure 22.23 when the process asks for an ephemeral port and every 
ephemeral port is in use? 

22.2 In Figure 22.10 we showed two Telnet servers with listening sockets: one with a specific 
local IP address and one with the wildcard for its local IP address. Does your system’s 
Telnet daemon allow you to specify the local IP address, and if so, how? 

22.3 Assume a socket is bound to the local socket {140.252.1.29, 8888}, and this is the only 
socket using local port 8888. (1) Go through the steps performed by in_pcbbind 
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when another socket is bound to {140.252.13.33, 8888}, without any socket options. (2) 
Go through the steps performed when another socket is bound to the wildcard IP address, 
port 8888, without any socket options. (3) Go through the steps performed when another 
socket is bound to the wildcard IP address, port 8888, with the SO_REUSEADDR socket 
option. 

22.4 What is the first ephemeral port number allocated by UDP? 

22.5 When a process calls bind, which elements in the sockaddr_in structure must be 
filled in? 

22.6 What happens if a process tries to bind a local broadcast address? What happens if a 
process tries to bind the limited broadcast address (255.255.255.255)? 
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Chapter 23. UDP: User Datagram Protocol 

23.1. Introduction 

The User Datagram Protocol, or UDP, is a simple, datagram-oriented, transport-layer protocol: each 
output operation by a process produces exactly one UDP datagram, which causes one IP datagram to 
be sent. 

A process accesses UDP by creating a socket of type SOCK_DGRAM in the Internet domain. By 
default the socket is termed unconnected. Each time the process sends a datagram it must specify the 
destination IP address and port number. Each time a datagram is received for the socket, the process 
can receive the source IP address and port number from the datagram. 

We mentioned in Section 22.5 that a UDP socket can also be connected to one particular IP address 
and port number. This causes all datagrams written to the socket to go to that destination, and only 
datagrams arriving from that IP address and port number are passed to the process. 

This chapter examines the implementation of UDP. 

23.2. Code Introduction 

There are nine UDP functions in a single C file and various UDP definitions in two headers, as shown 
in Figure 23.1. 

Figure 23.1. Files discussed in this chapter.

 

 

Figure 23.2 shows the relationship of the six main UDP functions to other kernel functions. The 
shaded ellipses are the six functions that we cover in this chapter. We also cover three additional UDP 
functions that are called by some of these six functions. 
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Figure 23.2. Relationship of UDP functions to rest of kernel.

 

 
 

Global Variables

Seven global variables are introduced in this chapter, which are shown in Figure 23.3. 

Figure 23.3. Global variables introduced in this chapter.

 

 
 

Statistics

Various UDP statistics are maintained in the global structure udpstat, described in Figure 23.4. 
We’ll see where these counters are incremented as we proceed through the code. 

Figure 23.4. UDP statistics maintained in the udpstat structure.
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Figure 23.5 shows some sample output of these statistics, from the netstat -s command. 

Figure 23.5. Sample UDP statistics.

 

 

The number of UDP datagrams delivered (the second from last line of output) is the number of 
datagrams received (udps_ipackets) minus the six variables that precede it in Figure 23.5. 

SNMP Variables

Figure 23.6 shows the four simple SNMP variables in the UDP group and which counters from the 
udpstat structure implement that variable. 

Figure 23.6. Simple SNMP variables in udp group.

 

 

Figure 23.7 shows the UDP listener table, named udpTable. The values returned by SNMP for 
this table are taken from a UDP PCB, not the udpstat structure. 

Figure 23.7. Variables in UDP listener table: udpTable.
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23.3. UDP protosw Structure 

Figure 23.8 lists the protocol switch entry for UDP. 

Figure 23.8. The UDP protosw structure.

 

 

We describe the five functions that begin with udp_ in this chapter. We also cover a sixth function, 
udp_output, which is not in the protocol switch entry but is called by udp_usrreq when a 
UDP datagram is output. 

23.4. UDP Header 

The UDP header is defined as a udphdr structure. Figure 23.9 shows the C structure and Figure 
23.10 shows a picture of the UDP header. 

Figure 23.9. udphdr structure.
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Figure 23.10. UDP header and optional data.

 

 

In the source code the UDP header is normally referenced as an IP header immediately followed by a 
UDP header. This is how udp_input processes received IP datagrams, and how udp_output 
builds outgoing IP datagrams. This combined IP/UDP header is a udpiphdr structure, shown in 
Figure 23.11. 

Figure 23.11. udpiphdr structure: combined IP/UDP header.

 

 

The 20-byte IP header is defined as an ipovly structure, shown in Figure 23.12. 

Figure 23.12. ipovly structure.
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Unfortunately this structure is not a real IP header, as shown in Figure 8.8. The size is the same (20 
bytes) but the fields are different. We’ll return to this discrepancy when we discuss the calculation of 
the UDP checksum in Section 23.6. 

23.5. udp_init Function 

The domaininit function calls UDP’s initialization function (udp_init, Figure 23.13) at 
system initialization time. 

Figure 23.13. udp_init function.

 

 

The only action performed by this function is to set the next and previous pointers in the head PCB 
(udb) to point to itself. This is an empty doubly linked list. 

The remainder of the udb PCB is initialized to 0, although the only other field used in this head PCB 
is inp_lport, the next UDP ephemeral port number to allocate. In the solution for Exercise 22.4 
we mention that because this local port number is initialized to 0, the first ephemeral port number will 
be 1024. 

23.6. udp_output Function 

UDP output occurs when the application calls one of the five write functions: send, sendto, 
sendmsg, write, or writev. If the socket is connected, any of the five functions can be 
called, although a destination address cannot be specified with sendto or sendmsg. If the 
socket is unconnected, only sendto and sendmsg can be called, and a destination address must 
be specified. Figure 23.14 summarizes how these five write functions end up with udp_output 
being called, which in turn calls ip_output.
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Figure 23.14. How the five write functions end up calling udp_output.

 

 

All five functions end up calling sosend, passing a pointer to a msghdr structure as an 
argument. The data to output is packaged into an mbuf chain and an optional destination address and 
optional control information are also put into mbufs by sosend. A PRU_SEND request is issued. 

UDP calls the function udp_output, which we show the first half of in Figure 23.15. The four 
arguments are inp, a pointer to the socket Internet PCB; m, a pointer to the mbuf chain for output; 
addr, an optional pointer to an mbuf with the destination address packaged as a sockaddr_in 
structure; and control, an optional pointer to an mbuf with control information from 
sendmsg.

 781



ptg11539634

Figure 23.15. udp_output function: temporarily connect an unconnected 

socket.

 

 
 

Discard optional control information

333-344

Any optional control information is discarded by m_freem, without generating an error. UDP 
output does not use control information for any purpose. 
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The comment XXX is because the control information is ignored without generating 
an error. Other protocols, such as the routing domain and TCP, generate an error if 
the process passes control information. 

Temporarily connect an unconnected socket

345-359

If the caller specifies a destination address for the UDP datagram (addr is nonnull), the socket is 
temporarily connected to that destination address by in_pcbconnect. The socket will be 
disconnected at the end of this function. Before doing this connect, a check is made as to whether the 
socket is already connected, and, if so, the error EISCONN is returned. This is why a sendto that 
specifies a destination address on a connected socket returns an error. 

Before the socket is temporarily connected, IP input processing is stopped by splnet. This is done 
because the temporary connect changes the foreign address, foreign port, and possibly the local 
address in the socket’s PCB. If a received UDP datagram were processed while this PCB was 
temporarily connected, that datagram could be delivered to the wrong process. Setting the processor 
priority to splnet only stops a software interrupt from causing the IP input routine to be executed 
(Figure 1.12), it does not prevent the interface layer from accepting incoming packets and placing 
them onto IP’s input queue. 

[Partridge and Pink 1993] note that this operation of temporarily connecting the 
socket is expensive and consumes nearly one-third of the cost of each UDP 
transmission. 

The local address from the PCB is saved in laddr before temporarily connecting, because if it is the 
wildcard address it will be changed by in_pcbconnect when it calls in_pcbbind.

The same rules apply to the destination address that would apply if the process called connect, 
since in_pcbconnect is called for both cases. 

360-364

If the process doesn’t specify a destination address, and the socket is not connected, ENOTCONN is 
returned. 

Prepend IP and UDP headers

366-373

M_PREPEND allocates room for the IP and UDP headers in front of the data. Figure 1.8 showed one 
scenario, assuming there is not room in the first mbuf on the chain for the 28 bytes of header. Exercise 
23.1 details the other possible scenarios. The flag M_DONTWAIT is specified because if the socket is 
temporarily connected, IP processing is blocked, and M_PREPEND should not block. 

Earlier Berkeley releases incorrectly specified M_WAIT here. 

Prepending IP/UDP Headers and Mbuf Clusters

There is a subtle interaction between the M_PREPEND macro and mbuf clusters. If the user data is 
placed into a cluster by sosend, then 56 bytes (max_hdr from Figure 7.17) are left unused at 
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the beginning of the cluster, allowing room for the Ethernet, IP, and UDP headers. This is to prevent 
M_PREPEND from allocating another mbuf just to hold these headers. M_PREPEND calls 
M_LEADINGSPACE to calculate how much space is available at the beginning of the mbuf: 

   #define M_LEADINGSPACE(m) \ 
       ((m)->m_flags & M_EXT ? /* (m)->m_data - (m)-
>m_ext.ext_buf */ 0 : \ 
           (m)->m_flags & M_PKTHDR ? (m)->m_data - (m)-
>m_pktdat : \ 
           (m)->m_data - (m)->m_dat) 
 

The code that correctly calculates the amount of room at the front of a cluster is commented out, and 
the macro always returns 0 if the data is in a cluster. This means that when the user data is in a cluster, 
M_PREPEND always allocates a new mbuf for the protocol headers instead of using the room 
allocated for this purpose by sosend.

The reason for commenting out the correct code in M_LEADINGSPACE is that the 
cluster might be shared (Section 2.9), and, if it is shared, using the space before the 
user’s data in the cluster could wipe out someone else’s data. 

With UDP data, clusters are not shared, since udp_output does not save a copy 
of the data. TCP, however, saves a copy of the data in its send buffer (waiting for the 
data to be acknowledged), and if the data is in a cluster, it is shared. But 
tcp_output doesn’t call M_LEADINGSPACE, because sosend leaves 
room for only 56 bytes at the beginning of the cluster for datagram protocols. 
tcp_output always calls MGETHDR instead, to allocate an mbuf for the 
protocol headers. 

UDP Checksum Calculation and Pseudo-Header

Before showing the last half of udp_output we describe how UDP fills in some of the fields in 
the IP/UDP headers, calculates the UDP checksum, and passes the IP/UDP headers and the data to IP 
for output. The way this is done with the ipovly structure is tricky. 

Figure 23.16 shows the 28-byte IP/UDP headers that are built by udp_output in the first mbuf in 
the chain pointed to by m. The unshaded fields are filled in by udp_output and the shaded fields 
are filled in by ip_output. This figure shows the format of the headers as they appear on the 
wire. 
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Figure 23.16. IP/UDP headers: unshaded fields filled in by UDP; shaded fields 

filled in by IP.

 

 

The UDP checksum is calculated over three areas: (1) a 12-byte pseudo-header containing fields from 
the IP header, (2) the 8-byte UDP header, and (3) the UDP data. Figure 23.17 shows the 12 bytes of 
pseudo-header used for the checksum computation, along with the UDP header. The UDP header used 
for the checksum calculation is identical to the UDP header that appears on the wire (Figure 23.16). 

Figure 23.17. Pseudo-header used for checksum computation and UDP header.

 

 

The following three facts are used in computing the UDP checksum. (1) The third 32-bit word in the 
pseudo-header (Figure 23.17) looks similar to the third 32-bit word in the IP header (Figure 23.16): 
two 8-bit values and a 16-bit value. (2) The order of the three 32-bit values in the pseudo-header is 
irrelevant. Actually, the computation of the Internet checksum does not depend on the order of the 16-
bit values that are used (Section 8.7). (3) Including additional 32-bit words of 0 in the checksum 
computation has no effect. 
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udp_output takes advantage of these three facts and fills in the fields in the udpiphdr 
structure (Figure 23.11), which we depict in Figure 23.18. This structure is contained in the first mbuf 
in the chain pointed to by the argument m.

Figure 23.18. udpiphdr structure used by udp_output.

 

 

The last three 32-bit words in the 20-byte IP header (the five members ui_x1, ui_pr,
ui_len, ui_src, and ui_dst) are used as the pseudo-header for the checksum 
computation. The first two 32-bit words in the IP header (ui_next and ui_prev) are also used 
in the checksum computation, but they’re initialized to 0, and don’t affect the checksum. 

Figure 23.19 summarizes the operations we’ve described. 

Figure 23.19. Operations to fill in IP/UDP headers and calculate UDP 

checksum.

 

 

1. The top picture shown in Figure 23.19 is the protocol definition of the pseudo-header, which 
corresponds to Figure 23.17. 
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2. The middle picture is the udpiphdr structure that is used in the source code, which 
corresponds to Figure 23.11. (To make the figure readable, the prefix ui_ has been left off 
all the members.) This is the structure built by udp_output in the first mbuf and then 
used to calculate the UDP checksum. 

3. The bottom picture shows the IP/UDP headers that appear on the wire, which corresponds to 
Figure 23.16. The seven fields with an arrow above are filled in by udp_output before 
the checksum computation. The three fields with an asterisk above are filled in by 
udp_output after the checksum computation. The remaining six shaded fields are filled 
in by ip_output. 

Figure 23.20 shows the last half of the udp_output function. 

Figure 23.20. udp_output function: fill in headers, calculate checksum, pass 

to IP.

 

 
 

Prepare pseudo-header for checksum computation

374-387

All the members in the udpiphdr structure (Figure 23.18) are set to their respective values. The 
local and foreign sockets from the PCB are already in network byte order, but the UDP length must be 
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converted to network byte order. The UDP length is the number of bytes of data (len, which can be 
0) plus the size of the UDP header (8). The UDP length field appears twice in the UDP checksum 
calculation: ui_len and ui_ulen. One of them is redundant. 

Calculate checksum

388-395

The checksum is calculated by first setting it to 0 and then calling in_cksum. If UDP checksums 
are disabled (a bad idea s ee Section 11.3 of Volume 1), 0 is sent as the checksum. If the calculated 
checksum is 0, 16 one bits are stored in the header instead of 0. (In one’s complement arithmetic, all 
one bits and all zero bits are both considered 0.) This allows the receiver to distinguish between a 
UDP packet without a checksum (the checksum field is 0) versus a UDP packet with a checksum 
whose value is 0 (the checksum is 16 one bits). 

The variable udpcksum (Figure 23.3) normally defaults to 1, enabling UDP 
checksums. The kernel can be compiled for 4.2BSD compatibility, which initializes 
udpcksum to 0. 

Fill in UDP length, TTL, and TOS

396-398

The pointer ui is cast to a pointer to a standard IP header (ip), and three fields in the IP header are 
set by UDP. The IP length field is set to the amount of data in the UDP datagram, plus 28, the size of 
the IP/UDP headers. Notice that this field in the IP header is stored in host byte order, not network 
byte order like the rest of the multibyte fields in the header. ip_output converts it to network 
byte order before transmission. 

The TTL and TOS fields in the IP header are then set from the values in the socket’s PCB. These 
values are defaulted by UDP when the socket is created, but can be changed by the process using 
setsockopt. Since these three fields IP length, TTL, and TOS are not par t of the pseudo-
header and not used in the UDP checksum computation, they must be set after the checksum is 
calculated but before ip_output is called. 

Send datagram

400-402

ip_output sends the datagram. The second argument, inp_options, are IP options the 
process can set using setsockopt. These IP options are placed into the IP header by 
ip_output. The third argument is a pointer to the cached route in the PCB, and the fourth 
argument is the socket options. The only socket options that are passed to ip_output are 
SO_DONTROUTE (bypass the routing tables) and SO_BROADCAST (allow broadcasting). The 
final argument is a pointer to the multicast options for this socket. 

Disconnect temporarily connected socket

403-407

If the socket was temporarily connected, in_pcbdisconnect disconnects the socket, the local 
IP address is restored in the PCB, and the interrupt level is restored to its saved value. 
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23.7. udp_input Function 

UDP output is driven by a process calling one of the five write functions. The functions shown in 
Figure 23.14 are all called directly as part of the system call. UDP input, on the other hand, occurs 
when IP input receives an IP datagram on its input queue whose protocol field specifies UDP. IP calls 
the function udp_input through the pr_input function in the protocol switch table (Figure 
8.15). Since IP input is at the software interrupt level, udp_input also executes at this level. The 
goal of udp_input is to place the UDP datagram onto the appropriate socket’s buffer and wake up 
any process blocked for input on that socket. 

We’ll divide our discussion of the udp_input function into three sections: 

1. the general validation that UDP performs on the received datagram, 
2. processing UDP datagrams destined for a unicast address: locating the appropriate PCB and 

placing the datagram onto the socket’s buffer, and 
3. processing UDP datagrams destined for a broadcast or multicast address: the datagram may 

be delivered to multiple sockets. 

This last step is new with the support of multicasting in Net/3, but consumes almost one-third of the 
code. 

General Validation of Received UDP Datagram

Figure 23.21 shows the first section of UDP input. 
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Figure 23.21. udp_input function: general validation of received UDP 

datagram.
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55-65

The two arguments to udp_input are m, a pointer to an mbuf chain containing the IP datagram, 
and iphlen, the length of the IP header (including possible IP options). 

Discard IP options

67-76

If IP options are present they are discarded by ip_stripoptions. As the comments indicate, 
UDP should save a copy of the IP options and make them available to the receiving process through 
the IP_RECVOPTS socket option, but this isn’t implemented yet. 

77-88

If the length of the first mbuf on the mbuf chain is less than 28 bytes (the size of the IP header plus the 
UDP header), m_pullup rearranges the mbuf chain so that at least 28 bytes are stored contiguously 
in the first mbuf. 

Verify UDP length

89-101

There are two lengths associated with a UDP datagram: the length field in the IP header (ip_len) 
and the length field in the UDP header (uh_ulen). Recall that ipintr subtracted the length of 
the IP header from ip_len before calling udp_input (Figure 10.11). The two lengths are 
compared and there are three possibilities: 

1. ip_len equals uh_ulen. This is the common case.
2. ip_len is greater than uh_ulen. The IP datagram is too big, as shown in Figure 23.22. 
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Figure 23.22. UDP length too small.

 

The code believes the smaller of the two lengths (the UDP header length) and m_adj 
removes the excess bytes of data from the end of the datagram. In the code the second 
argument to m_adj is negative, which we said in Figure 2.20 trims data from the end of the 
mbuf chain. It is possible in this scenario that the UDP length field has been corrupted. If so, 
the datagram will probably be discarded shortly, assuming the sender calculated the UDP 
checksum, that this checksum detects the error, and that the receiver verifies the checksum. 
The IP length field should be correct since it was verified by IP against the amount of data 
received from the interface, and the IP length field is covered by the mandatory IP header 
checksum. 

3. ip_len is less than uh_ulen. The IP datagram is smaller than possible, given the 
length in the UDP header. Figure 23.23 shows this case. 

Figure 23.23. UDP length too big.

 

Something is wrong and the datagram is discarded. There is no other choice here: if the UDP 
length field has been corrupted, it can’t be detected with the UDP checksum. The correct UDP 
length is needed to calculate the checksum. 

As we’ve said, the UDP length is redundant. In Chapter 28 we’ll see that 
TCP does not have a length field in its header it  uses the IP length field, 
minus the lengths of the IP and TCP headers, to determine the amount of 
data in the datagram. Why does the UDP length field exist? Possibly to add a 
small amount of error checking, since UDP checksums are optional. 

Save copy of IP header and verify UDP checksum

102-106

udp_input saves a copy of the IP header before verifying the checksum, because the checksum 
computation wipes out some of the fields in the original IP header. 
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The checksum is verified only if UDP checksums are enabled for the kernel (udpcksum), and if the 
sender calculated a UDP checksum (the received checksum is nonzero). 

This test is incorrect. If the sender calculated a checksum, it should be verified, 
regardless of whether outgoing checksums are calculated or not. The variable 
udpcksum should only specify whether outgoing checksums are calculated. 
Unfortunately many vendors have copied this incorrect test, although many vendors 
today finally ship their kernels with UDP checksums enabled by default. 

111-120

Before calculating the checksum, the IP header is referenced as an ipovly structure (Figure 23.18) 
and the fields are initialized as described in the previous section when the UDP checksum is 
calculated by udp_output.

At this point special code is executed if the datagram is destined for a broadcast or multicast IP 
address. We defer this code until later in the section. 

Demultiplexing Unicast Datagrams

Assuming the datagram is destined for a unicast address, Figure 23.24 shows the code that is executed. 

Figure 23.24. udp_input function: demultiplex unicast datagram.
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Check one-behind cache

206-209

UDP maintains a pointer to the last Internet PCB for which it received a datagram, 
udp_last_inpcb. Before calling in_pcblookup, which might have to search many 
PCBs on the UDP list, the foreign and local addresses and ports of that last PCB are compared against 
the received datagram. This is called a one-behind cache [Partridge and Pink 1993], and it is based on 
the assumption that the next datagram received has a high probability of being destined for the same 
socket as the last received datagram [Mogul 1991]. This cache was introduced with the 4.3BSD Tahoe 
release. 

210-213

The order of the four comparisons between the cached PCB and the received datagram is intentional. 
If the PCBs don’t match, the comparisons should stop as soon as possible. The highest probability is 
that the destination port numbers are different this is therefore the first test. The lowest probability 
of a mismatch is between the local addresses, especially on a host with just one interface, so this is the 
last test. 

Unfortunately this one-behind cache, as coded, is practically useless [Partridge and Pink 1993]. The 
most common type of UDP server binds only its well-known port, leaving its local address, foreign 
address, and foreign port wildcarded. The most common type of UDP client does not connect its UDP 
socket; it specifies the destination address for each datagram using sendto. Therefore most of the 
time the three values in the PCB inp_laddr, inp_faddr, and inp_fport are 
wildcards. In the cache comparison the four values in the received datagram are never wildcards, 
meaning the cache entry will compare equal with the received datagram only when the PCB has all 
four local and foreign values specified to nonwildcard values. This happens only for a connected UDP 
socket. 

On the system bsdi, the counter udpps_pcbcachemiss was 41,253 and 
the counter udps_ipackets was 42,485. This is less than a 3% cache hit rate. 

The netstat -s command prints most of the fields in the udpstat structure 
(Figure 23.5). Unfortunately the Net/3 version, and most vendor’s versions, never 
print udpps_pcbcachemiss. If you want to see the value, use a debugger to 
examine the variable in the running kernel. 

Search all UDP PCBs

214-218

Assuming the comparison with the cached PCB fails, in_pcblookup searches for a match. The 
INPLOOKUP_WILDCARD flag is specified, allowing a wildcard match. If a match is found, the 
pointer to the PCB is saved in udp_last_inpcb, which we said is a cache of the last received 
UDP datagram’s PCB. 

Generate ICMP port unreachable error

220-230

If a matching PCB is not found, UDP normally generates an ICMP port unreachable error. First the 
m_flags for the received mbuf chain is checked to see if the datagram was sent to a link-level 
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broadcast or multicast destination address. It is possible to receive an IP datagram with a unicast IP 
address that was sent to a broadcast or multicast link-level address, but an ICMP port unreachable 
error must not be generated. If it is OK to generate the ICMP error, the IP header is restored to its 
received value (save_ip) and the IP length is also set back to its original value. 

This check for a link-level broadcast or multicast address is redundant. 
icmp_error also performs this check. The only advantage in this redundant 
check is to maintain the counter udps_noportbcast in addition to the counter 
udps_noport.

The addition of iphlen back into ip_len is a bug. icmp_error will also 
do this, causing the IP length field in the IP header returned in the ICMP error to be 
20 bytes too large. You can tell if a system has this bug by adding a few lines of code 
to the Traceroute program (Chapter 8 of Volume 1) to print this field in the ICMP 
port unreachable that is returned when the destination host is finally reached. 

Figure 23.25 is the next section of processing for a unicast datagram, delivering the datagram to the 
socket corresponding to the destination PCB. 
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Figure 23.25. udp_input function: deliver unicast datagram to socket.

 

 
 

Return source IP address and source port

231-236

The source IP address and source port number from the received IP datagram are stored in the global 
sockaddr_in structure udp_in. This structure is passed as an argument to 
sbappendaddr later in the function. 

Using a global to hold the IP address and port number is OK because udp_input is single 
threaded. When this function is called by ipintr it processes the received datagram completely 
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before returning. Also, sbappendaddr copies the socket address structure from the global into an 
mbuf. 

IP_RECVDSTADDR socket option

237-244

The constant INP_CONTROLOPTS is the combination of the three socket options that the process 
can set to cause control information to be returned through the recvmsg system call for a UDP 
socket (Figure 22.5). The IP_RECVDSTADDR socket option returns the destination IP address 
from the received UDP datagram as control information. The function udp_saveopt allocates an 
mbuf of type MT_CONTROL and stores the 4-byte destination IP address in the mbuf. We show this 
function in Section 23.8. 

This socket option appeared with 4.3BSD Reno and was intended for applications 
such as TFTP, the Trivial File Transfer Protocol, that should not respond to client 
requests that are sent to a broadcast address. Unfortunately, even if the receiving 
application uses this option, it is nontrivial to determine if the destination IP address 
is a broadcast address or not (Exercise 23.6). 

When the multicasting changes were added in 4.4BSD, this code was left in only for 
datagrams destined for a unicast address. We’ll see in Figure 23.26 that this option is 
not implemented for datagrams sent to a broadcast of multicast address. This defeats 
the purpose of the option! 
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Figure 23.26. udp_input function: demultiplexing of broadcast 

and multicast datagrams.
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Unimplemented socket options

245-260

This code is commented out because it doesn’t work. The intent of the IP_RECVOPTS socket 
option is to return the IP options from the received datagram as control information, and the intent of 
IP_RECVRETOPTS socket option is to return source route information. The manipulation of the 
mp variable by all three IP_RECV socket options is to build a linked list of up to three mbufs that 
are then placed onto the socket’s buffer by sbappendaddr. The code shown in Figure 23.25 
only returns one option as control information, so the m_next pointer of that mbuf is always a null 
pointer. 

Append data to socket's receive queue

262-272

At this point the received datagram (the mbuf chain pointed to by m), is ready to be placed onto the 
socket’s receive queue along with a socket address structure representing the sender’s IP address and 
port (udp_in), and optional control information (the destination IP address, the mbuf pointed to by 
opts). This is done by sbappendaddr. Before calling this function, however, the pointer and 
lengths of the first mbuf on the chain are adjusted to ignore the IP and UDP headers. Before returning, 
sorwakeup is called for the receiving socket to wake up any processes asleep on the socket’s 
receive queue. 

Error return

273-276

If an error is encountered during UDP input processing, udp_input jumps to the label bad. The 
mbuf chain containing the datagram is released, along with the mbuf chain containing any control 
information (if present). 

Demultiplexing Multicast and Broadcast Datagrams

We now return to the portion of udp_input that handles datagrams sent to a broadcast or 
multicast IP address. The code is shown in Figure 23.26. 

121-138

As the comments indicate, these datagrams are delivered to all sockets that match, not just a single 
socket. The inadequacy of the UDP interface that is mentioned refers to the inability of a process to 
receive asynchronous errors on a UDP socket (notably ICMP port unreachables) unless the socket is 
connected. We described this in Section 22.11. 

139-145

The source IP address and port number are saved in the global sockaddr_in structure 
udp_in, which is passed to sbappendaddr. The mbuf chain’s length and data pointer are 
updated to ignore the IP and UDP headers. 
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146-164

The large for loop scans each UDP PCB to find all matching PCBs. in_pcblookup is not 
called for this demultiplexing because it returns only one PCB, whereas the broadcast or multicast 
datagram may be delivered to more than one PCB. 

If the local port in the PCB doesn’t match the destination port from the received datagram, the entry is 
ignored. If the local address in the PCB is not the wildcard, it is compared to the destination IP address 
and the entry is skipped if they’re not equal. If the foreign address in the PCB is not a wildcard, it is 
compared to the source IP address and if they match, the foreign port must also match the source port. 
This last test assumes that if the socket is connected to a foreign IP address it must also be connected 
to a foreign port, and vice versa. This is the same logic we saw in in_pcblookup.

165-177

If this is not the first match found (last is nonnull), a copy of the datagram is placed onto the 
receive queue for the previous match. Since sbappendaddr releases the mbuf chain when it is 
done, a copy is first made by m_copy. Any processes waiting for this data are awakened by 
sorwakeup. A pointer to this matching socket structure is saved in last.

This use of the variable last avoids calling m_copy (an expensive operation since an entire mbuf 
chain is copied) unless there are multiple recipients for a given datagram. In the common case of a 
single recipient, the for loop just sets last to the single matching PCB, and when the loop 
terminates, sbappendaddr places the mbuf chain onto the socket’s receive queue a copy is not 
made. 

178-188

If this matching socket doesn’t have either the SO_REUSEPORT or the SO_REUSEADDR socket 
option set, then there’s no need to check for additional matches and the loop is terminated. The 
datagram is placed onto the single socket’s receive queue in the call to sbappendaddr outside the 
loop. 

189-197

If last is null at the end of the loop, no matches were found. An ICMP error is not generated 
because the datagram was sent to a broadcast or multicast IP address. 

198-204

The final matching entry (which could be the only matching entry) has the original datagram (m) 
placed onto its receive queue. After sorwakeup is called, udp_input returns, since the 
processing the broadcast or multicast datagram is complete. 

The remainder of the function (shown previously in Figure 23.24) handles unicast datagrams. 

Connected UDP Sockets and Multihomed Hosts

There is a subtle problem when using a connected UDP socket to exchange datagrams with a process 
on a multihomed host. Datagrams from the peer may arrive with a different source IP address and will 
not be delivered to the connected socket. 

Consider the example shown in Figure 23.27. 
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Figure 23.27. Example of connected UDP socket sending datagram to a 

multihomed host.

 

 

Three steps take place. 

1.  The client on bsdi creates a UDP socket and connects it to 140.252.1.29, the PPP interface on 
sun, not the Ethernet interface. A datagram is sent on the socket to the server. 
 
The server on sun receives the datagram and accepts it, even though it arrives on an interface 
that differs from the destination IP address. (sun is acting as a router, so whether it implements 
the weak end system model or the strong end system model doesn’t matter.) The datagram is 
delivered to the server, which is waiting for client requests on an unconnected UDP socket. 

2.  The server sends a reply, but since the reply is being sent on an unconnected UDP socket, the 
source IP address for the reply is chosen by the kernel based on the outgoing interface 
(140.252.13.33). The destination IP address in the request is not used as the source address for the 
reply. 
 
When the reply is received by bsdi it is not delivered to the client’s connected UDP socket 
since the IP addresses don’t match. 

3.  bsdi generates an ICMP port unreachable error since the reply can’t be demultiplexed. (This 
assumes that there is not another process on bsdi eligible to receive the datagram.) 

The problem in this example is that the server does not use the destination IP address from the request 
as the source IP address of the reply. If it did, the problem wouldn’t exist, but this solution is 
nontrivial se e Exercise 23.10. We’ll see in Figure 28.16 that a TCP server uses the destination IP 
address from the client as the source IP address from the server, if the server has not explicitly bound 
a local IP address to its socket. 

23.8. udp_saveopt Function 

If a process specifies the IP_RECVDSTADDR socket option, to receive the destination IP address 
from the received datagram udp_saveopt is called by udp_input:

 801
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   *mp = udp_saveopt((caddr_t) &ip->ip_dst, sizeof(struct 
in_addr),
                     IP_RECVDSTADDR); 
 

Figure 23.28 shows this function. 

Figure 23.28. udp_saveopt function: create mbuf with control information.

 

 

278-289

The arguments are p, a pointer to the information to be stored in the mbuf (the destination IP address 
from the received datagram); size, its size in bytes (4 in this example, the size of an IP address); 
and type, the type of control information (IP_RECVDSTADDR). 

290-299

An mbuf is allocated, and since the code is executing at the software interrupt layer, M_DONTWAIT 
is specified. The pointer cp points to the data portion of the mbuf, and it is cast into a pointer to a 
cmsghdr structure (Figure 16.14). The IP address is copied from the IP header into the data portion 
of the cmsghdr structure by bcopy. The length of the mbuf is then set (to 16 in this example), 
followed by the remainder of the cmsghdr structure. Figure 23.29 shows the final state of the mbuf. 
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Figure 23.29. Mbuf containing destination address from received datagram as 

control information.

 

 

The cmsg_len field contains the length of the cmsghdr structure (12) plus the size of the 
cmsg_data field (4 for this example). If the application calls recvmsg to receive the control 
information, it must go through the cmsghdr structure to determine the type and length of the 
cmsg_data field. 

23.9. udp_ctlinput Function 

When icmp_input receives an ICMP error (destination unreachable, parameter problem, redirect, 
source quench, and time exceeded) the corresponding protocol’s pr_ctlinput function is called: 

    if (ctlfunc = inetsw[ ip_protox[icp->icmp_ip.ip_p] 
].pr_ctlinput)
        (*ctlfunc)(code, (struct sockaddr *)&icmpsrc, &icp-
>icmp_ip);
 

For UDP, Figure 22.32 showed that the function udp_ctlinput is called. We show this function 
in Figure 23.30. 
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Figure 23.30. udp_ctlinput function: process received ICMP errors.

 

 

314-322

The arguments are cmd, one of the PRC_xxx constants from Figure 11.19; sa, a pointer to a 
sockaddr_in structure containing the source IP address from the ICMP message; and ip, a 
pointer to the IP header that caused the error. For the destination unreachable, parameter problem, 
source quench, and time exceeded errors, the pointer ip points to the IP header that caused the error. 
But when udp_ctlinput is called by pfctlinput for redirects (Figure 22.32), sa points to 
a sockaddr_in structure containing the destination address that should be redirected, and ip is a 
null pointer. There is no loss of information in this final case, since we saw in Section 22.11 that a 
redirect is applied to all TCP and UDP sockets connected to the destination address. The nonnull third 
argument is needed, however, for other errors, such as a port unreachable, since the protocol header 
following the IP header contains the unreachable port. 

323-325

If the error is not a redirect, and either the PRC_xxx value is too large or there is no error code in the 
global array inetctlerrmap, the ICMP error is ignored. To understand this test we need to 
review what happens to a received ICMP message. 

1. icmp_input converts the ICMP type and code into a PRC_xxx error code. 
2. The PRC_xxx error code is passed to the protocol’s control-input function. 
3. The Internet protocols (TCP and UDP) map the PRC_xxx error code into one of the Unix 

errno values using inetctlerrmap, and this value is returned to the process. 

Figures 11.1 and 11.2 summarize this processing of ICMP messages. 

Returning to Figure 23.30, we can see what happens to an ICMP source quench that arrives in 
response to a UDP datagram. icmp_input converts the ICMP message into the error 
PRC_QUENCH and udp_ctlinput is called. But since the errno column for this ICMP 
error is blank in Figure 11.2, the error is ignored. 

326-331
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The function in_pcbnotify notifies the appropriate PCBs of the ICMP error. If the third 
argument to udp_ctlinput is nonnull, the source and destination UDP ports from the datagram 
that caused the error are passed to in_pcbnotify along with the source IP address. 

udp_notify Function

The final argument to in_pcbnotify is a pointer to a function that in_pcbnotify calls for 
each PCB that is to receive the error. The function for UDP is udp_notify and we show it in 
Figure 23.31. 

Figure 23.31. udp_notify function: notify process of an asynchronous error.

 

 

301-313

The errno value, the second argument to this function, is stored in the socket’s so_error 
variable. By setting this socket variable, the socket becomes readable and writable if the process calls 
select. Any processes waiting to receive or send on the socket are then awakened to receive the 
error. 

23.10. udp_usrreq Function 

The protocol’s user-request function is called for a variety of operations. We saw in Figure 23.14 that a 
call to any one of the five write functions on a UDP socket ends up calling UDP’s user-request 
function with a request of PRU_SEND.

Figure 23.32 shows the beginning and end of udp_usrreq. The body of the switch is 
discussed in separate figures following this figure. The function arguments are described in Figure 
15.17. 
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Figure 23.32. Body of udp_usrreq function.

 

 

 

417-428

The PRU_CONTROL request is from the ioctl system call. The function in_control 
processes the request completely. 

429-432

The socket pointer was converted to the PCB pointer when inp was declared at the beginning of the 
function. The only time a null PCB pointer is allowed is when a new socket is being created 
(PRU_ATTACH). 

433-436

The comment indicates that whenever entries are being added to or deleted from UDP’s PCB list, the 
code must be protected by splnet. This is done because udp_usrreq is called as part of a 
system call, and it doesn’t want to be interrupted by UDP input (called by IP input, which is called as a 
software interrupt) while it is modifying the doubly linked list of PCBs. UDP input is also blocked 
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while modifying the local or foreign addresses or ports in a PCB, to prevent a received UDP datagram 
from being delivered incorrectly by in_pcblookup.

We now discuss the individual case statements. The PRU_ATTACH request, shown in Figure 
23.33, is from the socket system call. 

Figure 23.33. udp_usrreq function: PRU_ATTACH and PRU_DETACH requests.

 

 

438-447

If the socket structure already points to a PCB, EINVAL is returned. in_pcballoc allocates a 
new PCB, adds it to the front of UDP’s PCB list, and links the socket structure and the PCB to each 
other. 

448-450

soreserve reserves buffer space for a receive buffer and a send buffer for the socket. As noted in 
Figure 16.7, soreserve just enforces system limits; the buffer space is not actually allocated. The 
default values for the send and receive buffer sizes are 9216 bytes (udp_sendspace) and 41,600 
bytes (udp_recvspace). The former allows for a maximum UDP datagram size of 9200 bytes 
(to hold 8 Kbytes of data in an NFS packet), plus the 16-byte sockaddr_in structure for the 
destination address. The latter allows for 40 1024-byte datagrams to be queued at one time for the 
socket. The process can change these defaults by calling setsockopt.

451-452

There are two fields in the prototype IP header in the PCB that the process can change by calling 
setsockopt: the TTL and the TOS. The TTL defaults to 64 (ip_defttl) and the TOS 
defaults to 0 (normal service), since the PCB is initialized to 0 by in_pcballoc.

453-455

 807

The close system call issues the PRU_DETACH request. The function udp_detach, shown 
in Figure 23.34, is called. This function is also called later in this section for the PRU_ABORT 
request. 
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Figure 23.34. udp_detach function: delete a UDP PCB.

 

 

If the last-received PCB pointer (the one-behind cache) points to the PCB being detached, the cache 
pointer is set to the head of the UDP list (udb). The function in_pcbdetach removes the PCB 
from UDP’s list and releases the PCB. 

Returning to udp_usrreq, a PRU_BIND request is the result of the bind system call and a 
PRU_LISTEN request is the result of the listen system call. Both are shown in Figure 23.35. 

Figure 23.35. udp_usrreq function: PRU_BIND and PRU_LISTEN requests.

 

 

456-460

All the work for a PRU_BIND request is done by in_pcbbind.

461-463

The PRU_LISTEN request is invalid for a connectionless protocol it is  used only by connection-
oriented protocols. 

We mentioned earlier that a UDP application, either a client or server (normally a client), can call 
connect. This fixes the foreign IP address and port number that this socket can send to or receive 
from. Figure 23.36 shows the PRU_CONNECT, PRU_CONNECT2, and PRU_ACCEPT 
requests. 
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Figure 23.36. udp_usrreq function: PRU_CONNECT, PRU_CONNECT2, and 

PRU_ACCEPT requests.

 

 

464-474

If the socket is already connected, EISCONN is returned. The socket should never be connected at 
this point, because a call to connect on an already-connected UDP socket generates a 
PRU_DISCONNECT request before this PRU_CONNECT request. Otherwise 
in_pcbconnect does all the work. If no errors are encountered, soisconnected marks 
the socket structure as being connected. 

475-477

The socketpair system call issues the PRU_CONNECT2 request, which is defined only for the 
Unix domain protocols. 

478-480

The PRU_ACCEPT request is from the accept system call, which is defined only for connection-
oriented protocols. 

The PRU_DISCONNECT request can occur in two cases for a UDP socket: 

1. When a connected UDP socket is closed, PRU_DISCONNECT is called before 
PRU_DETACH. 

2. When a connect is issued on an already-connected UDP socket, soconnect issues the 
PRU_DISCONNECT request before the PRU_CONNECT request. 

Figure 23.37 shows the PRU_DISCONNECT request. 
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Figure 23.37. udp_usrreq function: PRU_DISCONNECT request.

 

 

If the socket is not already connected, ENOTCONN is returned. Otherwise 
in_pcbdisconnect sets the foreign IP address to 0.0.0.0 and the foreign port to 0. The local 
address is also set to 0.0.0.0, since this PCB variable could have been set by connect.

A call to shutdown specifying that the process has finished sending data generates the 
PRU_SHUTDOWN request, although it is rare for a process to issue this system call for a UDP 
socket. Figure 23.38 shows the PRU_SHUTDOWN, PRU_SEND, and PRU_ABORT requests. 

Figure 23.38. udp_usrreq function: PRU_SHUTDOWN, PRU_SEND, and 

PRU_ABORT requests.

 

 

492-494

socantsendmore sets the socket’s flags to prevent any future output. 

495-496

In Figure 23.14 we showed how the five write functions ended up calling udp_usrreq with a 
PRU_SEND request. udp_output sends the datagram. udp_usrreq returns, to avoid falling 
through to the label release (Figure 23.32), since the mbuf chain containing the data (m) must not 
be released yet. IP output appends this mbuf chain to the appropriate interface output queue, and the 
device driver will release the mbuf when the data has been transmitted. 

The only buffering of UDP output within the kernel is on the interface’s output queue. If there is room 
in the socket’s send buffer for the datagram and destination address, sosend calls 
udp_usrreq, which we see calls udp_output. We saw in Figure 23.20 that ip_output 
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is then called, which calls ether_output for an Ethernet, placing the datagram onto the 
interface’s output queue (if there is room). If the process calls sendto faster than the interface can 
transmit the datagrams, ether_output can return ENOBUFS, which is returned to the process. 

497-500

A PRU_ABORT request should never be generated for a UDP socket, but if it is, the socket is 
disconnected and the PCB detached. 

The PRU_SOCKADDR and PRU_PEERADDR requests are from the getsockname and 
getpeername system calls, respectively. These two requests, and the PRU_SENSE request, are 
shown in Figure 23.39. 

Figure 23.39. udp_usrreq function: PRU_SOCKADDR, PRU_PEERADDR, and 

PRU_SENSE requests.

 

 

501-506

The functions in_setsockaddr and in_setpeeraddr fetch the information from the 
PCB, storing the result in the addr argument. 

507-511

The fstat system call generates the PRU_SENSE request. The function returns OK, but doesn’t 
return any other information. We’ll see later that TCP returns the size of the send buffer as the 
st_blksize element of the stat structure. 

The remaining seven PRU_xxx requests, shown in Figure 23.40, are not supported for a UDP socket. 
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Figure 23.40. udp_usrreq function: unsupported requests.

 

 

There is a slight difference in how the last two are handled because PRU_RCVD doesn’t pass a 
pointer to an mbuf as an argument (m is a null pointer) and PRU_RCVOOB passes a pointer to an 
mbuf for the protocol to fill in. In both cases the error is immediately returned, without breaking out of 
the switch and releasing the mbuf chain. With PRU_RCVOOB the caller releases the mbuf that it 
allocated. 

 

23.11. udp_sysctl Function 

The sysctl function for UDP supports only a single option, the UDP checksum flag. The system 
administrator can enable or disable UDP checksums using the sysctl(8) program. Figure 23.41 
shows the udp_sysctl function. This function calls sysctl_int to fetch or set the value of 
the integer udpcksum.

Figure 23.41. udp_sysctl function.

 

23.12. Implementation Refinements 
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UDP PCB Cache 

In Section 22.12 we talked about some general features of PCB searching and how the code we’ve 
seen uses a linear search of the protocol’s PCB list. We now tie this together with the one-behind 
cache used by UDP in Figure 23.24. 

The problem with the one-behind cache occurs when the cached PCB contains wildcard values (for 
either the local address, foreign address, or foreign port): the cached value never matches any received 
datagram. One solution tested in [Partridge and Pink 1993] is to modify the cache to not compare 
wildcarded values. That is, instead of comparing the foreign address in the PCB with the source 
address in the datagram, compare these two values only if the foreign address in the PCB is not a 
wildcard. 

There’s a subtle problem with this approach [Partridge and Pink 1993]. Assume there are two sockets 
bound to local port 555. One has the remaining three elements wildcarded, while the other has 
connected to the foreign address 128.1.2.3 and the foreign port 1600. If we cache the first PCB and a 
datagram arrives from 128.1.2.3, port 1600, we can’t ignore comparing the foreign addresses just 
because the cached value has a wildcarded foreign address. This is called cache hiding. The cached 
PCB has hidden another PCB that is a better match in this example. 

To get around cache hiding requires more work when a new entry is added to or deleted from the 
cache. Those PCBs that hide other PCBs cannot be cached. This is not a problem, however, because 
the normal scenario is to have one socket per local port. The example we just gave with two sockets 
bound to local port 555, while possible (especially on a multihomed host), is rare. 

The next enhancement tested in [Partridge and Pink 1993] is to also remember the PCB of the last 
datagram sent. This is motivated by [Mogul 1991], who shows that half of all datagrams received are 
replies to the last datagram that was sent. Cache hiding is a problem here also, so PCBs that would 
hide other PCBs are not cached. 

The results of these two caches shown in [Partridge and Pink 1993] on a general-purpose system 
measured for around 100,000 received UDP datagrams show a 57% hit rate for the last-received PCB 
cache and a 30% hit rate for the last-sent PCB cache. The amount of CPU time spent in 
udp_input is more than halved, compared to the version with no caching. 

These two caches still depend on a certain amount of locality: that with a high probability the UDP 
datagram that just arrived is either from the same peer as the last UDP datagram received or from the 
peer to whom the last datagram was sent. The latter is typical for request-response applications that 
send a datagram and wait for a reply. [McKenney and Dove 1992] show that some applications, such 
as data entry into an online transaction processing (OLTP) system, don’t yield the high cache hit rates 
that [Partridge and Pink 1993] observed. As we mentioned in Section 22.12, placing the PCBs onto 
hash chains provided an order of magnitude improvement over the last-received and last-sent caches 
for a system with thousands of OLTP connections. 

UDP Checksum

The next area for improving the implementation is to combine the copying of data between the 
process and the kernel with the calculation of the checksum. In Net/3, each byte of data is processed 
twice during an output operation: once when copied from the process into an mbuf (the function 
uiomove, which is called by sosend), and again when the UDP checksum is calculated (by the 
function in_cksum, which is called by udp_output). This happens on input as well as 
output. 

[Partridge and Pink 1993] modified the UDP output processing from what we showed in Figure 23.14 
so that a UDP-specific function named udp_sosend is called instead of sosend. This new 
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function calculates the checksum of the UDP header and the pseudo-header in-line (instead of calling 
the general-purpose function in_cksum) and then copies the data from the process into an mbuf 
chain using a special function named in_uiomove (instead of the general-purpose uiomove). 
This new function copies the data and updates the checksum. The amount of time spent copying the 
data and calculating the checksum is reduced with this technique by about 40 to 45%. 

On the receive side the scenario is different. UDP calculates the checksum of the UDP header and the 
pseudo-header, removes the UDP header, and queues the data for the appropriate socket. When the 
application reads the data, a special version of soreceive (called udp_soreceive) 
completes the calculation of the checksum while copying the data into the user’s buffer. If the 
checksum is in error, however, the error is not detected until the entire datagram has been copied into 
the user’s buffer. In the normal case of a blocking socket, udp_soreceive just waits for the next 
datagram to arrive. But if the socket is nonblocking, the error EWOULDBLOCK must be returned if 
another datagram is not ready to be passed to the process. This implies two changes in the socket 
interface for a nonblocking read from a UDP socket: 

1. The select function can indicate that a nonblocking UDP socket is readable, yet the error 
EWOULDBLOCK is unexpectedly returned by one of the read functions if the checksum 
fails. 

2. Since a checksum error is detected after the datagram has been copied into the user’s buffer, 
the application’s buffer is changed even though no data is returned by the read. 

Even with a blocking socket, if the datagram with the checksum error contains 100 bytes of data and 
the next datagram without an error contains 40 bytes of data, recvfrom returns a length of 40, but 
the 60 bytes that follow in the user’s buffer have also been modified. 

[Partridge and Pink 1993] compare the timings for a copy versus a copy-with-checksum for six 
different computers. They show that the checksum is calculated for free during the copy operation on 
many architectures. This occurs when memory access speeds and CPU processing speeds are 
mismatched, as is true for many current RISC processors. 

23.13. Summary 

UDP is a simple, connectionless protocol, which is why we cover it before looking at TCP. UDP 
output is simple: IP and UDP headers are prepended to the user’s data, as much of the header is filled 
in as possible, and the result is passed to ip_output. The only complication is calculating the 
UDP checksum, which involves prepending a pseudo-header just for the checksum computation. We’ll 
encounter a similar pseudo-header for the calculation of the TCP checksum in Chapter 26. 

When udp_input receives a datagram, it first performs a general validation (the length and 
checksum); the processing then differs depending on whether the destination IP address is a unicast 
address or a broadcast or multicast address. A unicast datagram is delivered to at most one process, 
but a broadcast or multicast datagram can be delivered to multiple processes. A one-behind cache is 
maintained for unicast datagrams, which maintains a pointer to the last Internet PCB for which a UDP 
datagram was received. We saw, however, that because of the prevalence of wildcard addressing with 
UDP applications, this cache is practically useless. 

The udp_ctlinput function is called to handle received ICMP messages, and the 
udp_usrreq function handles the PRU_xxx requests from the socket layer. 

Exercises

23.1 List the five types of mbuf chains that udp_output passes to ip_output. (Hint: 
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look at sosend.) 

23.2 What happens to the answer for the previous exercise when the process specifies IP 
options for the outgoing datagram? 

23.3 Does a UDP client need to call bind? Why or why not? 

23.4 What happens to the processor priority level in udp_output if the socket is 
unconnected and the call to M_PREPEND in Figure 23.15 fails? 

23.5 udp_output does not check for a destination port of 0. Is it possible to send a UDP 
datagram with a destination port of 0? 

23.6 Assuming the IP_RECVDSTADDR socket option worked when a datagram was sent to 
a broadcast address, how can you then determine if this address is a broadcast address? 

23.7 Who releases the mbuf that udp_saveopt (Figure 23.28) allocates? 

23.8 How can a process disconnect a connected UDP socket? That is, the process calls 
connect and exchanges datagrams with that peer, and then the process wants to 
disconnect the socket, allowing it to call sendto and send a datagram to some other 
host. 

23.9 In our discussion of Figure 22.25 we noted that a UDP application that calls connect 
with a foreign IP address of 255.255.255.255 actually sends datagrams out the primary 
interface with a destination IP address corresponding to the broadcast address of that 
interface. What happens if a UDP application uses an unconnected socket instead, calling 
sendto with a destination address of 255.255.255.255? 

23.10 After discussing the problem with Figure 23.27, we mentioned that this problem would not 
exist if the server used the destination IP address from the request as the source IP address 
of the reply. Explain how the server could do this. 

23.11 Implement changes to allow a process to perform path MTU discovery using UDP: the 
process must be able to set the "don’t fragment" bit in the resulting IP datagram and be told 
if the corresponding ICMP destination unreachable error is received. 

23.12 Does the variable udp_in need to be global? 

23.13 Modify udp_input to save the IP options and make them available to the receiver 
with the IP_RECVOPTS socket option. 

23.14 Fix the one-behind cache in Figure 23.24. 

23.15 Fix udp_input to implement the IP_RECVOPTS and IP_RETOPTS socket options. 
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23.16 Fix udp_input so that the IP_RECVDSTADDR socket option works for datagrams 
sent to a broadcast or multicast address. 
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Chapter 24. TCP: Transmission Control Protocol 

24.1. Introduction 

The Transmission Control Protocol, or TCP, provides a connection-oriented, reliable, byte-stream 
service between the two end points of an application. This is completely different from UDP’s 
connectionless, unreliable, datagram service. 

The implementation of UDP presented in Chapter 23 comprised 9 functions and about 800 lines of C 
code. The TCP implementation we’re about to describe comprises 28 functions and almost 4,500 lines 
of C code. Therefore we divide the presentation of TCP into multiple chapters. 

These chapters are not an introduction to TCP. We assume the reader is familiar with the operation of 
TCP from Chapters 17—24 of Volume 1. 

24.2. Code Introduction 

The TCP functions appear in six C files and numerous TCP definitions are in seven headers, as shown 
in Figure 24.1. 

Figure 24.1. Files discussed in the TCP chapters.

 

 

Figure 24.2 shows the relationship of the various TCP functions to other kernel functions. The shaded 
ellipses are the nine main TCP functions that we cover. Eight of these functions appear in the TCP 
protosw structure (Figure 24.8) and the ninth is tcp_output.
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Figure 24.2. Relationship of TCP functions to rest of the kernel.

 

 
 

Global Variables

Figure 24.3 shows the global variables we encounter throughout the TCP functions. 

Figure 24.3. Global variables introduced in the following chapters.
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Statistics

Various TCP statistics are maintained in the global structure tcpstat, described in Figure 24.4. 
We’ll see where these counters are incremented as we proceed through the code. 

Figure 24.4. TCP statistics maintained in the tcpstat structure.

 

 

Figure 24.5 shows some sample output of these statistics, from the netstat –s command. These 
statistics were collected after the host had been up for 30 days. Since some counters come in pairs
one counts the number of packets and the other the number of bytes we abbreviate these in the 
figure. For example, the two counters for the second line of the table are tcps_sndpack and 
tcps_sndbyte.
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Figure 24.5. Sample TCP statistics.

 

 

The counter for tcps_sndbyte should be 3,722,884,824, not -22,194,928 bytes. 
This is an average of about 405 bytes per segment, which makes sense. Similarly, the 
counter for tcps_rcvackbyte should be 3,738,811,552, not -21,264,360 bytes 
(for an average of about 565 bytes per segment). These numbers are incorrectly 
printed as negative numbers because the printf calls in the netstat program use 
%d (signed decimal) instead of %lu (long integer, unsigned decimal). All the 
counters are unsigned long integers, and these two counters are near the maximum 
value of an unsigned 32-bit long integer (232—1=4,294,967,295). 

SNMP Variables

Figure 24.6 shows the 14 simple SNMP variables in the TCP group and the counters from the 
tcpstat structure implementing that variable. The constant values shown for the first four entries are 
fixed by the Net/3 implementation. The counter tcpCurrEstab is computed as the number of 
Internet PCBs on the TCP PCB list. 
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Figure 24.6. Simple SNMP variables in tcp group.

 

 

Figure 24.7 shows tcpTable, the TCP listener table. 

Figure 24.7. Variables in TCP listener table: tcpTable.

 

 

The first PCB variable (t_state) is from the TCP control block (Figure 24.13) and the remaining 
four are from the Internet PCB (Figure 22.4). 

24.3. TCP protosw Structure 

Figure 24.8 lists the TCP protosw structure, the protocol switch entry for TCP. 
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Figure 24.8. The TCP protosw structure.

 

 

24.4. TCP Header 

The TCP header is defined as a tcphdr structure. Figure 24.9 shows the C structure and Figure 24.10 
shows a picture of the TCP header. 

Figure 24.9. tcphdr structure.
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Figure 24.10. TCP header and optional data.

 

 

Most RFCs, most books (including Volume 1), and the code we’ll examine call 
th_urp the urgent pointer. A better term is the urgent offset, since this field is a 16-
bit unsigned offset that must be added to the sequence number field (th_seq) to 
give the 32-bit sequence number of the last byte of urgent data. (There is a 
continuing debate over whether this sequence number points to the last byte of urgent 
data or to the byte that follows. This is immaterial for the present discussion.) We’ll 
see in Figure 24.13 that TCP correctly calls the 32-bit sequence number of the last 
byte of urgent data snd_up the send urgent pointer. But using the term pointer for 
the 16-bit offset in the TCP header is misleading. In Exercise 26.6 we’ll reiterate the 
distinction between the urgent pointer and the urgent offset. 

The 4-bit header length, the 6 reserved bits that follow, and the 6 flag bits are defined in C as two 4-bit 
bit-fields, followed by 8 bits of flags. To handle the difference in the order of these 4-bit fields within 
an 8-bit byte, the code contains an #ifdef based on the byte order of the system. 

Also notice that we call the 4-bit th_off the header length, while the C code calls it the data offset. 
Both are correct since it is the length of the TCP header, including options, in 32-bit words, which is 
the offset of the first byte of data. 

The th_flags member contains 6 flag bits, accessed using the names in Figure 24.11. 

Figure 24.11. th_flags values.
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In Net/3 the TCP header is normally referenced as an IP header immediately followed by a TCP 
header. This is how tcp_input processes received IP datagrams and how tcp_output builds 
outgoing IP datagrams. This combined IP/TCP header is a tcpiphdr structure, shown in Figure 
24.12. 

Figure 24.12. tcpiphdr structure: combined IP/TCP header.

 

 

38-58

The 20-byte IP header is defined as an ipovly structure, which we showed earlier in Figure 23.12. 
As we discussed with Figure 23.19, this structure is not a real IP header, although the lengths are the 
same (20 bytes). 

24.5. TCP Control Block 

In Figure 22.1 we showed that TCP maintains its own control block, a tcpcb structure, in addition to 
the standard Internet PCB. In contrast, UDP has everything it needs in the Internet PCB it doesn’t 
need its own control block. 

The TCP control block is a large structure, occupying 140 bytes. As shown in Figure 22.1 there is a 
one-to-one relationship between the Internet PCB and the TCP control block, and each points to the 
other. Figure 24.13 shows the definition of the TCP control block. 
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Figure 24.13. tcpcb structure: TCP control block.
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We’ll save the discussion of these variables until we encounter them in the code. 

Figure 24.14 shows the values for the t_flags member. 

Figure 24.14. t_flags values.

 

 

24.6. TCP State Transition Diagram 

Many of TCP’s actions, in response to different types of segments arriving on a connection, can be 
summarized in a state transition diagram, shown in Figure 24.15. We also duplicate this diagram on 
one of the front end papers, for easy reference while reading the TCP chapters. 
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Figure 24.15. TCP state transition diagram.

 

 

These state transitions define the TCP finite state machine. Although the transition from LISTEN to 
SYN_SENT is allowed by TCP, there is no way to do this using the sockets API (i.e., a connect is 
not allowed after a listen). 

The t_state member of the control block holds the current state of a connection, with the values 
shown in Figure 24.16. 
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Figure 24.16. t_state values.

 

 

This figure also shows the tcp_outflags array, which contains the outgoing flags for 
tcp_output to use when the connection is in that state. 

Figure 24.16 also shows the numerical values of these constants since the code uses their numerical 
relationships. For example, the following two macros are defined: 

    #define  TCPS_HAVERCVDSYN(s)   ((s) >= TCPS_SYN_RECEIVED) 
    #define  TCPS_HAVERCVDFIN(s)   ((s) >= TCPS_TIME_WAIT) 
 

Similarly, we’ll see that tcp_notify handles ICMP errors differently when the connection is not yet 
established, that is, when t_state is less than TCPS_ESTABLISHED.

The name TCPS_HAVERCVDSYN is correct, but the name TCPS_HAVERCVDFIN is 
misleading. A FIN has also been received in the CLOSE_WAIT, CLOSING, and 
LAST_ACK states. We encounter this macro in Chapter 29. 

Half-Close

When a process calls shutdown with a second argument of 1, it is called a half-close. TCP sends a 
FIN but allows the process to continue receiving on the socket. (Section 18.5 of Volume 1 contains 
examples of TCP’s half-close.) 

For example, even though we label the ESTABLISHED state "data transfer," if the process does a 
half-close, moving the connection to the FIN_WAIT_1 and then the FIN_WAIT_2 states, data can 
continue to be received by the process in these two states. 

24.7. TCP Sequence Numbers 

Every byte of data exchanged across a TCP connection, along with the SYN and FIN flags, is assigned 
a 32-bit sequence number. The sequence number field in the TCP header (Figure 24.10) contains the 
sequence number of the first byte of data in the segment. The acknowledgment number field in the 
TCP header contains the next sequence number that the sender of the ACK expects to receive, which 
acknowledges all data bytes through the acknowledgment number minus 1. In other words, the 
acknowledgment number is the next sequence number expected by the sender of the ACK. The 
acknowledgment number is valid only if the ACK flag is set in the header. We’ll see that TCP always 
sets the ACK flag except for the first SYN sent by an active open (the SYN_SENT state; see 
tcp_outflags[2] in Figure 24.16) and in some RST segments. 
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Since a TCP connection is full-duplex, each end must maintain a set of sequence numbers for both 
directions of data flow. In the TCP control block (Figure 24.13) there are 13 sequence numbers: eight 
for the send direction (the send sequence space) and five for the receive direction (the receive 
sequence space). 

Figure 24.17 shows the relationship of four of the variables in the send sequence space: snd_wnd,
snd_una, snd_nxt, and snd_max. In this example we number the bytes 1 through 11. 

Figure 24.17. Example of send sequence space.

 

 

An acceptable ACK is one for which the following inequality holds: 

snd_una < acknowledgment field <= snd_max

In Figure 24.17 an acceptable ACK has an acknowledgment field of 5, 6, or 7. An acknowledgment 
field less than or equal to snd_una is a duplicate ACK it acknowledges data that has already been 
ACKed, or else snd_una would not have incremented past those bytes. 

We encounter the following test a few times in tcp_output, which is true if a segment is being 
retransmitted: 

   snd_nxt < snd_max 
 

Figure 24.18 shows the other end of the connection in Figure 24.17: the receive sequence space, 
assuming the segment containing sequence numbers 4, 5, and 6 has not been received yet. We show 
the three variables rcv_nxt, rcv_wnd, and rcv_adv.

 829



ptg11539634

Figure 24.18. Example of receive sequence space.

 

 

The receiver considers a received segment valid if it contains data within the window, that is, if either 
of the following two inequalities is true: 

rcv_nxt <= beginning sequence number of segment < rcv_nxt + rcv_wnd

rcv_nxt <= ending sequence number of segment < rcv_nxt + rcv_wnd

The beginning sequence number of a segment is just the sequence number field in the TCP header, 
ti_seq. The ending sequence number is the sequence number field plus the number of bytes of TCP 
data, minus 1. 

For example, Figure 24.19 could represent the TCP segment containing the 3 bytes with sequence 
numbers 4, 5, and 6 in Figure 24.17. 

Figure 24.19. TCP segment transmitted as an IP datagram.

 

 

We assume that there are 8 bytes of IP options and 12 bytes of TCP options. Figure 24.20 shows the 
values of the relevant variables. 

Figure 24.20. Values of variables corresponding to Figure 24.19.
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ti_len is not a field that is transmitted in the TCP header. Instead, it is computed as shown in Figure 
24.20 and stored in the overlaid IP structure (Figure 24.12) once the received header fields have been 
checksummed and verified. The last value in this figure is not stored in the header, but is computed 
from the other values when needed. 

Modular Arithmetic with Sequence Numbers

A problem that TCP must deal with is that the sequence numbers are from a finite 32-bit number 
space: 0 through 4,294,967,295. If more than 232 bytes of data are exchanged across a TCP 
connection, the sequence numbers will be reused. Sequence numbers wrap around from 4,294,967,295 
to 0. 

Even if less than 232 bytes of data are exchanged, wrap around is still a problem because the sequence 
numbers for a connection don’t necessarily start at 0. The initial sequence number for each direction of 
data flow across a connection can start anywhere between 0 and 4,294,967,295. This complicates the 
comparison of sequence numbers. For example, sequence number 1 is "greater than" 4,294,967,295, 
as we discuss below. 

TCP sequence numbers are defined as unsigned longs in tcp.h:

    typedef  u_long  tcp_seq; 
 

The four macros shown in Figure 24.21 compare sequence numbers. 

Figure 24.21. Macros for TCP sequence number comparison.

 

 
 

Example—Sequence Number Comparisons

Let’s look at an example to see how TCP’s sequence numbers operate. Assume 3-bit sequence 
numbers, 0 through 7. Figure 24.22 shows these eight sequence numbers, their 3-bit binary 
representation, and their two’s complement representation. (To form the two’s complement take the 
binary number, convert each 0 to a 1 and vice versa, then add 1.) We show the two’s complement 
because to form a - b we just add a to the two’s complement of b.
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Figure 24.22. Example using 3-bit sequence numbers.

 

 

The final three columns of this table are 0 minus x, 1 minus x, and 2 minus x. In these final three 
columns, if the value is considered to be a signed integer (notice the cast to int in all four macros in 
Figure 24.21), the value is less than 0 (the SEQ_LT macro) if the high-order bit is 1, and the value is 
greater than 0 (the SEQ_GT macro) if the high-order bit is 0 and the value is not 0. We show 
horizontal lines in these final three columns to distinguish between the four negative and the four 
nonnegative values. 

If we look at the fourth column of Figure 24.22, (labeled "0 - x"), we see that 0 (i.e., x), is less than 1, 
2, 3, and 4 (the high-order bit of the result is 1), and 0 is greater than 5, 6, and 7 (the high-order bit is 0 
and the result is not 0). We show this relationship pictorially in Figure 24.23. 

Figure 24.23. TCP sequence number comparisons for 3-bit sequence numbers.

 

 

Figure 24.24 shows a similar figure using the fifth row of the table (1 - x). 

Figure 24.24. TCP sequence number comparisons for 3-bit sequence numbers.

 

 

Figure 24.25 is another representation of the two previous figures, using circles to reiterate the wrap 
around of sequence numbers. 
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Figure 24.25. Another way to visualize Figures 24.23 and 24.24.

 

 

With regard to TCP, these sequence number comparisons determine whether a given sequence number 
is in the future or in the past (a retransmission). For example, using Figure 24.24, if TCP is expecting 
sequence number 1 and sequence number 6 arrives, since 6 is less than 1 using the sequence number 
arithmetic we showed, the data byte is considered a retransmission of a previously received data byte 
and is discarded. But if sequence number 5 is received, since it is greater than 1 it is considered a 
future data byte and is saved by TCP, awaiting the arrival of the missing bytes 2, 3, and 4 (assuming 
byte 5 is within the receive window). 

Figure 24.26 is an expansion of the left circle in Figure 24.25, using TCP’s 32-bit sequence numbers 
instead of 3-bit sequence numbers. 

Figure 24.26. Comparisons against 0, using 32-bit sequence numbers.

 

 

The right circle in Figure 24.26 is to reiterate that one-half of the 32-bit sequence space uses 231 
numbers. 

24.8. tcp_init Function 

The domaininit function calls TCP’s initialization function, tcp_init (Figure 24.27), at system 
initialization time. 
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Figure 24.27. tcp_init function.

 

 
 

Set initial send sequence number (ISS)

46

The initial send sequence number (ISS), tcp_iss, is initialized to 1. As the comment indicates, this 
is wrong. We discuss the implications behind this choice shortly, when we describe TCP’s quiet time. 
Compare this to the initialization of the IP identifier in Figure 7.23, which used the time-of-day clock. 

Initialize linked list of TCP Internet PCBs

47

The next and previous pointers in the head PCB (tcb) point to itself. This is an empty doubly linked 
list. The remainder of the tcb PCB is initialized to 0 (all uninitialized globals are set to 0), although 
the only other field used in this head PCB is inp_lport, the next TCP ephemeral port number to 
allocate. The first ephemeral port used by TCP will be 1024, for the reasons described in the solution 
for Exercise 22.4. 

Calculate maximum protocol header length

48-51

If the maximum protocol header encountered so far is less than 40 bytes, max_protohdr is set to 40 
(the size of the combined IP and TCP headers, without any options). This variable is described in 
Figure 7.17. If the sum of max_linkhdr (normally 16) and 40 is greater than the amount of data that 
fits into an mbuf with a packet header (100 bytes, MHLEN from Figure 2.7), the kernel panics (Exercise 
24.2). 

MSL and Quiet Time Concept

TCP requires any host that crashes without retaining any knowledge of the last sequence numbers 
used on active connections to refrain from sending any TCP segments for one MSL (2 minutes, the 
quiet time) on reboot. Few TCPs, if any, retain this knowledge over a crash or operator shutdown. 

MSL is the maximum segment lifetime. Each implementation chooses a value for the MSL. It is the 
maximum amount of time any segment can exist in the network before being discarded. A connection 
that is actively closed remains in the CLOSE_WAIT state (Figure 24.15) for twice the MSL. 
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RFC 793 [Postel 1981c] recommends an MSL of 2 minutes, but Net/3 uses an MSL 
of 30 seconds (the constant TCPTV_MSL in Figure 25.3). 

The problem occurs if packets are delayed somewhere in the network (RFC 793 calls these wandering 
duplicates). Assume a Net/3 system starts up, initializes tcp_iss to 1 (as in Figure 24.27) and then 
crashes just after the sequence numbers wrap. We’ll see in Section 25.5 that TCP increments 
tcp_iss by 128,000 every second, causing the wrap around of the ISS to occur about 9.3 hours after 
rebooting. Also, tcp_iss is incremented by 64,000 each time a connect is issued, which can cause 
the wrap around to occur earlier than 9.3 hours. The following scenario is one example of how an old 
segment can incorrectly be delivered to a connection: 

1. A client and server have an established connection. The client’s port number is 1024. The 
client sends a data segment with a starting sequence number of 2. This data segment gets 
trapped in a routing loop somewhere between the two end points and is not delivered to the 
server. This data segment becomes a wandering duplicate. 

2. The client retransmits the data segment starting with sequence number 2, which is delivered 
to the server. 

3. The client closes the connection. 
4. The client host crashes. 
5. The client host reboots about 40 seconds after crashing, causing TCP to initialize tcp_iss to 

1 again. 
6. Another connection is immediately established by the same client to the same server, using 

the same socket pair: the client uses 1024 again, and the server uses its well-known port. The 
client’s SYN uses sequence number 1. This new connection using the same socket pair is 
called a new incarnation of the old connection. 

7. The wandering duplicate from step 1 is delivered to the server, and it thinks this datagram 
belongs to the new connection, when it is really from the old connection. 

Figure 24.28 is a time line of this sequence of steps. 

Figure 24.28. Example of old segment delivered to new incarnation of a 

connection.

 

 

This problem exists even if the rebooting TCP were to use an algorithm based on its time-of-day clock 
to choose the ISS on rebooting: regardless of the ISS for the previous incarnation of a connection, 
because of sequence number wrap it is possible for the ISS after rebooting to nearly equal the 
sequence number in use before the reboot. 

 835



ptg11539634

 836

Besides saving the sequence number of all established connections, the only other way around this 
problem is for the rebooting TCP to be quiet (i.e., not send any TCP segments) for MSL seconds after 
crashing. Few TCPs do this, however, since it takes most hosts longer than MSL seconds just to 
reboot. 

24.9. Summary 

This chapter is an introduction to the TCP source code in the six chapters that follow. TCP maintains 
its own control block for each connection, containing all the variable and state information for the 
connection. 

A state transition diagram is defined for TCP that shows under what conditions TCP moves from one 
state to another and what segments get sent by TCP for each transition. This diagram shows how 
connections are established and terminated. We’ll refer to this state transition diagram frequently in 
our description of TCP. 

Every byte exchanged across a TCP connection has an associated sequence number, and TCP 
maintains numerous sequence numbers in the connection control block: some for sending and some 
for receiving (since TCP is full-duplex). Since these sequence numbers are from a finite 32-bit 
sequence space, they wrap around from the maximum value back to 0. We explained how the 
sequence numbers are compared to each other using less-than and greater-than tests, which we’ll 
encounter repeatedly in the TCP code. 

Finally, we looked at one of the simplest of the TCP functions, tcp_init, which initializes TCP’s 
linked list of Internet PCBs. We also discussed TCP’s choice of an initial send sequence number, 
which is used when actively opening a connection. 

Exercises

24.1 What is the average number of bytes transmitted and received per connection from the 
statistics in Figure 24.5? 

24.2 Is the kernel panic in tcp_init reasonable? 

24.3 Execute netstat -a to see how many TCP end points your system currently has active. 
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Chapter 25. TCP Timers 

25.1. Introduction 

We start our detailed description of the TCP source code by looking at the various TCP timers. We 
encounter these timers throughout most of the TCP functions. 

TCP maintains seven timers for each connection. They are briefly described here, in the approximate 
order of their occurrence during the lifetime of a connection. 

1. A connection-establishment timer starts when a SYN is sent to establish a new connection. If 
a response is not received within 75 seconds, the connection establishment is aborted. 

2. A retransmission timer is set when TCP sends data. If the data is not acknowledged by the 
other end when this timer expires, TCP retransmits the data. The value of this timer (i.e., the 
amount of time TCP waits for an acknowledgment) is calculated dynamically, based on the 
round-trip time measured by TCP for this connection, and based on the number of times this 
data segment has been retransmitted. The retransmission timer is bounded by TCP to be 
between 1 and 64 seconds. 

3. A delayed ACK timer is set when TCP receives data that must be acknowledged, but need not 
be acknowledged immediately. Instead, TCP waits up to 200 ms before sending the ACK. If, 
during this 200-ms time period, TCP has data to send on this connection, the pending 
acknowledgment is sent along with the data (called piggybacking). 

4. A persist timer is set when the other end of a connection advertises a window of 0, stopping 
TCP from sending data. Since window advertisements from the other end are not sent reliably 
(that is, ACKs are not acknowledged, only data is acknowledged), there’s a chance that a 
future window update, allowing TCP to send some data, can be lost. Therefore, if TCP has 
data to send and the other end advertises a window of 0, the persist timer is set and when it 
expires, 1 byte of data is sent to see if the window has opened. Like the retransmission timer, 
the persist timer value is calculated dynamically, based on the round-trip time. The value of 
this is bounded by TCP to be between 5 and 60 seconds. 

5. A keepalive timer can be set by the process using the SO_KEEPALIVE socket option. If 
the connection is idle for 2 hours, the keepalive timer expires and a special segment is sent to 
the other end, forcing it to respond. If the expected response is received, TCP knows that the 
other host is still up, and TCP won’t probe it again until the connection is idle for another 2 
hours. Other responses to the keepalive probe tell TCP that the other host has crashed and 
rebooted. If no response is received to a fixed number of keepalive probes, TCP assumes that 
the other end has crashed, although it can’t distinguish between the other end being down (i.e., 
it crashed and has not yet rebooted) and a temporary lack of connectivity to the other end (i.e., 
an intermediate router or phone line is down). 

6. A FIN_WAIT_2 timer. When a connection moves from the FIN_WAIT_1 state to the 
FIN_WAIT_2 state (Figure 24.15) and the connection cannot receive any more data 
(implying the process called close, instead of taking advantage of TCP’s half-close with 
shutdown), this timer is set to 10 minutes. When this timer expires it is reset to 75 
seconds, and when it expires the second time the connection is dropped. The purpose of this 
timer is to avoid leaving a connection in the FIN_WAIT_2 state forever, if the other end 
never sends a FIN. (We don’t show this timeout in Figure 24.15.) 

7. A TIME_WAIT timer, often called the 2MSL timer. The term 2MSL means twice the MSL, the 
maximum segment lifetime defined in Section 24.8. It is set when a connection enters the 
TIME_WAIT state (Figure 24.15), that is, when the connection is actively closed. Section 
18.6 of Volume 1 describes the reasoning for the 2MSL wait state in detail. The timer is set to 
1 minute (Net/3 uses an MSL of 30 seconds) when the connection enters the TIME_WAIT 
state and when it expires, the TCP control block and Internet PCB are deleted, allowing that 
socket pair to be reused. 

TCP has two timer functions: one is called every 200 ms (the fast timer) and the other every 500 ms 
(the slow timer). The delayed ACK timer is different from the other six: when the delayed ACK timer 
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is set for a connection it means that a delayed ACK must be sent the next time the 200-ms timer 
expires (i.e., the elapsed time is between 0 and 200 ms). The other six timers are decremented every 
500 ms, and only when the counter reaches 0 does the corresponding action take place. 

25.2. Code Introduction 

The delayed ACK timer is enabled for a connection when the TF_DELACK flag (Figure 24.14) is set 
in the TCP control block. The array t_timer in the TCP control block contains four 
(TCPT_NTIMERS) counters used to implement the other six timers. The indexes into this array are 
shown in Figure 25.1. We describe briefly how the six timers (other than the delayed ACK timer) are 
implemented by these four counters. 

Figure 25.1. Indexes into the t_timer array.

 

 

Each entry in the t_timer array contains the number of 500-ms clock ticks until the timer expires, 
with 0 meaning that the timer is not set. Since each timer is a short, if 16 bits hold a short, the 
maximum timer value is 16,383.5 seconds, or about 4.5 hours. 

Notice in Figure 25.1 that four "timer counters" implement six TCP "timers," because some of the 
timers are mutually exclusive. We’ll distinguish between the counters and the timers. The 
TCPT_KEEP counter implements both the keepalive timer and the connection-establishment timer, 
since the two timers are never used at the same time for a connection. Similarly, the 2MSL timer and 
the FIN_WAIT_2 timer are implemented using the TCPT_2MSL counter, since a connection is only 
in one state at a time. The first section of Figure 25.2 summarizes the implementation of the seven 
TCP timers. The second and third sections of the table show how four of the seven timers are 
initialized using three global variables from Figure 24.3 and two constants from Figure 25.3. Notice 
that two of the three globals are used with multiple timers. We’ve already said that the delayed ACK 
timer is tied to TCP’s 200-ms timer, and we describe how the other two timers are set later in this 
chapter. 

Figure 25.2. Implementation of the seven TCP timers.
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Figure 25.3. Fundamental timer values for the implementation.

 

 

Figure 25.3 shows the fundamental timer values for the Net/3 implementation. 

Figure 25.4 shows other timer constants that we’ll encounter. 

Figure 25.4. Timer constants.

 

 

The TCPT_RANGESET macro, shown in Figure 25.5, sets a timer to a given value, making certain 
the value is between the specified minimum and maximum. 

Figure 25.5. TCPT_RANGESET macro.

 

 

We see in Figure 25.3 that the retransmission timer and the persist timer have upper and lower bounds, 
since their values are calculated dynamically, based on the measured round-trip time. The other timers 
are set to constant values. 

There is one additional timer that we allude to in Figure 25.4 but don’t discuss in this chapter: the 
linger timer for a socket, set by the SO_LINGER socket option. This is a socket-level timer used by 
the close system call (Section 15.15). We will see in Figure 30.12 that when a socket is closed, 
TCP checks whether this socket option is set and whether the linger time is 0. If so, the connection is 
aborted with an RST instead of TCP’s normal close. 
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25.3. tcp_canceltimers Function 

The function tcp_canceltimers, shown in Figure 25.6, is called by tcp_input when 
the TIME_WAIT state is entered. All four timer counters are set to 0, which turns off the 
retransmission, persist, keepalive, and FIN_WAIT_2 timers, before tcp_input sets the 2MSL 
timer. 

Figure 25.6. tcp_canceltimers function.

 

 

25.4. tcp_fasttimo Function 

The function tcp_fasttimo, shown in Figure 25.7, is called by pr_fasttimo every 200 
ms. It handles only the delayed ACK timer. 

Figure 25.7. tcp_fasttimo function, which is called every 200 ms.

 

 

Each Internet PCB on the TCP list that has a corresponding TCP control block is checked. If the 
TF_DELACK flag is set, it is cleared and the TF_ACKNOW flag is set instead. tcp_output is 
called, and since the TF_ACKNOW flag is set, an ACK is sent. 

How can TCP have an Internet PCB on its PCB list that doesn’t have a TCP control block (the test at 
line 50)? When a socket is created (the PRU_ATTACH request, in response to the socket system 
call) we’ll see in Figure 30.11 that the creation of the Internet PCB is done first, followed by the 
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creation of the TCP control block. Between these two operations a high-priority clock interrupt can 
occur (Figure 1.13), which calls tcp_fasttimo.

25.5. tcp_slowtimo Function 

The function tcp_slowtimo, shown in Figure 25.8, is called by pr_slowtimo every 500 
ms. It handles the other six TCP timers: connection establishment, retransmission, persist, keepalive, 
FIN_WAIT_2, and 2MSL. 

Figure 25.8. tcp_slowtimo function, which is called every 500 ms.

 

 

71

tcp_maxidle is initialized to 10 minutes. This is the maximum amount of time TCP will send 
keepalive probes to another host, waiting for a response from that host. This variable is also used with 
the FIN_WAIT_2 timer, as we describe in Section 25.6. This initialization statement could be moved 
to tcp_init, since it only needs to be evaluated when the system is initialized (see Exercise 
25.2). 
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Check each timer counter in all TCP control blocks

72-89

Each Internet PCB on the TCP list that has a corresponding TCP control block is checked. Each of the 
four timer counters for each connection is tested, and if nonzero, the counter is decremented. When 
the timer reaches 0, a PRU_SLOWTIMO request is issued. We’ll see that this request calls the 
function tcp_timers, which we describe later in this chapter. 

The fourth argument to tcp_usrreq is a pointer to an mbuf. But this argument is actually used 
for different purposes when the mbuf pointer is not required. Here we see the index i is passed, 
telling the request which timer has expired. The funny-looking cast of i to an mbuf pointer is to avoid 
a compile-time error. 

Check if TCP control block has been deleted

90-93

Before examining the timers for a control block, a pointer to the next Internet PCB is saved in 
ipnxt. Each time the PRU_SLOWTIMO request returns, tcp_slowtimo checks whether 
the next PCB in the TCP list still points to the PCB that’s being processed. If not, it means the control 
block has been deleted pe rhaps the 2MSL timer expired or the retransmission timer expired and TCP 
is giving up on this connection c ausing a jump to tpgone, skipping the remaining timers for this 
control block, and moving on to the next PCB. 

Count idle time

94

t_idle is incremented for the control block. This counts the number of 500-ms clock ticks since 
the last segment was received on this connection. It is set to 0 by tcp_input when a segment is 
received on the connection and used for three purposes: (1) by the keepalive algorithm to send a probe 
after the connection is idle for 2 hours, (2) to drop a connection in the FIN_WAIT_2 state that is idle 
for 10 minutes and 75 seconds, and (3) by tcp_output to return to the slow start algorithm after 
the connection has been idle for a while. 

Increment RTT counter

95-96

If this connection is timing an outstanding segment, t_rtt is nonzero and counts the number of 
500-ms clock ticks until that segment is acknowledged. It is initialized to 1 by tcp_output when 
a segment is transmitted whose RTT should be timed. tcp_slowtimo increments this counter. 

Increment initial send sequence number

100

tcp_iss was initialized to 1 by tcp_init. Every 500 ms it is incremented by 64,000: 128,000 
(TCP_ISSINCR) divided by 2 (PR_SLOWHZ). This is a rate of about once every 8 microseconds, 
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although tcp_iss is incremented only twice a second. We’ll see that tcp_iss is also 
incremented by 64,000 each time a connection is established, either actively or passively. 

RFC 793 specifies that the initial sequence number should increment roughly every 4 
microseconds, or 250,000 times a second. The Net/3 value increments at about one-
half this rate. 

Increment RFC 1323 timestamp value

101

tcp_now is initialized to 0 on bootstrap and incremented every 500 ms. It is used by the timestamp 
option defined in RFC 1323 [Jacobson, Braden, and Borman 1992], which we describe in Section 
26.6. 

75-79

Notice that if there are no TCP connections active on the host (tcb.inp_next is null), neither 
tcp_iss nor tcp_now is incremented. This would occur only when the system is being 
initialized, since it would be rare to find a Unix system attached to a network without a few TCP 
servers active. 

25.6. tcp_timers Function 

The function tcp_timers is called by TCP’s PRU_SLOWTIMO request (Figure 30.10): 

   case PRU_SLOWTIMO: 
       tp = tcp_timers(tp, (int)nam); 
 

when any one of the four TCP timer counters reaches 0 (Figure 25.8). 

The structure of the function is a switch statement with one case per timer, as outlined in Figure 
25.9. 

Figure 25.9. tcp_timers function: general organization.
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We now discuss three of the four timer counters (five of TCP’s timers), saving the retransmission 
timer for Section 25.11. 

FIN_WAIT_2 and 2MSL Timers

TCP’s TCPT_2MSL counter implements two of TCP’s timers. 

1. FIN_WAIT_2 timer. When tcp_input moves from the FIN_WAIT_1 state to the 
FIN_WAIT_2 state and the socket cannot receive any more data (implying the process called 
close, instead of taking advantage of TCP’s half-close with shutdown), the 
FIN_WAIT_2 timer is set to 10 minutes (tcp_maxidle). We’ll see that this prevents the 
connection from staying in the FIN_WAIT_2 state forever. 

2. 2MSL timer. When TCP enters the TIME_WAIT state, the 2MSL timer is set to 60 seconds 
(TCPTV_MSL times 2). 

Figure 25.10 shows the case for the 2MSL timer exec uted when the timer reaches 0. 

Figure 25.10. tcp_timers function: expiration of 2MSL timer counter.

 

 
 

2MSL timer

127-139

The puzzling logic in the conditional is because the two different uses of the TCPT_2MSL counter 
are intermixed (Exercise 25.4). Let’s first look at the TIME_WAIT state. When the timer expires after 
60 seconds, tcp_close is called and the control blocks are released. We have the scenario shown 
in Figure 25.11.  
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Figure 25.11. Setting and expiration of 2MSL timer in TIME_WAIT state.

 

 
This figure shows the series of function calls that occurs when the 2MSL timer expires. We also see 
that setting one of the timers for N seconds in the future (2 x N ticks), causes the timer to expire 
somewhere between 2 x N - 1 and 2 x N ticks in the future, since the time until the first decrement of 
the counter is between 0 and 500 ms in the future. 

FIN_WAIT_2 timer

127-139

If the connection state is not TIME_WAIT, the TCPT_2MSL counter is the FIN_WAIT_2 timer. As 
soon as the connection has been idle for more than 10 minutes (tcp_maxidle) the connection is 
closed. But if the connection has been idle for less than or equal to 10 minutes, the FIN_WAIT_2 
timer is reset for 75 seconds in the future. Figure 25.12 shows the typical scenario. 

Figure 25.12. FIN_WAIT_2 timer to avoid infinite wait in FIN_WAIT_2 state.

 

 

The connection moves from the FIN_WAIT_1 state to the FIN_WAIT_2 state on the receipt of an 
ACK (Figure 24.15). Receiving this ACK sets t_idle to 0 and the FIN_WAIT_2 timer is set to 
1200 (tcp_maxidle). In Figure 25.12 we show the up arrow just to the right of the tick mark 
starting the 10-minute period, to reiterate that the first decrement of the counter occurs between 0 and 
500 ms after the counter is set. After 1199 ticks the timer expires, but since t_idle is incremented 
after the test and decrement of the four counters in Figure 25.8, t_idle is 1198. (We assume the 
connection is idle for this 10-minute period.) The comparison of 1198 as less than or equal to 1200 is 
true, so the FIN_WAIT_2 timer is set to 150 (tcp_keepintvl). When the timer expires again in 
75 seconds, assuming the connection is still idle, t_idle is now 1348, the test is false, and 
tcp_close is called. 

 845



ptg11539634

The reason for the 75-second timeout after the first 10-minute timeout is as follows: a connection in 
the FIN_WAIT_2 state is not dropped until the connection has been idle for more than 10 minutes. 
There’s no reason to test t_idle until at least 10 minutes have expired, but once this time has 
passed, the value of t_idle is checked every 75 seconds. Since a duplicate segment could be 
received, say a duplicate of the ACK that moved the connection from the FIN_WAIT_1 state to the 
FIN_WAIT_2 state, the 10-minute wait is restarted when the segment is received (since t_idle 
will be set to 0). 

Terminating an idle connection after more than 10 minutes in the FIN_WAIT_2 state 
violates the protocol specification, but this is practical. In the FIN_WAIT_2 state the 
process has called close, all outstanding data on the connection has been sent 
and acknowledged, the other end has acknowledged the FIN, and TCP is waiting for 
the process at the other end of the connection to issue its close. If the other 
process never closes its end of the connection, our end can remain in the 
FIN_WAIT_2 forever. A counter should be maintained for the number of 
connections terminated for this reason, to see how often this occurs. 

Persist Timer

Figure 25.13 shows the case for when the persist timer expires. 

Figure 25.13. tcp_timers function: expiration of persist timer.

 

 
 

Force window probe segment

210-220

When the persist timer expires, there is data to send on the connection but TCP has been stopped by 
the other end’s advertisement of a zero-sized window. tcp_setpersist calculates the next 
value for the persist timer and stores it in the TCPT_PERSIST counter. The flag t_force is set 
to 1, forcing tcp_output to send 1 byte, even though the window advertised by the other end is 
0. 

Figure 25.14 shows typical values of the persist timer for a LAN, assuming the retransmission timeout 
for the connection is 1.5 seconds (see Figure 22.1 of Volume 1). 

Figure 25.14. Time line of persist timer when probing a zero window.
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Once the value of the persist timer reaches 60 seconds, TCP continues sending window probes every 
60 seconds. The reason the first two values are both 5, and not 1.5 and 3, is that the persist timer is 
lower bounded at 5 seconds. It is also upper bounded at 60 seconds. The multiplication of each value 
by 2 to give the next value is called an exponential backoff, and we describe how it is calculated in 
Section 25.9. 

Connection Establishment and Keepalive Timers

TCP’s TCPT_KEEP counter implements two timers: 

1. When a SYN is sent, the connection-establishment timer is set to 75 seconds 
(TCPTV_KEEP_INIT). This happens when connect is called, putting a connection 
into the SYN_SENT state (active open), or when a connection moves from the LISTEN to the 
SYN_RCVD state (passive open). If the connection doesn’t enter the ESTABLISHED state 
within 75 seconds, the connection is dropped. 

2. When a segment is received on a connection, tcp_input resets the keepalive timer for 
that connection to 2 hours (tcp_keepidle), and the t_idle counter for the 
connection is reset to 0. This happens for every TCP connection on the system, whether the 
keepalive option is enabled for the socket or not. If the keepalive timer expires (2 hours after 
the last segment was received on the connection), and if the socket option is set, a keepalive 
probe is sent to the other end. If the timer expires and the socket option is not set, the 
keepalive timer is just reset for 2 hours in the future. 

Figure 25.16 shows the case for TCP’s TCPT_KEEP counter. 

Connection-establishment timer expires after 75 seconds

221-228

If the state is less than ESTABLISHED (Figure 24.16), the TCPT_KEEP counter is the connection-
establishment timer. At the label dropit, tcp_drop is called to terminate the connection 
attempt with an error of ETIMEDOUT. We’ll see that this error is the default error if, for example, 
a soft error such as an ICMP host unreachable was received on the connection, the error returned to 
the process will be changed to EHOSTUNREACH instead of the default. 

In Figure 30.4 we’ll see that when TCP sends a SYN, two timers are initialized: the connection-
establishment timer as we just described, with a value of 75 seconds, and the retransmission timer, to 
cause the SYN to be retransmitted if no response is received. Figure 25.15 shows these two timers. 

Figure 25.15. Connection-establishment timer and retransmission timer after 

SYN is sent.
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The retransmission timer is initialized to 6 seconds for a new connection (Figure 25.19), and 
successive values are calculated to be 24 and 48 seconds. We describe how these values are calculated 
in Section 25.7. The retransmission timer causes the SYN to be transmitted a total of three times, at 
times 0, 6, and 30. At time 75, 3 seconds before the retransmission timer would expire again, the 
connection-establishment timer expires, and tcp_drop terminates the connection attempt. 

Figure 25.16. tcp_timers function: expiration of keepalive timer.

 

 
 

Keepalive timer expires after 2 hours of idle time

229-230

This timer expires after 2 hours of idle time on every connection, not just ones with the 
SO_KEEPALIVE socket option enabled. If the socket option is set, probes are sent only if the 
connection is in the ESTABLISHED or CLOSE_WAIT states (Figure 24.15). Once the process calls 
close (the states greater than CLOSE_WAIT), keepalive probes are not sent, even if the connection 
is idle for 2 hours. 
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Drop connection when no response

231-232

If the total idle time for the connection is greater than or equal to 2 hours (tcp_keepidle) plus 
10 minutes (tcp_maxidle), the connection is dropped. This means that TCP has sent its limit of 
nine keepalive probes, 75 seconds apart (tcp_keepintvl), with no response. One reason TCP 
must send multiple keepalive probes before considering the connection dead is that the ACKs sent in 
response do not contain data and therefore are not reliably transmitted by TCP. An ACK that is a 
response to a keepalive probe can get lost. 

Send a keepalive probe

233-248

If TCP hasn’t reached the keepalive limit, tcp_respond sends a keepalive packet. The 
acknowledgment field of the keepalive packet (the fourth argument to tcp_respond) contains 
rcv_nxt, the next sequence number expected on the connection. The sequence number field of 
the keepalive packet (the fifth argument) deliberately contains snd_una minus 1, which is the 
sequence number of a byte of data that the other end has already acknowledged (Figure 24.17). Since 
this sequence number is outside the window, the other end must respond with an ACK, specifying the 
next sequence number it expects. 

Figure 25.17 summarizes this use of the keepalive timer. 

Figure 25.17. Summary of keepalive timer to detect unreachability of other end.

 

 

The nine keepalive probes are sent every 75 seconds, starting at time 0, through time 600. At time 675 
(11.25 minutes after the 2-hour timer expired) the connection is dropped. Notice that nine keepalive 
probes are sent, even though the constant TCPTV_KEEPCNT (Figure 25.4) is 8. This is because the 
variable t_idle is incremented in Figure 25.8 after the timer is decremented, compared to 0, and 
possibly handled. When tcp_input receives a segment on a connection, it sets the keepalive 
timer to 14400 (tcp_keepidle) and t_idle to 0. The next time tcp_slowtimo is 
called, the keepalive timer is decremented to 14399 and t_idle is incremented to 1. About 2 hours 
later, when the keepalive timer is decremented from 1 to 0 and tcp_timers is called, the value of 
t_idle will be 14399. We can build the table in Figure 25.18 to see the value of t_idle each 
time tcp_timers is called. 
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Figure 25.18. The value of t_idle when tcp_timers is called for keepalive 

processing.

 

 

The code in Figure 25.16 is waiting for t_idle to be greater than or equal to 15600 
(tcp_keepidle + tcp_maxidle) and that only happens at time 675 in Figure 25.17, after 
nine keepalive probes have been sent. 

Reset keepalive timer

249-250

If the socket option is not set or the connection state is greater than CLOSE_WAIT, the keepalive 
timer for this connection is reset to 2 hours (tcp_keepidle). 

Unfortunately the counter tcps_keepdrops (line 253) counts both uses of the 
TCPT_KEEP counter: the connection-establishment timer and the keepalive timer. 

25.7. Retransmission Timer Calculations 

The timers that we’ve described so far in this chapter have fixed times associated with them: 200 ms 
for the delayed ACK timer, 75 seconds for the connection-establishment timer, 2 hours for the 
keepalive timer, and so on. The final two timers that we describe, the retransmission timer and the 
persist timer, have values that depend on the measured RTT for the connection. Before going through 
the source code that calculates and sets these timers we need to understand how TCP measures the 
RTT for a connection. 

Fundamental to the operation of TCP is setting a retransmission timer when a segment is transmitted 
and an ACK is required from the other end. If the ACK is not received when the retransmission timer 
expires, the segment is retransmitted. TCP requires an ACK for data segments but does not require an 
ACK for a segment without data (i.e., a pure ACK segment). If the calculated retransmission timeout 
is too small, it can expire prematurely, causing needless retransmissions. If the calculated value is too 
large, after a segment is lost, additional time is lost before the segment is retransmitted, degrading 
performance. Complicating this is that the round-trip times between two hosts can vary widely and 
dynamically over the course of a connection. 
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TCP in Net/3 calculates the retransmission timeout (RTO) by measuring the round-trip time (nticks) of 
data segments and keeping track of the smoothed RTT estimator (srtt) and a smoothed mean deviation 
estimator (rttvar). The mean deviation is a good approximation of the standard deviation, but easier to 
compute since, unlike the standard deviation, the mean deviation does not require square root 
calculations. [Jacobson 1988b] provides additional details on these RTT measurements, which lead to 
the following equations: 

 

 

delta is the difference between the measured round trip just obtained (nticks) and the current smoothed 
RTT estimator (srtt). g is the gain applied to the RTT estimator and equals 1/8. h is the gain applied to 
the mean deviation estimator and equals 1/4. The two gains and the multiplier 4 in the RTO 
calculation are purposely powers of 2, so they can be calculated using shift operations instead of 
multiplying or dividing. 

[Jacobson 1988b] specified 2 x rttvar in the calculation of RTO, but after further 
research, [Jacobson 1990d] changed the value to 4 x rttvar, which is what appeared 
in the Net/1 implementation. 

We now describe the variables and calculations used to calculate TCP’s retransmission timer, as we’ll 
encounter them throughout the TCP code. Figure 25.19 lists the variables in the control block related 
to the retransmission timer. 

Figure 25.19. Control block variables for calculation of retransmission timer.

 

 

We show the tcp_backoff array at the end of Section 25.9. The tcp_newtcpcb function 
sets the initial values for these variables, and we cover it in the next section. The term shift in the 
variable t_rxtshift and its limit TCP_MAXRXTSHIFT is not entirely accurate. The former 
is not used for bit shifting, but as Figure 25.19 indicates, it is an index into an array. 

The confusing part of TCP’s timeout calculations is that the two smoothed estimators maintained in 
the C code (t_srtt and t_rttvar) are fixed-point integers, instead of floating-point values. 
This is done to avoid floating-point calculations within the kernel, but it complicates the code. 

To keep the scaled and unscaled variables distinct, we’ll use the italic variables srtt and rttvar to refer 
to the unscaled variables in the earlier equations, and t_srtt and t_rttvar to refer to the 
scaled variables in the TCP control block. 
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Figure 25.20 shows four constants we encounter, which define the scale factors of 8 for t_srtt and 
4 for t_rttvar.

Figure 25.20. Multipliers and shifts for RTT estimators.

 

 

25.8. tcp_newtcpcb Function 

A new TCP control block is allocated and initialized by tcp_newtcpcb, shown in Figure 25.21. 
This function is called by TCP’s PRU_ATTACH request when a new socket is created (Figure 30.2). 
The caller has previously allocated an Internet PCB for this connection, pointed to by the argument 
inp. We present this function now because it initializes the TCP timer variables. 

Figure 25.21. tcp_newtcpcb function: create and initialize a new TCP control 

block.
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The kernel’s malloc function allocates memory for the control block, and bzero sets it to 0. 

176

The two variables seg_next and seg_prev point to the reassembly queue for out-of-order 
segments received for this connection. We discuss this queue in detail in Section 27.9. 

177-179

The maximum segment size to send, t_maxseg, defaults to 512 (tcp_mssdflt). This value 
can be changed by the tcp_mss function after an MSS option is received from the other end. (TCP 
also sends an MSS option to the other end when a new connection is established.) The two flags 
TF_REQ_SCALE and TF_REQ_TSTMP are set if the system is configured to request window 
scaling and timestamps as defined in RFC 1323 (the global tcp_do_rfc1323 from Figure 24.3, 
which defaults to 1). The t_inpcb pointer in the TCP control block is set to point to the Internet 
PCB passed in by the caller. 

180-185

The four variables t_srtt, t_rttvar, t_rttmin, and t_rxtcur, described in 
Figure 25.19, are initialized. First, the smoothed RTT estimator t_srtt is set to 0 
(TCPTV_SRTTBASE), which is a special value that means no RTT measurements have been made 
yet for this connection. tcp_xmit_timer recognizes this special value when the first RTT 
measurement is made. 

186-187

The smoothed mean deviation estimator t_rttvar is set to 24: 3 (tcp_rttdflt, from 
Figure 24.3) times 2 (PR_SLOWHZ) multiplied by 4 (the left shift of 2 bits). Since this scaled 
estimator is 4 times the variable rttvar, this value equals 6 clock ticks, or 3 seconds. The minimum 
RTO, stored in t_rttmin, is 2 ticks (TCPTV_MIN). 

188-190

The current RTO in clock ticks is calculated and stored in t_rxtcur. It is bounded by a minimum 
value of 2 ticks (TCPTV_MIN) and a maximum value of 128 ticks (TCPTV_REXMTMAX). The 
value calculated as the second argument to TCPT_RANGESET is 12 ticks, or 6 seconds. This is the 
first RTO for the connection. 

Understanding these C expressions involving the scaled RTT estimators can be a challenge. It helps to 
start with the unscaled equation and substitute the scaled variables. The unscaled equation we’re 
solving is 

 

 

where we use the multipler of 2 instead of 4 to calculate the first RTO.

The use of the multiplier 2 instead of 4 appears to be a leftover from the original 
4.3BSD Tahoe code [Paxson 1994]. 
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we get 

 

 

which is the C code for the second argument to TCPT_RANGESET. In this code the variable 
t_rttvar is not used the constant TCPTV_SRTTDFLT, whose value is 6 ticks, is used 
instead, and it must be multiplied by 4 to have the same scale as t_rttvar.

191-192

The congestion window (snd_cwnd) and slow start threshold (snd_ssthresh) are set to 
1,073,725,440 (approximately one gigabyte), which is the largest possible TCP window if the window 
scale option is in effect. (Slow start and congestion avoidance are described in Section 21.6 of Volume 
1.) It is calculated as the maximum value for the window size field in the TCP header (65535, 
TCP_MAXWIN) times 214, where 14 is the maximum value for the window scale factor 
(TCP_MAX_WINSHIFT). We’ll see that when a SYN is sent or received on the connection, 
tcp_mss resets snd_cwnd to a single segment. 

193-194

The default IP TTL in the Internet PCB is set to 64 (ip_defttl) and the PCB is set to point to the 
new TCP control block. 

Not shown in this code is that numerous variables, such as the shift variable t_rxtshift, are 
implicitly initialized to 0 since the control block is initialized by bzero.

25.9. tcp_setpersist Function 

The next function we look at that uses TCP’s retransmission timeout calculations is 
tcp_setpersist. In Figure 25.13 we saw this function called when the persist timer expired. 
This timer is set when TCP has data to send on a connection, but the other end is advertising a window 
of 0. This function, shown in Figure 25.22, calculates and stores the next value for the timer. 
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Figure 25.22. tcp_setpersist function: calculate and store a new value for 

the persist timer.

 

 
 

Check retransmission timer not enabled

493-499

A check is made that the retransmission timer is not enabled when the persist timer is about to be set, 
since the two timers are mutually exclusive: if data is being sent, the other side must be advertising a 
nonzero window, but the persist timer is being set only if the advertised window is 0. 

Calculate RTO

500-505

The variable t is set to the RTO value that was calculated at the beginning of the function. The 
equation being solved is 

 

 

which is identical to the formula used at the end of the previous section. With substitution we get 

 

 

which is the value computed for the variable t.
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Apply exponential backoff

506-507

An exponential backoff is also applied to the RTO. This is done by multiplying the RTO by a value 
from the tcp_backoff array: 

    int tcp_backoff[TCP_MAXRXTSHIFT + 1] = 
        { 1, 2, 4, 8, 16, 32, 64, 64, 64, 64, 64, 64, 64 }; 
 

When tcp_output initially sets the persist timer for a connection, the code is 

   tp->t_rxtshift = 0; 
   tcp_setpersist(tp); 
 

so the first time tcp_setpersist is called, t_rxtshift is 0. Since the value of 
tcp_backoff[0] is 1, t is used as the persist timeout. The TCPT_RANGESET macro 
bounds this value between 5 and 60 seconds. t_rxtshift is incremented by 1 until it reaches a 
maximum of 12 (TCP_MAXRXTSHIFT), since tcp_backoff[12] is the final entry in the 
array. 

25.10. tcp_xmit_timer Function 

The next function we look at, tcp_xmit_timer, is called each time an RTT measurement is 
collected, to update the smoothed RTT estimator (srtt) and the smoothed mean deviation estimator 
(rttvar). 

The argument rtt is the RTT measurement to be applied. It is the value nticks + 1, using the notation 
from Section 25.7. It can be from one of two sources: 

1. If the timestamp option is present in a received segment, the measured RTT is the current 
time (tcp_now) minus the timestamp value. We’ll examine the timestamp option in 
Section 26.6, but for now all we need to know is that tcp_now is incremented every 500 
ms (Figure 25.8). When a data segment is sent, tcp_now is sent as the timestamp, and the 
other end echoes this time-stamp in the acknowledgment it sends back. 

2. If timestamps are not in use and a data segment is being timed, we saw in Figure 25.8 that the 
counter t_rtt is incremented every 500 ms for the connection. We also mentioned in 
Section 25.5 that this counter is initialized to 1, so when the acknowledgment is received the 
counter is the measured RTT (in ticks) plus 1. 

Typical code in tcp_input that calls tcp_xmit_timer is 

    if (ts_present) 
        tcp_xmit_timer(tp, tcp_now - ts_ecr + 1); 

    else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) 
        tcp_xmit_timer(tp, tp->t_rtt); 
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If a timestamp was present in the segment (ts_present), the RTT estimators are updated using 
the current time (tcp_now) minus the echoed timestamp (ts_ecr) plus 1. (We describe the 
reason for adding 1 below.) 

If a timestamp is not present, the RTT estimators are updated only if the received segment 
acknowledges a data segment that was being timed. There is only one RTT counter per TCP control 
block (t_rtt), so only one outstanding data segment can be timed per connection. The starting 
sequence number of that segment is stored in t_rtseq when the segment is transmitted, to tell 
when an acknowledgment is received that covers that sequence number. If the received 
acknowledgment number (ti_ack) is greater than the starting sequence number of the segment 
being timed (t_rtseq), the RTT estimators are updated using t_rtt as the measured RTT. 

Before RFC 1323 timestamps were supported, TCP measured the RTT only by 
counting clock ticks in t_rtt. But this variable is also used as a flag that specifies 
whether a segment is being timed (Figure 25.8): if t_rtt is greater than 0, then 
tcp_slowtimo adds 1 to it every 500 ms. Hence when t_rtt is nonzero, it is 
the number of ticks plus 1. We’ll see shortly that tcp_xmit_timer always 
decrements its second argument by 1 to account for this offset. Therefore when 
timestamps are being used, 1 is added to the second argument to account for the 
decrement by 1 in tcp_xmit_timer.

The greater-than test of the sequence numbers is because ACKs are cumulative: if TCP sends and 
times a segment with sequence numbers 1-1024 (t_rtseq equals 1), then immediately sends (but 
can’t time) a segment with sequence numbers 1025-2048, and then receives an ACK with ti_ack 
equal to 2049, this is an ACK for sequence numbers 1-2048 and the ACK acknowledges the first 
segment being timed as well as the second (untimed) segment. Notice that when RFC 1323 
timestamps are in use there is no comparison of sequence numbers. If the other end sends a timestamp 
option, it chooses the echo reply value (ts_ecr) to allow TCP to calculate the RTT. 

Figure 25.23 shows the first part of the function that updates the estimators. 
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Figure 25.23. tcp_xmit_timer function: apply new RTT measurement to 

smoothed estimators.

 

 
 

Update smoothed estimators

1310-1325

Recall that tcp_newtcpcb initialized the smoothed RTT estimator (t_srtt) to 0, indicating 
that no measurements have been made for this connection. delta is the difference between the 
measured RTT and the current value of the smoothed RTT estimator, in unscaled ticks. t_srtt is 
divided by 8 to convert from scaled to unscaled ticks. 

1326-1327

The smoothed RTT estimator is updated using the equation 
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Since the gain g is 1/8, this equation is 

 

 

which is 

 

 

1328-1342

The mean deviation estimator is updated using the equation 

 

 

Substituting 1/4 for h and the scaled variable t_rttvar for 4 x rttvar, we get 

 

 

which is 

 

 

This final equation corresponds to the C code. 

Initialize smoothed estimators on first RTT measurement

1343-1350

If this is the first RTT measured for this connection, the smoothed RTT estimator is initialized to the 
measured RTT. These calculations use the value of the argument rtt, which we said is the 
measured RTT plus 1 (nticks + 1), whereas the earlier calculation of delta subtracted 1 from 
rtt.
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or 

 

 

which is 

 

 

The smoothed mean deviation is set to one-half of the measured RTT: 

 

 

which is 

 

 

or 

 

 

The comment in the code states that this initial setting for the smoothed mean deviation yields an 
initial RTO of 3 x srtt. Since the RTO is calculated as 

 

 

substituting for rttvar gives us 

 

 

which is indeed 
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Figure 25.24 shows the final part of the tcp_xmit_timer function. 

Figure 25.24. tcp_xmit_timer function: final part.

 

 

1352-1353

The RTT counter (t_rtt) and the retransmission shift count (t_rxtshift) are both reset to 0 
in preparation for timing and transmission of the next segment. 

1354-1366

The next RTO to use for the connection (t_rxtcur) is calculated using the macro 

    #define TCP_REXMTVAL(tp) \ 
            (((tp)->t_srtt >> TCP_RTT_SHIFT) + (tp)-
>t_rttvar)
 

This is the now-familiar equation 

 

 

using the scaled variables updated by tcp_xmit_timer. Substituting these scaled variables for 
srtt and rttvar, we have 
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which corresponds to the macro. The calculated value for the RTO is bounded by the minimum RTO 
for this connection (t_rttmin, which t_newtcpcb set to 2 ticks), and 128 ticks 
(TCPTV_REXMTMAX). 

Clear soft error variable

1367-1374

Since tcp_xmit_timer is called only when an acknowledgment is received for a data segment 
that was sent, if a soft error was recorded for this connection (t_softerror), that error is 
discarded. We describe soft errors in more detail in the next section. 

25.11. Retransmission Timeout: tcp_timers Function 

We now return to the tcp_timers function and cover the final case that we didn’t present in 
Section 25.6: the one that handles the expiration of the retransmission timer. This code is executed 
when a data segment that was transmitted has not been acknowledged by the other end within the 
RTO.

Figure 25.25 summarizes the actions caused by the retransmission timer. We assume that the first 
timeout calculated by tcp_output is 1.5 seconds, which is typical for a LAN (see Figure 21.1 of 
Volume 1). 

Figure 25.25. Summary of retransmission timer when sending data.

 

 

The x-axis is labeled with the time in seconds: 0, 1.5, 4.5, and so on. Below each of these numbers we 
show the value of t_rxtshift that is used in the code we’re about to examine. Only after 12 
retransmissions and a total of 542.5 seconds (just over 9 minutes) does TCP give up and drop the 
connection. 

RFC 793 recommended that an open of a new connection, active or passive, allow a 
parameter specifying the total timeout period for data sent by TCP. This is the total 
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amount of time TCP will try to send a given segment before giving up and 
terminating the connection. The recommended default was 5 minutes. 

RFC 1122 requires that an application must be able to specify a parameter for a 
connection giving either the total number of retransmissions or the total timeout 
value for data sent by TCP. This parameter can be specified as "infinity," meaning 
TCP never gives up, allowing, perhaps, an interactive user the choice of when to give 
up. 

We’ll see in the code described shortly that Net/3 does not give the application any of 
this control: a fixed number of retransmissions (12) always occurs before TCP gives 
up, and the total timeout before giving up depends on the RTT. 

The first half of the retransmission timeout case is shown in Figure 25.26. 

Figure 25.26. tcp_timers function: expiration of retransmission timer, first 

half.
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Increment shift count

146

The retransmission shift count (t_rxtshift) is incremented, and if the value exceeds 12 
(TCP_MAXRXTSHIFT) it is time to drop the connection. This new value of t_rxtshift is 
what we show in Figure 25.25. Notice the difference between this dropping of a connection because 
an acknowledgment is not received from the other end in response to data sent by TCP, and the 
keepalive timer, which drops a connection after a long period of inactivity and no response from the 
other end. Both report the error ETIMEDOUT to the process, unless a soft error is received for the 
connection. 

Drop connection

147-152

A soft error is one that doesn’t cause TCP to terminate an established connection or an attempt to 
establish a connection, but the soft error is recorded in case TCP gives up later. For example, if TCP 
retransmits a SYN segment to establish a connection, receiving nothing in response, the error returned 
to the process will be ETIMEDOUT. But if during the retransmissions an ICMP host unreachable is 
received for the connection, that is considered a soft error and stored in t_softerror by 
tcp_notify. If TCP finally gives up the retransmissions, the error returned to the process will 
be EHOSTUNREACH instead of ETIMEDOUT, providing more information to the process. If TCP 
receives an RST on the connection in response to the SYN, that’s considered a hard error and the 
connection is terminated immediately with an error of ECONNREFUSED (Figure 28.18). 

Calculate new RTO

153-157

The next RTO is calculated using the TCP_REXMTVAL macro, applying an exponential backoff. In 
this code, t_rxtshift will be 1 the first time a given segment is retransmitted, so the RTO will 
be twice the value calculated by TCP_REXMTVAL. This value is stored in t_rxtcur and as the 
retransmission timer for the connection, t_timer[TCPT_REXMT]. The value stored in 
t_rxtcur is used in tcp_input when the retransmission timer is restarted (Figures 28.12 and 
29.6). 

Ask IP to find a new route

158-167

If this segment has been retransmitted four or more times, in_losing releases the cached route (if 
there is one), so when the segment is retransmitted by tcp_output (at the end of this case 
statement in Figure 25.27) a new, and hopefully better, route will be chosen. In Figure 25.25 
in_losing is called each time the retransmission timer expires, starting with the retransmission at 
time 22.5. 
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Figure 25.27. tcp_timers function: expiration of retransmission timer, second 

half.

 

 
 

Clear estimators

168-170

The smoothed RTT estimator (t_srtt) is set to 0, which is what t_newtcpcb did. This forces 
tcp_xmit_timer to use the next measured RTT as the smoothed RTT estimator. This is done 
because the retransmitted segment has been sent four or more times, implying that TCP’s smoothed 
RTT estimator is probably way off. But if the retransmission timer expires again, at the beginning of 
this case statement the RTO is calculated by TCP_REXMTVAL. That calculation should generate 
the same value as it did for this retransmission (which will then be exponentially backed off), even 
though t_srtt is set to 0. (The retransmission at time 42.464 in Figure 25.28 is an example of 
what’s happening here.) 
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Figure 25.28. Values of RTT variables and estimators during example.

 

 

To accomplish this the value of t_rttvar is changed as follows. The next time the RTO is 
calculated, the equation 

 

 

is evaluated. Since t_srtt will be 0, if t_rttvar is increased by t_srtt divided by 8, RTO 
will have the same value. If the retransmission timer expires again for this segment (e.g., times 84.064 
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through 217.184 in Figure 25.28), when this code is executed again t_srtt will be 0, so 
t_rttvar won’t change. 

Force retransmission of oldest unacknowledged data

171

The next send sequence number (snd_nxt) is set to the oldest unacknowledged sequence number 
(snd_una). Recall from Figure 24.17 that snd_nxt can be greater than snd_una. By 
moving snd_nxt back, the retransmission will be the oldest segment that hasn’t been 
acknowledged. 

Karn's algorithm

172-175

The RTT counter, t_rtt, is set to 0, in case the last segment transmitted was being timed. Karn’s 
algorithm says that even if an ACK of that segment is received, since the segment is about to be 
retransmitted, any timing of the segment is worthless since the ACK could be for the first transmission 
or for the retransmission. The algorithm is described in [Karn and Partridge 1987] and in Section 21.3 
of Volume 1. Therefore the only segments that are timed using the t_rtt counter and used to 
update the RTT estimators are those that are not retransmitted. We’ll see in Figure 29.6 that the use of 
RFC 1323 timestamps overrides Karn’s algorithm. 

Slow Start and Congestion Avoidance

The second half of this case is shown in Figure 25.27. It performs slow start and congestion 
avoidance and retransmits the oldest unacknowledged segment. 

Since a retransmission timeout has occurred, this is a strong indication of congestion in the network. 
TCP’s congestion avoidance algorithm comes into play, and when a segment is eventually 
acknowledged by the other end, TCP’s slow start algorithm will continue the data transmission on the 
connection at a slower rate. Sections 20.6 and 21.6 of Volume 1 describe the two algorithms in detail. 

176-205

win is set to one-half of the current window size (the minimum of the receiver’s advertised window, 
snd_wnd, and the sender’s congestion window, snd_cwnd) in segments, not bytes (hence the 
division by t_maxseg). Its minimum value is two segments. This records one-half of the window 
size when the congestion occurred, assuming one cause of the congestion is our sending segments too 
rapidly into the network. This becomes the slow start threshold, t_ssthresh (which is stored in 
bytes, hence the multiplication by t_maxseg). The congestion window, snd_cwnd, is set to 
one segment, which forces slow start. 

This code is enclosed in braces because it was added between the 4.3BSD and Net/1 
releases and required its own local variable (win). 

206

The counter of consecutive duplicate ACKs, t_dupacks (which is used by the fast retransmit 
algorithm in Section 29.4), is set to 0. We’ll see how this counter is used with TCP’s fast retransmit 
and fast recovery algorithms in Chapter 29. 
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208

tcp_output resends a segment containing the oldest unacknowledged sequence number. This is 
the retransmission caused by the retransmission timer expiring. 

Accuracy

How accurate are these estimators that TCP maintains? At first they appear too coarse, since the RTTs 
are measured in multiples of 500 ms. The mean and mean deviation are maintained with additional 
accuracy (factors of 8 and 4 respectively), but LANs have RTTs on the order of milliseconds, and a 
transcontinental RTT is around 60 ms. What these estimators provide is a solid upper bound on the 
RTT so that the retransmission timeout can be set without worrying that the timeout is too small, 
causing unnecessary and wasteful retransmissions. 

[Brakmo, O’Malley, and Peterson 1994] describe a TCP implementation that provides higher-
resolution RTT measurements. This is done by recording the system clock (which has a much higher 
resolution than 500 ms) when a segment is transmitted and reading the system clock when the ACK is 
received, calculating a higher-resolution RTT. 

The timestamp option provided by Net/3 (Section 26.6) can provide higher-resolution RTTs, but Net/3 
sets the resolution of these timestamps to 500 ms. 

25.12. An RTT Example 

We now go through an actual example to see how the calculations are performed. We transfer 12288 
bytes from the host bsdi to vangogh.cs.berkeley.edu. During the transfer we 
purposely bring down the PPP link being used and then bring it back up, to see how timeouts and 
retransmissions are handled. To transfer the data we use our sock program (described in Appendix 
C of Volume 1) with the -D option, to enable the SO_DEBUG socket option (Section 27.10). After 
the transfer is complete we examine the debug records left in the kernel’s circular buffer using the 
trpt(8) program and print the desired timer variables from the TCP control block. 

Figure 25.28 shows the calculations that occur at the various times. We use the notation M:N to mean 
that sequence numbers M through and including N — 1 are sent. Each segment in this example contains 
512 bytes. The notation "ack M" means that the acknowledgment field of the ACK is M. The column 
labeled "actual delta (ms)" shows the time difference between the RTT timer going on and going off. 
The column labeled "rtt (arg.)" shows the second argument to the tcp_xmit_timer function: 
the number of clock ticks plus 1 between the RTT timer going on and going off. 

The function tcp_newtcpcb initializes t_srtt, t_rttvar,and t_rxtcur to the 
values shown at time 0.0. 

The first segment timed is the initial SYN. When its ACK is received 365 ms later, 
tcp_xmit_timer is called with an rtt argument of 2. Since this is the first RTT measurement 
(t_srtt is 0), the else clause in Figure 25.23 calculates the first values of the smoothed 
estimators. 

The data segment containing bytes 1 through 512 is the next segment timed, and the RTT variables are 
updated at time 1.259 when its ACK is received. 

The next three segments show how ACKs are cumulative. The timer is started at time 1.260 when 
bytes 513 through 1024 are sent. Another segment is sent with bytes 1025 through 1536, and the ACK 
received at time 2.206 acknowledges both data segments. The RTT estimators are then updated, since 
the ACK covers the starting sequence number being timed (513). 
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The segment with bytes 1537 through 2048 is transmitted at time 2.206 and the timer is started. Just 
that segment is acknowledged at time 3.132, and the estimators updated. 

The data segment at time 3.132 is timed and the retransmission timer is set to 5 ticks (the current value 
of t_rxtcur). Somewhere around this time the PPP link between the routers sun and netb is 
taken down and then brought back up, a procedure that takes a few minutes. When the retransmission 
timer expires at time 6.064, the code in Figure 25.26 is executed to update the RTT variables. 
t_rxtshift is incremented from 0 to 1 and t_rxtcur is set to 10 ticks (the exponential 
backoff). A segment starting with the oldest unacknowledged sequence number (snd_una, which 
is 3073) is retransmitted. After 5 seconds the timer expires again, t_rxtshift is incremented to 
2, and the retransmission timer is set to 20 ticks. 

When the retransmission timer expires at time 42.464, t_srtt is set to 0 and t_rttvar is set to 
5. As we mentioned in our discussion of Figure 25.26, this leaves the calculation of t_rxtcur the 
same (so the next calculation yields 160), but by setting t_srtt to 0, the next time the RTT 
estimators are updated (at time 218.834), the measured RTT becomes the smoothed RTT, as if the 
connection were starting fresh. 

The rest of the data transfer continues, and the estimators are updated a few more times. 

25.13. Summary 

The two functions tcp_fasttimo and tcp_slowtimo are called by the kernel every 200 
ms and every 500 ms, respectively. These two functions drive TCP’s per-connection timer 
maintenance. 

TCP maintains the following seven timers for each connection: 

a connection-establishment timer, 
a retransmission timer, 
a delayed ACK timer, 
a persist timer, 
a keepalive timer, 
a FIN_WAIT_2 timer, and 
a 2MSL timer. 

The delayed ACK timer is different from the other six, since when it is set it means a delayed ACK 
must be sent the next time TCP’s 200-ms timer expires. The other six timers are counters that are 
decremented by 1 every time TCP’s 500-ms timer expires. When any one of the counters reaches 0, 
the appropriate action is taken: drop the connection, retransmit a segment, send a keepalive probe, and 
so on, as described in this chapter. Since some of the timers are mutually exclusive, the six timers are 
really implemented using four counters, which complicates the code. 

This chapter also introduced the recommended way to calculate values for the retransmission timer. 
TCP maintains two smoothed estimators for a connection: the round-trip time and the mean deviation 
of the RTT. Although the algorithms are simple and elegant, these estimators are maintained as scaled 
fixed-point numbers (to provide adequate precision without using floating-point code within the 
kernel), which complicates the code. 

Exercises

25.1 How efficient is TCP’s fast timeout function? (Hint: Look at the number of delayed ACKs 
in Figure 24.5.) Suggest alternative implementations. 



ptg11539634

 870

25.2 Why do you think the initialization of tcp_maxidle is in the tcp_slowtimo 
function instead of the tcp_init function? 

25.3 tcp_slowtimo increments t_idle, which we said counts the clock ticks since a 
segment was last received on the connection. Should TCP also count the idle time since a 
segment was last sent on a connection? 

25.4 Rewrite the code in Figure 25.10 to separate the logic for the two different uses of the 
TCPT_2MSL counter. 

25.5 75 seconds after the connection in Figure 25.12 enters the FIN_WAIT_2 state a duplicate 
ACK is received on the connection. What happens? 

25.6 A connection has been idle for 1 hour when the application sets the SO_KEEPALIVE 
option. Will the first keepalive probe be sent 1 or 2 hours in the future? 

25.7 Why is tcp_rttdflt a global variable and not a constant? 

25.8 Rewrite the code related to Exercise 25.6 to implement the alternate behavior. 
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Chapter 26. TCP Output 

26.1. Introduction 

The function tcp_output is called whenever a segment needs to be sent on a connection. There 
are numerous calls to this function from other TCP functions: 

tcp_usrreq calls it for various requests: PRU_CONNECT to send the initial SYN, 
PRU_SHUTDOWN to send a FIN, PRU_RCVD in case a window update can be sent after 
the process has read some data from the socket receive buffer, PRU_SEND to send data, and 
PRU_SENDOOB to send out-of-band data. 
tcp_fasttimo calls it to send a delayed ACK. 
tcp_timers calls it to retransmit a segment when the retransmission timer expires. 
tcp_timers calls it to send a persist probe when the persist timer expires. 
tcp_drop calls it to send an RST. 
tcp_disconnect calls it to send a FIN. 
tcp_input calls it when output is required or when an immediate ACK should be sent. 
tcp_input calls it when a pure ACK is processed by the header prediction code and there 
is more data to send. (A pure ACK is a segment without data that just acknowledges data.) 
tcp_input calls it when the third consecutive duplicate ACK is received, to send a single 
segment (the fast retransmit algorithm). 

tcp_output first determines whether a segment should be sent or not. TCP output is controlled 
by numerous factors other than data being ready to send to the other end of the connection. For 
example, the other end might be advertising a window of size 0 that stops TCP from sending anything, 
the Nagle algorithm prevents TCP from sending lots of small segments, and slow start and congestion 
avoidance limit the amount of data TCP can send on a connection. Conversely, some functions set 
flags just to force tcp_output to send a segment, such as the TF_ACKNOW flag that means an 
ACK should be sent immediately and not delayed. If tcp_output decides not to send a segment, 
the data (if any) is left in the socket’s send buffer for a later call to this function. 

26.2. tcp_output Overview 

tcp_output is a large function, so we’ll discuss it in 14 parts. Figure 26.1 shows the outline of 
the function. 
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Figure 26.1. tcp_output function: overview.

 

 
 

Is an ACK expected from the other end?

61

idle is true if the maximum sequence number sent (snd_max) equals the oldest unacknowledged 
sequence number (snd_una), that is, if an ACK is not expected from the other end. In Figure 24.17 
idle would be 0, since an ACK is expected for sequence numbers 4—6, which have been sent but 
not yet acknowledged. 
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Go back to slow start

62-68

If an ACK is not expected from the other end and a segment has not been received from the other end 
in one RTO, the congestion window is set to one segment (t_maxseg bytes). This forces slow start 
to occur for this connection the next time a segment is sent. When a significant pause occurs in the 
data transmission ("significant" being more than the RTT), the network conditions can change from 
what was previously measured on the connection. Net/3 assumes the worst and returns to slow start. 

Send more than one segment

69-70

When send is jumped to, a single segment is sent by calling ip_output. But if 
tcp_output determines that more than one segment can be sent, sendalot is set to 1, and the 
function tries to send another segment. Therefore, one call to tcp_output can result in multiple 
segments being sent. 

26.3. Determine if a Segment Should be Sent 

Sometimes tcp_output is called but a segment is not generated. For example, the PRU_RCVD 
request is generated when the socket layer removes data from the socket’s receive buffer, passing the 
data to a process. It is possible that the process removed enough data that TCP should send a segment 
to the other end with a new window advertisement, but this is just a possibility, not a certainty. The 
first half of tcp_output determines if there is a reason to send a segment to the other end. If not, 
the function returns without sending a segment. 

Figure 26.2 shows the first of the tests to determine whether a segment should be sent. 
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Figure 26.2. tcp_output function: data is being forced out.

 

 

71-72

off is the offset in bytes from the beginning of the send buffer of the first data byte to send. The first 
off bytes in the send buffer, starting with snd_una, have already been sent and are waiting to be 
ACKed. 

win is the minimum of the window advertised by the receiver (snd_wnd) and the congestion 
window (snd_cwnd). 

73

The tcp_outflags array was shown in Figure 24.16. The value of this array that is fetched and 
stored in flags depends on the current state of the connection. flags contains the combination of 
the TH_ACK, TH_FIN, TH_RST, and TH_SYN flag bits to send to the other end. The other 
two flag bits, TH_PUSH and TH_URG, will be logically ORed into flags if necessary before the 
segment is sent. 

74-105
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The flag t_force is set nonzero when the persist timer expires or when out-of-band data is being 
sent. These two conditions invoke tcp_output as follows: 

   tp->t_force = 1; 
   error = tcp_output(tp); 
   tp->t_force = 0; 
 

This forces TCP to send a segment when it normally wouldn’t send anything. 

If win is 0, the connection is in the persist state (since t_force is nonzero). The FIN flag is 
cleared if there is more data in the socket’s send buffer. win must be set to 1 byte to force out a single 
byte. 

If win is nonzero, out-of-band data is being sent, so the persist timer is cleared and the exponential 
backoff index, t_rxtshift, is set to 0. 

Figure 26.3 shows the next part of tcp_output, which calculates how much data to send. 

Figure 26.3. tcp_output function: calculate how much data to send.

 

 
 

Calculate amount of data to send

106

len is the minimum of the number of bytes in the send buffer and win (which is the minimum of 
the receiver’s advertised window and the congestion window, perhaps 1 byte if output is being forced). 

 875



ptg11539634

off is subtracted because that many bytes at the beginning of the send buffer have already been sent 
and are awaiting acknowledgment. 

Check for window shrink

107-117

One way for len to be less than 0 occurs if the receiver shrinks the window, that is, the receiver 
moves the right edge of the window to the left. The following example demonstrates how this can 
happen. First the receiver advertises a window of 6 bytes and TCP transmits a segment with bytes 4, 5, 
and 6. TCP immediately transmits another segment with bytes 7, 8, and 9. Figure 26.4 shows the 
status of our end after the two segments are sent. 

Figure 26.4. Send buffer after bytes 4 through 9 are sent.

 

 

Then an ACK is received with an acknowledgment field of 7 (acknowledging all data up through and 
including byte 6) but with a window of 1. The receiver has shrunk the window, as shown in Figure 
26.5. 

Figure 26.5. Send buffer after receiving acknowledgment of bytes 4 through 6.

 

 

Performing the calculations in Figures 26.2 and 26.3, after the window is shrunk, we have 
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    off = snd_nxt - snd_una = 10 - 7 = 3 
    win = 1 
    len = min(so_snd.sb_cc, win) - off = min(3, 1) - 3 = -2 
 

assuming the send buffer contains only bytes 7, 8, and 9. 

Both RFC 793 and RFC 1122 strongly discourage shrinking the window. 
Nevertheless, implementations must be prepared for this. Handling scenarios such as 
this comes under the Robustness Principle, first mentioned in RFC 791: "Be liberal 
in what you accept, and conservative in what you send." 

Another way for len to be less than 0 occurs if the FIN has been sent but not acknowledged and not 
retransmitted. (See Exercise 26.2.) We show this in Figure 26.6. 

Figure 26.6. Bytes 1 through 9 have been sent and acknowledged, and then 

connection is closed.

 

 

This figure continues Figure 26.4, assuming the final segment with bytes 7, 8, and 9 is acknowledged, 
which sets snd_una to 10. The process then closes the connection, causing the FIN to be sent. 
We’ll see later in this chapter that when the FIN is sent, snd_nxt is incremented by 1 (since the 
FIN takes a sequence number), which in this example sets snd_nxt to 11. The sequence number of 
the FIN is 10. Performing the calculations in Figures 26.2 and 26.3, we have 

    off = snd_nxt - snd_una = 11 - 10 = 1 
    win = 6 
    len = min(so_snd.sb_cc, win) - off = min(0, 6) - 1 = -1 
 

We assume that the receiver advertises a window of 6, which makes no difference, since the number 
of bytes in the send buffer (0) is less than this. 

Enter persist state

118-122

len is set to 0. If the advertised window is 0, any pending retransmission is canceled by setting the 
retransmission timer to 0. snd_nxt is also pulled to the left of the window by setting it to the value 
of snd_una. The connection will enter the persist state later in this function, and when the receiver 
finally opens its window, TCP starts retransmitting from the left of the window. 
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Send one segment at a time

124-127

If the amount of data to send exceeds one segment, len is set to a single segment and the 
sendalot flag is set to 1. As shown in Figure 26.1, this causes another loop through 
tcp_output after the segment is sent. 

Turn off FIN flag if send buffer not emptied

128-129

If the send buffer is not being emptied by this output operation, the FIN flag must be cleared (in case it 
is set in flags). Figure 26.7 shows an example of this. 

Figure 26.7. Example of send buffer not being emptied when FIN is set.

 

 

In this example the first 512-byte segment has already been sent (and is waiting to be acknowledged) 
and TCP is about to send the next 512-byte segment (bytes 512—1024). There is still 1 byte left in the 
send buffer (byte 1025) and the process closes the connection. len equals 512 (one segment), and the 
C expression becomes 

    SEQ_LT(1025, 1026) 
 

which is true, so the FIN flag is cleared. If the FIN flag were mistakenly left on, TCP couldn’t send 
byte 1025 to the receiver. 

Calculate window advertisement

130

win is set to the amount of space available in the receive buffer, which becomes TCP’s window 
advertisement to the other end. Be aware that this is the second use of this variable in this function. 
Earlier it contained the maximum amount of data TCP could send, but for the remainder of this 
function it contains the receive window advertised by this end of the connection. 

The silly window syndrome (called SWS and described in Section 22.3 of Volume 1) occurs when 
small amounts of data, instead of full-sized segments, are exchanged across a connection. It can be 
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caused by a receiver who advertises small windows and by a sender who transmits small segments. 
Correct avoidance of the silly window syndrome must be performed by both the sender and the 
receiver. Figure 26.8 shows silly window avoidance by the sender. 

Figure 26.8. tcp_output function: sender silly window avoidance.

 

 
 

Sender silly window avoidance

142-143

If a full-sized segment can be sent, it is sent. 

144-146

If an ACK is not expected (idle is true), or if the Nagle algorithm is disabled (TF_NODELAY is 
true) and TCP is emptying the send buffer, the data is sent. The Nagle algorithm (Section 19.4 of 
Volume 1) prevents TCP from sending less than a full-sized segment when an ACK is expected for 
the connection. It can be disabled using the TCP_NODELAY socket option. For a normal interactive 
connection (e.g., Telnet or Rlogin), if there is unacknowledged data, this if statement is false, since 
the Nagle algorithm is enabled by default. 

147-148

If output is being forced by either the persist timer or sending out-of-band data, some data is sent. 

149-150

If the receiver’s window is at least half open, data is sent. This is to deal with peers that always 
advertise tiny windows, perhaps smaller than the segment size. The variable max_sndwnd is 
calculated by tcp_input as the largest window advertisement ever advertised by the other end. It 
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is an attempt to guess the size of the other end’s receive buffer and assumes the other end never 
reduces the size of its receive buffer. 

151-152

If the retransmission timer expired, then a segment must be sent. snd_max is the highest sequence 
number that has been transmitted. We saw in Figure 25.26 that when the retransmission timer expires, 
snd_nxt is set to snd_una, that is, snd_nxt is moved to the left edge of the window, 
making it less than snd_max.

The next portion of tcp_output, shown in Figure 26.9, determines if TCP must send a segment 
just to advertise a new window to the other end. This is called a window update.

Figure 26.9. tcp_output function: check if a window update should be sent.

 

 

154-168

The expression 

    min(win, (long)TCP_MAXWIN << tp->rcv_scale) 
 

is the smaller of the amount of available space in the socket’s receive buffer (win) and the maximum 
size of the window allowed for this connection. This is the maximum window TCP can currently 
advertise to the other end. The expression 

    (tp->rcv_adv - tp->rcv_nxt) 
 

 880

is the number of bytes remaining in the last window advertisement that TCP sent to the other end. 
Subtracting this from the maximum window yields adv, the number of bytes by which the window 
has opened. rcv_nxt is incremented by tcp_input when data is received in sequence, and 
rcv_adv is incremented by tcp_output in Figure 26.32 when the edge of the advertised 
window moves to the right. 
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Consider Figure 24.18 and assume that a segment with bytes 4, 5, and 6 is received and that these 
three bytes are passed to the process. Figure 26.10 shows the state of the receive space at this point in 
tcp_output.

Figure 26.10. Transition from Figure 24.18 after bytes 4, 5, and 6 are received.

 

 

The value of adv is 3, since there are 3 more bytes of the receive space (bytes 10, 11, and 12) for the 
other end to fill. 

169-170

If the window has opened by two or more segments, a window update is sent. When data is received 
as full-sized segments, this code causes every other received segment to be acknowledged: TCP’s 
ACK-every-other-segment property. (We show an example of this shortly.) 

171-172

If the window has opened by at least 50% of the maximum possible window (the socket’s receive 
buffer high-water mark), a window update is sent. 

The next part of tcp_output, shown in Figure 26.11, checks whether various flags require TCP 
to send a segment. 

Figure 26.11. tcp_output function: should a segment should be sent?
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174-178

If an immediate ACK is required, a segment is sent. The TF_ACKNOW flag is set by various 
functions: when the 200-ms delayed ACK timer expires, when a segment is received out of order (for 
the fast retransmit algorithm), when a SYN is received during the three-way handshake, when a persist 
probe is received, and when a FIN is received. 

179-180

If flags specifies that a SYN or RST should be sent, a segment is sent. 

181-182

If the urgent pointer, snd_up, is beyond the start of the send buffer, a segment is sent. The urgent 
pointer is set by the PRU_SENDOOB request (Figure 30.9). 

183-190

If flags specifies that a FIN should be sent, a segment is sent only if the FIN has not already been 
sent, or if the FIN is being retransmitted. The flag TF_SENTFIN is set later in this function when 
the FIN is sent. 

At this point in tcp_output there is no need to send a segment. Figure 26.12 shows the final 
piece of code before tcp_output returns. 

Figure 26.12. tcp_output function: enter persist state.
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191-217

If there is data in the send buffer to send (so_snd.sb_cc is nonzero) and both the retransmission 
timer and the persist timer are off, turn the persist timer on. This scenario happens when the window 
advertised by the other end is too small to receive a full-sized segment, and there is no other reason to 
send a segment. 

218-221

tcp_output returns, since there is no reason to send a segment. 

Example

A process writes 100 bytes, followed by a write of 50 bytes, on an idle connection. Assume a segment 
size of 512 bytes. When the first write occurs, the code in Figure 26.8 (lines 144—146) sends a 
segment with 100 bytes of data since the connection is idle and TCP is emptying the send buffer. 

When 50-byte write occurs, the code in Figure 26.8 does not send a segment: the amount of data is not 
a full-sized segment, the connection is not idle (assume TCP is awaiting the ACK for the 100 bytes 
that it just sent), the Nagle algorithm is enabled by default, t_force is not set, and assuming a 
typical receive window of 4096, 50 is not greater than or equal to 2048. These 50 bytes remain in the 
send buffer, probably until the ACK for the 100 bytes is received. This ACK will probably be delayed 
by the other end, causing more delay in sending the final 50 bytes. 

This example shows the timing delays that can occur when sending less than full-sized segments with 
the Nagle algorithm enabled. See also Exercise 26.12. 

Example

This example demonstrates the ACK-every-other-segment property of TCP. Assume a connection is 
established with a segment size of 1024 bytes and a receive buffer size of 4096. There is no data to 
send T CP is just receiving. 

A window of 4096 is advertised in the ACK of the SYN, and Figure 26.13 shows the two variables 
rcv_nxt and rcv_adv. The receive buffer is empty. 

Figure 26.13. Receiver advertising a window of 4096.
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The other end sends a segment with bytes 1—1024. tcp_input processes the segment, sets the 
delayed-ACK flag for the connection, and appends the 1024 bytes of data to the socket’s receiver 
buffer (Figure 28.13). rcv_nxt is updated as shown in Figure 26.14. 

Figure 26.14. Transition from Figure 26.13 after bytes 1–1024 received.

 

 

The process reads the 1024 bytes in its socket receive buffer. We’ll see in Figure 30.6 that the resulting 
PRU_RCVD request causes tcp_output to be called, because a window update might need to be 
sent after the process reads data from the receive buffer. When tcp_output is called, the two 
variables still have the values shown in Figure 26.14 and the only difference is that the amount of 
space in the receive buffer has increased to 4096 since the process has read the first 1024 bytes. The 
calculations in Figure 26.9 are performed: 

    adv = min(4096, 65535) - (4097 - 1025) 
        = 1024 
 

TCP_MAXWIN is 65535 and we assume a receive window scale shift of 0. Since the window has 
increased by less than two segments (2048), nothing is sent. But the delayed-ACK flag is still set, so if 
the 200-ms timer expires, an ACK will be sent. 

When TCP receives the next segment with bytes 1025—2048, tcp_input processes the segment, 
sets the delayed-ACK flag for the connection (which was already on), and appends the 1024 bytes of 
data to the socket’s receiver buffer. rcv_nxt is updated as shown in Figure 26.15. 

Figure 26.15. Transition from Figure 26.14 after bytes 1025–2048 received.
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The process reads bytes 1025—2048 and tcp_output is called. The two variables still have the 
values shown in Figure 26.15, although the space in the receive buffer increases to 4096 when the 
process reads the 1024 bytes of data. The calculations in Figure 26.9 are performed: 

    adv = min(4096, 65535) - (4097 - 2049) 
        = 2048 
 

This value is now greater than or equal to two segments, so a segment is sent with an acknowledgment 
field of 2049 and an advertised window of 4096. This is a window update. The receiver is willing to 
receive bytes 2049 through 6145. We’ll see later in this function that when this segment is sent, the 
value of rcv_adv also gets updated to 6145. 

This example shows that when receiving data faster than the 200-ms delayed ACK timer, an ACK is 
sent when the receive window changes by more than two segments due to the process reading the 
data. If data is received for the connection but the process is not reading the data from the socket’s 
receive buffer, the ACK-every-other-segment property won’t occur. Instead the sender will only see 
the delayed ACKs, each advertising a smaller window, until the receive buffer is filled and the 
window goes to 0. 

26.4. TCP Options 

The TCP header can contain options. We digress to discuss these options since the next piece of 
tcp_output decides which options to send and constructs the options in the outgoing segment. 
Figure 26.16 shows the format of the options supported by Net/3. 

Figure 26.16. TCP options supported by Net/3.

 

 

Every option begins with a 1-byte kind that specifies the type of option. The first two options (with 
kinds of 0 and 1) are single-byte options. The other three are multibyte options with a len byte that 
follows the kind byte. The length is the total length, including the kind and len bytes. 

 885



ptg11539634

 886

The multibyte integers th e MSS and the two timestamp values are stored in network byte order. 

The final two options, window scale and timestamp, are new and therefore not supported by many 
systems. To provide interoperability with these older systems, the following rules apply. 

1. TCP can send one of these options (or both) with the initial SYN segment corresponding to 
an active open (that is, a SYN without an ACK). Net/3 does this for both options if the global 
tcp_do_rfc1323 is nonzero (it defaults to 1). This is done in tcp_newtcpcb. 

2. The option is enabled only if the SYN reply from the other end also includes the desired 
option. This is handled in Figures 28.20 and 29.2. 

3. If TCP performs a passive open and receives a SYN specifying the option, the response (the 
SYN plus ACK) must contain the option if TCP wants to enable the option. This is done in 
Figure 26.23. 

Since a system must ignore options that it doesn’t understand, the newer options are enabled by both 
ends only if both ends understand the option and both ends want the option enabled. 

The processing of the MSS option is covered in Section 27.5. The next two sections summarize the 
Net/3 handling of the two newer options: window scale and timestamp. 

Other options have been proposed. kinds of 4, 5, 6, and 7, called the selective-ACK 
and echo options, are defined in RFC 1072 [Jacobson and Braden 1988]. We don’t 
show them in Figure 26.16 because the echo options were replaced with the 
timestamp option, and selective ACKs, as currently defined, are still under discussion 
and were not included in RFC 1323. Also, the T/TCP proposal for TCP transactions 
(RFC 1644 [Braden 1994], and Section 24.7 of Volume 1) specifies three options 
with kinds of 11, 12, and 13. 

26.5. Window Scale Option 

The window scale option, defined in RFC 1323, avoids the limitation of a 16-bit window size field in 
the TCP header (Figure 24.10). Larger windows are required for what are called long fat pipes, 
networks with either a high bandwidth or a long delay (i.e., a long RTT). Section 24.3 of Volume 1 
gives examples of current networks that require larger windows to obtain maximum TCP throughput. 

The 1-byte shift count in Figure 26.16 is between 0 (no scaling performed) and 14. This maximum 
value of 14 provides a maximum window of 1,073,725,440 bytes (65535 x 214). Internally Net/3 
maintains window sizes as 32-bit values, not 16-bit values. 

The window scale option can only appear in a SYN segment; therefore the scale factor is fixed in each 
direction when the connection is established. 

The two variables snd_scale and rcv_scale in the TCP control block specify the shift count 
for the send window and the receive window, respectively. Both default to 0 for no scaling. Every 16-
bit advertised window received from the other end is left shifted by snd_scale bits to obtain the 
real 32-bit advertised window size (Figure 28.6). Every time TCP sends a window advertisement to 
the other end, the internal 32-bit window size is right shifted by rcv_scale bits to give the value 
that is placed into the TCP header (Figure 26.29). 

When TCP sends a SYN, either actively or passively, it chooses the value of rcv_scale to 
request, based on the size of the socket’s receive buffer (Figures 28.7 and 30.4). 
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26.6. Timestamp Option 

The timestamp option is also defined in RFC 1323 and lets the sender place a timestamp in every 
segment. The receiver sends the timestamp back in the acknowledgment, allowing the sender to 
calculate the RTT for each received ACK. Figure 26.17 summarizes the timestamp option and the 
variables involved. 

Figure 26.17. Summary of variables used with timestamp option.

 

 

The global variable tcp_now is the timestamp clock. It is initialized to 0 when the kernel is 
initialized and incremented by 1 every 500 ms (Figure 25.8). Three variables are maintained in the 
TCP control block for the timestamp option: 

ts_recent is a copy of the most-recent valid timestamp from the other end. (We describe 
shortly what makes a timestamp "valid.") 
ts_recent_age is the value of tcp_now when ts_recent was last copied from 
a received segment. 
last_ack_sent is the value of the acknowledgment field (ti_ack) the last time a 
segment was sent (Figure 26.32). This is normally equal to rcv_nxt, the next expected 
sequence number, unless ACKs are delayed. 

The two variables ts_val and ts_ecr are local variables in the function tcp_input that 
contain the two values from the timestamp option. 

ts_val is the timestamp sent by the other end with its data. 
ts_ecr is the timestamp from the segment that is being acknowledged by the received 
segment. 

In an outgoing segment, the first 4 bytes of the timestamp option are set to 0x0101080a. This is 
the recommended value from Appendix A of RFC 1323. The 2 bytes of 1 are NOPs from Figure 
26.16, followed by a kind of 8 and a len of 10, which identify the timestamp option. By placing two 
NOPs in front of the option, the two 32-bit timestamps in the option and the data that follows are 
aligned on 32-bit boundaries. Also, we show the received timestamp option in Figure 26.17 with the 
recommended 12-byte format (which Net/3 always generates), but the code that processes received 
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options (Figure 28.10) does not require this format. The 10-byte format shown in Figure 26.16, 
without two preceding NOPs, is handled fine on input (but see Exercise 28.4). 

The RTT of a transmitted segment and its ACK is calculated as tcp_now minus ts_ecr. The 
units are 500-ms clock ticks, since that is the units of the Net/3 timestamps. 

The presence of the timestamp option also allows TCP to perform PAWS: protection against wrapped 
sequence numbers. We describe this algorithm in Section 28.7. The variable ts_recent_age is 
used with PAWS. 

tcp_output builds a timestamp option in an outgoing segment by copying tcp_now into the 
timestamp and ts_recent into the echo reply (Figure 26.24). This is done for every segment 
when the option is in use, unless the RST flag is set. 

Which Timestamp to Echo, RFC 1323 Algorithm

The test for a valid timestamp determines whether the value in ts_recent is updated, and since 
this value is always sent as the timestamp echo reply, the test for validity determines which timestamp 
gets echoed back to the other end. RFC 1323 specified the following test: 

    ti_seq <= last_ack_sent < ti_seq + ti_len 
 

which is implemented in C as shown in Figure 26.18. 

Figure 26.18. Typical code to determine if received timestamp is valid.

 

 

The variable ts_present is true if a timestamp option was received in the segment. We 
encounter this code twice in tcp_input: Figure 28.11 does the test in the header prediction code, 
and Figure 28.35 does the test in the normal input processing. 

To see what this test is doing, Figure 26.19 shows show five different scenarios, corresponding to five 
different segments received on a connection. In each scenario ti_len is 3. 
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Figure 26.19. Example receive window and five different scenarios of received 

segment.

 

 

The left edge of the receive window begins with sequence number 4. In scenario 1 the segment 
contains completely duplicate data. The SEQ_LEQ test in Figure 28.11 is true, but the SEQ_LT test 
fails. For scenarios 2, 3, and 4, both the SEQ_LEQ and SEQ_LT tests are true because the left edge 
of the window is advanced by any one of these three segments, even though scenario 2 contains two 
duplicate bytes of data, and scenario 3 contains one duplicate byte of data. Scenario 5 fails the 
SEQ_LEQ test, because it doesn’t advance the left edge of the window. This segment is one in the 
future that’s not the next expected, implying that a previous segment was lost or reordered. 

Unfortunately this test to determine whether to update ts_recent is flawed [Braden 1993]. 
Consider the following example. 

1. In Figure 26.19 a segment that we don’t show arrives with bytes 1, 2, and 3. The timestamp in 
this segment is saved in ts_recent because last_ack_sent is 1. An ACK is sent 
with an acknowledgment field of 4, and last_ack_sent is set to 4 (the value of 
rcv_nxt). We have the receive window shown in Figure 26.19. 

2. This ACK is lost. 
3. The other end times out and retransmits the segment with bytes 1, 2, and 3. This segment 

arrives and is the one labeled "scenario 1" in Figure 26.19. Since the SEQ_LT test in Figure 
26.18 fails, ts_recent is not updated with the value from the retransmitted segment. 

4. A duplicate ACK is sent with an acknowledgment field of 4, but the timestamp echo reply is 
ts_recent, the value copied from the segment in step 1. But when the receiver 
calculates the RTT using this value, it will (incorrectly) take into account the original 
transmission, the lost ACK, the timeout, the retransmission, and the duplicate ACK. 

For correct RTT estimation by the other end, the timestamp value from the retransmission should be 
returned in the duplicate ACK. 

The tests in Figure 26.18 also fail to update ts_recent if the length of the received segment is 0, 
since the left edge of the window is not moved. This incorrect test can also lead to problems with 
long-lived (greater than 24 days, the PAWS limit described in Section 28.7), unidirectional 
connections (all the data flow is in one direction so the sender of the data always sends the same 
ACKs). 
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Which Timestamp to Echo, Corrected Algorithm

The algorithm we’ll encounter in the Net/3 sources is from Figure 26.18. The correct algorithm given 
in [Braden 1993] replaces Figure 26.18 with the one in Figure 26.20. 

Figure 26.20. Correct code to determine if received timestamp is valid.

 

 

This doesn’t test whether the left edge of the window moves or not, it just verifies that the new 
timestamp (ts_val) is greater than or equal to the previous timestamp (ts_recent), and that 
the starting sequence number of the received segment is not greater than the left edge of the window. 
Scenario 5 in Figure 26.19 would fail this new test since it is out of order. 

The macro TSTMP_GEQ is identical to SEQ_GEQ in Figure 24.21. It is used with timestamps, 
since timestamps are 32-bit unsigned values that wrap around just like sequence numbers. 

Timestamps and Delayed ACKs

It is constructive to see how timestamps and RTT calculations are affected by delayed ACKs. Recall 
from Figure 26.17 that the value saved by TCP in ts_recent becomes the echoed timestamp in 
segments that are sent, which are used by the other end in calculating its RTT. When ACKs are 
delayed, the delay time should be taken into account by the side that sees the delays, or else it might 
retransmit too quickly. In the example that follows we only consider the code in Figure 26.20, but the 
incorrect code in Figure 26.18 also handles delayed ACKs correctly. 

Consider the receive sequence space in Figure 26.21 when the received segment contains bytes 4 and 
5. 

Figure 26.21. Receive sequence space when segment with bytes 4 and 5 arrives.

 

 

Since ti_seq is less than or equal to last_ack_sent, ts_recent is copied from the 
segment. rcv_nxt is also increased by 2. 
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Assume that the ACK for these 2 bytes is delayed, and before that delayed ACK is sent, the next in-
order segment arrives. This is shown in Figure 26.22. 

Figure 26.22. Receive sequence space when segment with bytes 6 and 7 arrives.

 

 

This time ti_seq is greater than last_ack_sent, so ts_recent is not updated. This is 
intentional. Assuming TCP now sends an ACK for sequence numbers 4—7, the other end’s RTT will 
take into account the delayed ACK, since the echoed timestamp (Figure 26.24) is the one from the 
segment with sequence numbers 4 and 5. These figures also demonstrate that rcv_nxt equals 
last_ack_sent except when ACKs are delayed. 

26.7. Send a Segment 

The last half of tcp_output sends the segment it fills in all the fields in the TCP header and 
passes the segment to IP for output. 

Figure 26.23 shows the first part, which sends the MSS and window scale options with a SYN 
segment. 
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Figure 26.23. tcp_output function: send options with first SYN segment.

 

 

223-234

The TCP options are built in the array opt, and the integer optlen keeps a count of the number 
of bytes accumulated (since multiple options can be sent at once). If the SYN flag bit is set, 
snd_nxt is set to the initial send sequence number (iss). If TCP is performing an active open, 
iss is set by the PRU_CONNECT request when the TCP control block is created. If this is a 
passive open, tcp_input creates the TCP control block and sets iss. In both cases, iss is set 
from the global tcp_iss.

235

The flag TF_NOOPT is checked, but this flag is never enabled and there is no way to turn it on. 
Hence, the MSS option is always sent with a SYN segment. 

In the Net/1 version of tcp_newtcpcb, the comment "send options!" appeared 
on the line that initialized t_flags to 0. The TF_NOOPT flag is probably a 
historical artifact from a pre-Net/1 system that had problems interoperating with 
other hosts when it sent the MSS option, so the default was to not send the option. 
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Build MSS option

236-241

opt[0] is set to 2 (TCPOPT_MAXSEG) and opt[1] is set to 4, the length of the MSS option 
in bytes. The function tcp_mss calculates the MSS to announce to the other end; we cover this 
function in Section 27.5. The 16-bit MSS is stored in opt[2] and opt[3] by bcopy (Exercise 
26.5). Notice that Net/3 always sends an MSS announcement with the SYN for a connection. 

Should window scale option be sent?

242-244

If TCP is to request the window scale option, this option is sent only if this is an active open 
(TH_ACK is not set) or if this is a passive open and the window scale option was received in the SYN 
from the other end. Recall that t_flags was set to TF_REQ_SCALE|TF_REQ_TSTMP 
when the TCP control block was created in Figure 25.21, if the global variable 
tcp_do_rfc1323 was nonzero (its default value). 

Build window scale option

245-249

Since the window scale option occupies 3 bytes (Figure 26.16), a 1-byte NOP is stored before the 
option, forcing the option length to be 4 bytes. This causes the data in the segment that follows the 
options to be aligned on a 4-byte boundary. If this is an active open, request_r_scale is 
calculated by the PRU_CONNECT request. If this is a passive open, the window scale factor is 
calculated by tcp_input when the SYN is received. 

RFC 1323 specifies that if TCP is prepared to scale windows it should send this option even if its own 
shift count is 0. This is because the option serves two purposes: to notify the other end that it supports 
the option, and to announce its shift count. Even though TCP may calculate its own shift count as 0, 
the other end might want to use a different value. 

The next part of tcp_output is shown in Figure 26.24. It finishes building the options in the 
outgoing segment. 
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Figure 26.24. tcp_output function: finish sending options.

 

 
 

Should timestamp option be sent?

253-261

If the following three conditions are all true, a timestamp option is sent: (1) TCP is configured to 
request the timestamp option, (2) the segment being formed does not contain the RST flag, and (3) 
either this is an active open (i.e., flags specifies the SYN flag but not the ACK flag) or TCP has 
received a timestamp from the other end (TF_RCVD_TSTMP). Unlike the MSS and window scale 
options, a timestamp option can be sent with every segment once both ends agree to use the option. 

Build timestamp option

263-267

The timestamp option (Section 26.6) consists of 12 bytes (TCPOLEN_TSTAMP_APPA). The first 
4 bytes are 0x0101080a (the constant TCPOPT_TSTAMP_HDR), as described with Figure 
26.17. The timestamp value is taken from tcp_now (the number of 500-ms clock ticks since the 
system was initialized), and the timestamp echo reply is taken from ts_recent, which is set by 
tcp_input.

Check if options have overflowed segment

270-277

 894

The size of the TCP header is incremented by the number of option bytes (optlen). If the amount 
of data to send (len) exceeds the MSS minus the size of the options (optlen), the data length is 
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decreased accordingly and the sendalot flag is set, to force another loop through this function 
after this segment is sent (Figure 26.1). 

The MSS and window scale options only appear in SYN segments, which Net/3 always sends without 
data, so this adjustment of the data length doesn’t apply. When the timestamp option is in use, 
however, it appears in all segments. This reduces the amount of data in each full-sized data segment 
from the announced MSS to the announced MSS minus 12 bytes. 

The next part of tcp_output, shown in Figure 26.25, updates some statistics and allocates an 
mbuf for the IP and TCP headers. This code is executed when the segment being output contains some 
data (len is greater than 0). 

Figure 26.25. tcp_output function: update statistics, allocate mbuf for IP and 

TCP headers.
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Update statistics

284-292

If t_force is nonzero and TCP is sending a single byte of data, this is a window probe. If 
snd_nxt is less than snd_max, this is a retransmission. Otherwise, this is normal data 
transmission. 

Allocate an mbuf for IP and TCP headers

293-297

An mbuf with a packet header is allocated by MGETHDR. This is for the IP and TCP headers, and 
possibly the data (if there’s room). Although tcp_output is often called as part of a system call 
(e.g., write) it is also called at the software interrupt level by tcp_input, and as part of the 
timer processing. Therefore M_DONTWAIT is specified. If an error is returned, a jump is made to the 
label out. This label is near the end of the function, in Figure 26.32. 

Copy data into mbuf

298-308

If the amount of data is less than 44 bytes (100 — 40 — 16, assuming no TCP options), the data is 
copied directly from the socket send buffer into the new packet header mbuf by m_copydata. 
Otherwise m_copy creates a new mbuf chain with the data from the socket send buffer and this 
chain is linked to the new packet header mbuf. Recall our description of m_copy in Section 2.9, 
where we showed that if the data is in a cluster, m_copy just references that cluster and doesn’t 
make a copy of the data. 

Set PSH flag

309-316

If TCP is sending everything it has from the send buffer, the PSH flag is set. As the comment 
indicates, this is intended for receiving systems that only pass received data to an application when the 
PSH flag is received or when a buffer fills. We’ll see in tcp_input that Net/3 never holds data in 
a socket receive buffer waiting for a received PSH flag. 

The next part of tcp_output, shown in Figure 26.26, starts with the code that is executed when 
len equals 0: there is no data in the segment TCP is sending. 
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Figure 26.26. tcp_output function: update statistics and allocate mbuf for IP 

and TCP headers.

 

 
 

Update statistics

318-325

Various statistics are updated: TF_ACKNOW and a length of 0 means this is an ACK-only segment. 
If any one of the flags SYN, FIN, or RST is set, this is a control segment. If the urgent pointer exceeds 
snd_una, the segment is being sent to notify the other end of the urgent pointer. If none of these 
conditions are true, this segment is a window update. 

Get mbuf for IP and TCP headers

326-335

An mbuf with a packet header is allocated to contain the IP and TCP headers. 

Copy IP and TCP header templates into mbuf

336-338

The template of the IP and TCP headers is copied from t_template into the mbuf by bcopy. 
This template was created by tcp_template.

Figure 26.27 shows the next part of tcp_output, which fills in some remaining fields in the 
TCP header. 

 897



ptg11539634

Figure 26.27. tcp_output function: set ti_seq, ti_ack, and ti_flags.

 

 
 

Decrement snd_nxt if FIN is being retransmitted

339-346

If TCP has already transmitted the FIN, the send sequence space appears as shown in Figure 26.28. 

Figure 26.28. Send sequence space after FIN has been transmitted.

 

 

Therefore, if the FIN flag is set, and if the TF_SENTFIN flag is set, and if snd_nxt equals 
snd_max, TCP knows the FIN is being retransmitted. We’ll see shortly (Figure 26.31) that when a 
FIN is sent, snd_nxt is incremented 1 one (since the FIN occupies a sequence number), so this 
piece of code decrements snd_nxt by 1. 

 898



ptg11539634

 899

Set sequence number field of segment

347-363

The sequence number field of the segment is normally set to snd_nxt, but is set to snd_max if 
(1) there is no data to send (len equals 0), (2) neither the SYN flag nor the FIN flag is set, and (3) 
the persist timer is not set. 

Set acknowledgment field of segment

364

The acknowledgment field of the segment is always set to rcv_nxt, the next expected receive 
sequence number. 

Set header length if options present

365-368

If TCP options are present (optlen is greater than 0), the options are copied into the TCP header 
and the 4-bit header length in the TCP header (th_off in Figure 24.10) is set to the fixed size of the 
TCP header (20 bytes) plus the length of the options, divided by 4. This field is the number of 32-bit 
words in the TCP header, including options. 

369

The flags field in the TCP header is set from the variable flags.

The next part of code, shown in Figure 26.29, fills in more fields in the TCP header and calculates the 
TCP checksum. 
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Figure 26.29. tcp_output function: fill in more TCP header fields and 

calculate checksum.

 

 
 

Don't advertise less than one full-sized segment

370-375

Avoidance of the silly window syndrome is performed, this time in calculating the window size that is 
advertised to the other end (ti_win). Recall that win was set at the end of Figure 26.3 to the 
amount of space in the socket’s receive buffer. If win is less than one-fourth of the receive buffer size 
(so_rcv.sb_hiwat) and less than one full-sized segment, the advertised window will be 0. 
This is subject to the later test that prevents the window from shrinking. In other words, when the 
amount of available space reaches either one-fourth of the receive buffer size or one full-sized 
segment, the available space will be advertised. 

Observe upper limit for advertised window on this connection

376-377

If win is larger than the maximum value for this connection, reduce it to its maximum value. 
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Do not shrink window

378-379

Recall from Figure 26.10 that rcv_adv minus rcv_nxt is the amount of space still available to 
the sender that was previously advertised. If win is less than this value, win is set to this value, 
because we must not shrink the window. This can happen when the available space is less than one 
full-sized segment (hence win was set to 0 at the beginning of this figure), but there is room in the 
receive buffer for some data. Figure 22.3 of Volume 1 shows an example of this scenario. 

Set urgent offset

381-383

If the urgent pointer (snd_up) is greater than snd_nxt, TCP is in urgent mode. The urgent 
offset in the TCP header is set to the 16-bit offset of the urgent pointer from the starting sequence 
number of the segment, and the URG flag bit is set. TCP sends the urgent offset and the URG flag 
regardless of whether the referenced byte of urgent data is contained in this segment or not. 

Figure 26.30 shows an example of how the urgent offset is calculated, assuming the process executes 

 
    send(fd, buf, 3, MSG_OOB); 
 

and the send buffer is empty when this call to send takes place. This shows that Berkeley-derived 
systems consider the urgent pointer to point to the first byte of data after the out-of-band byte. Recall 
our discussion after Figure 24.10 where we distinguished between the 32-bit urgent pointer in the data 
stream (snd_up), and the 16-bit urgent offset in the TCP header (ti_urp). 

Figure 26.30. Example of urgent pointer and urgent offset calculation.

 

There is a subtle bug here. The bug occurs when the send buffer is larger than 65535, 
regardless of whether the window scale option is in use or not. If the send buffer is 
greater than 65535 and is nearly full, and the process sends out-of-band data, the 
offset of the urgent pointer from snd_nxt can exceed 65535. But the urgent 
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pointer is a 16-bit unsigned value, and if the calculated value exceeds 65535, the 16 
high-order bits are discarded, delivering a bogus urgent pointer to the other end. See 
Exercise 26.6 for a solution. 

384-391

If TCP is not in urgent mode, the urgent pointer is moved to the left edge of the window 
(snd_una). 

392-399

The TCP length is stored in the pseudo-header and the TCP checksum is calculated. All the fields in 
the TCP header have been filled in, and when the IP and TCP header template were copied from 
t_template (Figure 26.26), the fields in the IP header that are used as the pseudo-header were 
initialized (as shown in Figure 23.19 for the UDP checksum calculation). 

The next part of tcp_output, shown in Figure 26.31, updates the sequence number if the SYN 
or FIN flags are set and initializes the retransmission timer. 
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Figure 26.31. tcp_output function: update sequence number, initialize 

retransmit timer.

 

 
 

Remember starting sequence number

400-405

If TCP is not in the persist state, the starting sequence number is saved in startseq. This is used 
later in Figure 26.31 if the segment is timed. 
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Increment snd_nxt

406-417

Since both the SYN and FIN flags take a sequence number, snd_nxt is incremented if either is set. 
TCP also remembers that the FIN has been sent, by setting the flag TF_SENTFIN. snd_nxt is 
then incremented by the number of bytes of data (len), which can be 0. 

Update snd_max

418-419

If the new value of snd_nxt is larger than snd_max, this is not a retransmission. The new value 
of snd_max is stored. 

420-428

If a segment is not currently being timed for this connection (t_rtt equals 0), the timer is started 
(t_rtt is set to 1) and the starting sequence number of the segment being timed is saved in 
t_rtseq. This sequence number is used by tcp_input to determine when the segment being 
timed is acknowledged, to update the RTT estimators. The sample code we discussed in Section 25.10 
looked like 

    if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq)) 
        tcp_xmit_timer(tp, tp->t_rtt); 
 
 

Set retransmission timer

430-440

If the retransmission timer is not currently set, and if this segment contains data, the retransmission 
timer is set to t_rxtcur. Recall that t_rxtcur is set by tcp_xmit_timer, when an 
RTT measurement is made. This is an ACK-only segment if snd_nxt equals snd_una (since 
len was added to snd_nxt earlier in this figure), and the retransmission timer is set only for 
segments containing data. 

441-444

If the persist timer is enabled, it is disabled. Either the retransmission timer or the persist timer can be 
enabled at any time for a given connection, but not both. 

Persist state

446-447

The connection is in the persist state since t_force is nonzero and the persist timer is enabled. 
(This else clause is associated with the if at the beginning of the figure.) snd_max is updated, 
if necessary. In the persist state, len will be one. 
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The final part of tcp_output, shown in Figure 26.32 completes the formation of the outgoing 
segment and calls ip_output to send the datagram. 

Add trace record for socket debugging

448-452

If the SO_DEBUG socket option is enabled, tcp_trace adds a record to TCP’s circular trace 
buffer. We describe this function in Section 27.10. 

Set IP length, TTL, and TOS

453-462

The final three fields in the IP header that must be set by the transport layer are stored: IP length, TTL, 
and TOS. These three fields are marked with an asterisk at the bottom of Figure 23.19. 

The comments XXX are because the latter two fields normally remain constant for a 
connection and should be stored in the header template, instead of being assigned 
explicitly each time a segment is sent. But these two fields cannot be stored in the IP 
header until after the TCP checksum is calculated. 

Pass datagram to IP

463-464

ip_output sends the datagram containing the TCP segment. The socket options are logically 
ANDed with SO_DONTROUTE, which means that the only socket option passed to ip_output 
is SO_DONTROUTE. The only other socket option examined by ip_output is 
SO_BROADCAST, so this logical AND turns off the SO_BROADCAST bit, if set. This means 
that a process cannot issue a connect to a broadcast address, even if it sets the 
SO_BROADCAST socket option. 

467-470

The error ENOBUFS is returned if the interface queue is full or if IP needs to obtain an mbuf and 
can’t. The function tcp_quench puts the connection into slow start, by setting the congestion 
window to one full-sized segment. Notice that tcp_output still returns 0 (OK) in this case, 
instead of the error, even though the datagram was discarded. This differs from udp_output 
(Figure 23.20), which returned the error. The difference is that UDP is unreliable, so the ENOBUFS 
error return is the only indication to the process that the datagram was discarded. TCP, however, will 
time out (if the segment contains data) and retransmit the datagram, and it is hoped that there will be 
space on the interface output queue or more available mbufs. If the TCP segment doesn’t contain data, 
the other end will time out when the ACK isn’t received and will retransmit the data whose ACK was 
discarded. 
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Figure 26.32. tcp_output function: call ip_output to send segment.

 

 

471-475

If a route can’t be located for the destination, and if the connection has received a SYN, the error is 
recorded as a soft error for the connection. 

When tcp_output is called by tcp_usrreq as part of a system call by a process (Chapter 
30, the PRU_CONNECT, PRU_SEND, PRU_SENDOOB, and PRU_SHUTDOWN 
requests), the process receives the return value from tcp_output. Other functions that call 
tcp_output, such as tcp_input and the fast and slow timeout functions, ignore the return 
value (because these functions don’t return an error to a process). 
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Update rcv_adv and last_ack_sent

479-486

If the highest sequence number advertised in this segment (rcv_nxt plus win) is larger than 
rcv_adv, the new value is saved. Recall that rcv_adv was used in Figure 26.9 to determine 
how much the window had opened since the last segment that was sent, and in Figure 26.29 to make 
certain TCP was not shrinking the window. 

487

The value of the acknowledgment field in the segment is saved in last_ack_sent. This 
variable is used by tcp_input with the timestamp option (Section 26.6). 

488

Any pending ACK has been sent, so the TF_ACKNOW and TF_DELACK flags are cleared. 

More data to send?

489-490

If the sendalot flag is set, a jump is made back to the label again (Figure 26.1). This occurs if 
the send buffer contains more than one full-sized segment that can be sent (Figure 26.3), or if a full-
sized segment was being sent and TCP options were included that reduced the amount of data in the 
segment (Figure 26.24). 

26.8. tcp_template Function 

The function tcp_newtcpcb (from the previous chapter) is called when the socket is created, to 
allocate and partially initialize the TCP control block. When the first segment is sent or received on 
the socket (an active open is performed, the PRU_CONNECT request, or a SYN arrives for a 
listening socket), tcp_template creates a template of the IP and TCP headers for the 
connection. This minimizes the amount of work required by tcp_output when a segment is sent 
on the connection. 

Figure 26.33 shows the tcp_template function. 
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Figure 26.33. tcp_template function: create template of IP and TCP headers.

 

 
 

Allocate mbuf

59-72

The template of the IP and TCP headers is formed in an mbuf, and a pointer to the mbuf is stored in 
the t_template member of the TCP control block. Since this function can be called at the 
software interrupt level, from tcp_input, the M_DONTWAIT flag is specified. 

Initialize header fields

73-88

All the fields in the IP and TCP headers are set to 0 except as follows: ti_pr is set to the IP 
protocol value for TCP (6); ti_len is set to 20, the default length of the TCP header; and 
ti_off is set to 5, the number of 32-bit words in the 20-byte TCP header. Also the source and 
destination IP addresses and TCP port numbers are copied from the Internet PCB into the TCP header 
template. 
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Pseudo-header for TCP checksum computation

73-88

The initialization of many of the fields in the combined IP and TCP header simplifies the computation 
of the TCP checksum, using the same pseudo-header technique as discussed for UDP in Section 23.6. 
Examining the udpiphdr structure in Figure 23.19 shows why tcp_template initializes 
fields such as ti_next and ti_prev to 0. 

26.9. tcp_respond Function 

The function tcp_respond is a special-purpose function that also calls ip_output to send IP 
datagrams. tcp_respond is called in two cases: 

1. by tcp_input to generate an RST segment, with or without an ACK, and 
2. by tcp_timers to send a keepalive probe. 

Instead of going through all the logic of tcp_output for these two cases, the special-purpose 
function tcp_respond is called. We also note that the function tcp_drop that we cover in the 
next chapter also generates RST segments by calling tcp_output. Not all RST segments are 
generated by tcp_respond.

Figure 26.34 shows the first half of tcp_respond.
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Figure 26.34. tcp_respond function: first half.

 

 

104-110

Figure 26.35 shows the different arguments to tcp_respond for the three cases in which it is 
called. 

Figure 26.35. Arguments to tcp_respond.

 

 

tp is a pointer to the TCP control block (possibly a null pointer); ti is a pointer to an IP/TCP header 
template; m is a pointer to the mbuf containing the segment causing the RST to be generated; and the 
last three arguments are the acknowledgment field, sequence number field, and flags field of the 
segment being generated. 
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113-118

It is possible for tcp_input to generate an RST when a segment is received that does not have an 
associated TCP control block. This happens, for example, when a segment is received that doesn’t 
reference an existing connection (e.g., a SYN for a port without an associated listening server). In this 
case tp is null and the initial values for win and ro are used. If tp is not null, the amount of space 
in the receive buffer will be sent as the advertised window, and the pointer to the cached route is saved 
in ro for the call to ip_output.

Send keepalive probe when keepalive timer expires

119-127

The argument m is a pointer to the mbuf chain for the received segment. But a keep-alive probe is sent 
in response to the keepalive timer expiring, not in response to a received TCP segment. Therefore m is 
null and m_gethdr allocates a packet header mbuf to contain the IP and TCP headers. tlen, the 
length of the TCP data, is set to 0, since the keepalive probe doesn’t contain any data. 

Some older implementations based on 4.2BSD do not respond to these keepalive 
probes unless the segment contains data. Net/3 can be configured to send 1 garbage 
byte of data in the probe to elicit the response by defining the name 
TCP_COMPAT_42 when the kernel is compiled. This assigns 1, instead of 0, to 
tlen. The garbage byte causes no harm, because it is not the expected byte (it is a 
byte that the receiver has previously received and acknowledged), so it is thrown 
away by the receiver. 

The assignment of *ti copies the TCP header template structure pointed to by ti into the data 
portion of the mbuf. The pointer ti is then set to point to the header template in the mbuf. 

Send RST segment in response to received segment

128-138

An RST segment is being sent by tcp_input in response to a received segment. The mbuf 
containing the input segment is reused for the response. All the mbufs on the chain are released by 
m_free except the first mbuf (the packet header), since the segment generated by 
tcp_respond consists of only an IP header and a TCP header. The source and destination IP 
address and port numbers are swapped in the IP and TCP header. 

Figure 26.36 shows the final half of tcp_respond.
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Figure 26.36. tcp_respond function: second half.

 

 

139-157

The fields in the IP and TCP headers must be initialized for the TCP checksum computation. These 
statements are similar to the way tcp_template initializes the t_template field. The 
sequence number and acknowledgment fields are passed by the caller as arguments. Finally 
ip_output sends the datagram. 

26.10. Summary 

This chapter has looked at the general-purpose function that generates most TCP segments 
(tcp_output) and the special-purpose function that generates RST segments and keepalive 
probes (tcp_respond). 

Many factors determine whether TCP can send a segment or not: the flags in the segment, the window 
advertised by the other end, the amount of data ready to send, whether unacknowledged data already 
exists for the connection, and so on. Therefore the logic of tcp_output determines whether a 
segment can be sent (the first half of the function), and if so, what values to set all the TCP header 
fields to (the last half of the function). If a segment is sent, the TCP control block variables for the 
send sequence space must be updated. 

One segment at a time is generated by tcp_output, and at the end of the function a check is 
made of whether more data can still be sent. If so, the function loops around and tries to send another 
segment. This looping continues until there is no more data to send, or until some other condition 
(e.g., the receiver’s advertised window) stops the transmission. 

A TCP segment can also contain options. The options supported by Net/3 specify the maximum 
segment size, a window scale factor, and a pair of timestamps. The first two can only appear with 
SYN segments, while the timestamp option (if supported by both ends) normally appears in every 
segment. Since the window scale and timestamp options are newer and optional, if the first end to 
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send a SYN wants to use the option, it sends the option with its SYN and uses the option only if the 
other end’s SYN also contains the option. 

Exercises

26.1 Slow start is resumed in Figure 26.1 when there is a pause in the sending of data, yet the 
amount of idle time is calculated as the amount of time since the last segment was 
received on the connection. Why doesn’t TCP calculate the idle time as the amount of time 
since the last segment was sent on the connection? 

26.2 With Figure 26.6 we said that len is less than 0 if the FIN has been sent but not 
acknowledged and not retransmitted. What happens if the FIN is retransmitted? 

26.3 Net/3 always sends the window scale and timestamp options with an active open. Why 
does the global variable tcp_do_rfc1323 exist? 

26.4 In Figure 25.28, which did not use the timestamp option, the RTT estimators are updated 
eight times. If the timestamp option had been used in this example, how many times would 
the RTT estimators have been updated? 

26.5 In Figure 26.23 bcopy is called to store the received MSS in the variable mss. Why 
not cast the pointer to opt[2] into a pointer to an unsigned short and perform an 
assignment? 

26.6 After Figure 26.29 we described a bug in the code, which can cause a bogus urgent offset 
to be sent. Propose a solution. (Hint: What is the largest amount of TCP data that can be 
sent in a segment?) 

26.7 With Figure 26.32 we mentioned that an error of ENOBUFS is not returned to the process 
because (1) if the discarded segment contained data, the retransmission timer will expire 
and the data will be retransmitted, or (2) if the discarded segment was an ACK-only 
segment, the other end will retransmit its data when it doesn’t receive the ACK. What if 
the discarded segment contains an RST? 

26.8 Explain the settings of the PSH flag in Figure 20.3 of Volume 1. 

26.9 Why does Figure 26.36 use the value of ip_defttl for the TTL, while Figure 26.32 
uses the value in the PCB? 

26.10 Describe what happens with the mbuf allocated in Figure 26.25 when IP options are 
specified by the process for the TCP connection. Implement a better solution. 

26.11 tcp_output is a long function (about 500 lines, including comments), which can 
appear to be inefficient. But lots of the code handles special cases. Assume the function is 
called with a full-sized segment ready to be sent, and no special cases: no IP options and 
no special flags such as SYN, FIN, or URG. About how many lines of C code are actually 
executed? How many functions are called before the segment is passed to 
ip_output?
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26.12 In the example at the end of Section 26.3 in which the application did a write of 100 bytes 
followed by a write of 50 bytes, would anything change if the application called writev 
once for both buffers, instead of calling write twice? Does anything change with 
writev if the two buffer lengths are 200 and 300, instead of 100 and 50? 

26.13 The timestamp that is sent in the timestamp option is taken from the global tcp_now, 
which is incremented every 500 ms. Modify TCP to use a higher resolution timestamp 
value. 
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Chapter 27. TCP Functions 

27.1. Introduction 

This chapter presents numerous TCP functions that we need to cover before discussing TCP input in 
the next two chapters: 

tcp_drain is the protocol’s drain function, called when the kernel is out of mbufs. It does 
nothing. 
tcp_drop aborts a connection by sending an RST. 
tcp_close performs the normal TCP connection termination: send a FIN and wait for the 
four-way exchange to complete. Section 18.2 of Volume 1 talks about the four packets that 
are exchanged when a connection is closed. 
tcp_mss processes a received MSS option and calculates the MSS to announce when TCP 
sends an MSS option of its own. 
tcp_ctlinput is called when an ICMP error is received in response to a TCP segment, 
and it calls tcp_notify to process the ICMP error. tcp_quench is a special case 
function that handles ICMP source quench errors. 
The TCP_REASS macro and the tcp_reass function manipulate segments on TCP’s 
reassembly queue for a given connection. This queue handles the receipt of out-of-order 
segments, some of which might overlap. 
tcp_trace adds records to the kernel’s circular debug buffer for TCP (the SO_DEBUG 
socket option) that can be printed with the trpt(8) program. 

27.2. tcp_drain Function 

The simplest of all the TCP functions is tcp_drain. It is the protocol’s pr_drain function, 
called by m_reclaim when the kernel runs out of mbufs. We saw in Figure 10.32 that 
ip_drain discards all the fragments on its reassembly queue, and UDP doesn’t define a drain 
function. Although TCP holds onto mbufs segm ents that have arrived out of order, but within the 
receive window for the socket t he Net/3 implementation of TCP does not discard these pending 
mbufs if the kernel runs out of space. Instead, tcp_drain does nothing, on the assumption that a 
received (but out-of-order) TCP segment is "more important" than an IP fragment. 

27.3. tcp_drop Function 

tcp_drop is called from numerous places to drop a connection by sending an RST and to report an 
error to the process. This differs from closing a connection (the tcp_disconnect function), 
which sends a FIN to the other end and follows the connection termination steps in the state transition 
diagram. 

Figure 27.1 shows the seven places where tcp_drop is called and the errno argument. 
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Figure 27.1. Calls to tcp_drop and errno argument.

 

 

Figure 27.2 shows the tcp_drop function. 

Figure 27.2. tcp_drop function.

 

 

202-213

If TCP has received a SYN, the connection is synchronized and an RST must be sent to the other end. 
This is done by setting the state to CLOSED and calling tcp_output. In Figure 24.16 the value 
of tcp_outflags for the CLOSED state includes the RST flag. 

214-216

If the error is ETIMEDOUT but a soft error was received on the connection (e.g., 
EHOSTUNREACH), the soft error becomes the socket error, instead of the less specific 
ETIMEDOUT.  

217

tcp_close finishes closing the socket. 
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27.4. tcp_close Function 

tcp_close is normally called by tcp_input when the process has done a passive close and 
the ACK is received in the LAST_ACK state, and by tcp_timers when the 2MSL timer expires 
and the socket moves from the TIME_WAIT to CLOSED state. It is also called in other states, 
possibly after an error has occurred, as we saw in the previous section. It releases the memory 
occupied by the connection (the IP and TCP header template, the TCP control block, the Internet PCB, 
and any out-of-order segments remaining on the connection’s reassembly queue) and updates the route 
characteristics. 

We describe this function in three parts, the first two dealing with the route characteristics and the 
final part showing the release of resources. 

Route Characteristics

Nine variables are maintained in the rt_metrics structure (Figure 18.26), six of which are used 
by TCP. Eight of these can be examined and changed with the route(8) command (the ninth, 
rmx_pksent is never used): these variables are shown in Figure 27.3. 

Figure 27.3. Members of the rt_metrics structure used by TCP.

 

 

Additionally, the -lock modifier can be used with the route command to set the corresponding 
RTV_xxx bit in the rmx_locks member (Figure 20.13). Setting the RTV_xxx bit tells the kernel 
not to update that metric. 

When a TCP socket is closed, tcp_close updates three of the routing metrics the sm oothed 
RTT estimator, the smoothed mean deviation estimator, and the slow start threshold but only if 
enough data was transferred on the connection to yield meaningful statistics and the variable is not 
locked. 

Figure 27.4 shows the first part of tcp_close.  
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Figure 27.4. tcp_close function: update RTT and mean deviation.

 

 
 

Check if enough data sent to update statistics

234-248

The default send buffer size is 8192 bytes (sb_hiwat), so the first test is whether 131,072 bytes 
(16 full buffers) have been transferred across the connection. The initial send sequence number is 
compared to the maximum sequence number sent on the connection. Additionally, the socket must 
have a cached route and that route cannot be the default route. (See Exercise 19.2.) 
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Notice there is a small chance for an error in the first test, because of sequence 
number wrap, if the amount of data transferred is within N x 232 and N x 232 + 
131072, for any N greater than 1. But few connections (today) transfer 4 gigabytes of 
data. 

Despite the prevalence of default routes in the Internet, this information is still useful 
to maintain in the routing table. If a host continually exchanges data with another 
host (or network), even if a default route can be used, a host-specific or network-
specific route can be entered into the routing table with the route command just to 
maintain this information across connections. (See Exercise 19.2.) This information 
is lost when the system is rebooted. 

250

The administrator can lock any of the variables from Figure 27.3, preventing them from being updated 
by the kernel, so before modifying each variable this lock must be checked. 

Update RTT

251-264

t_srtt is stored as ticks x 8 (Figure 25.19) and rmx_rtt is stored as microseconds. So 
t_srtt is multiplied by 1,000,000 (RTM_RTTUNIT) and then divided by 2 (ticks/second) times 
8. If a value for rmx_rtt already exists, the new value is one-half the old value plus one-half the 
new value. Otherwise the new value is stored in rmx_rtt.  

Update mean deviation

265-273

The same algorithm is applied to the mean deviation estimator. It too is stored as microseconds, 
requiring a conversion from the t_rttvar units of ticks x 4. 

Figure 27.5 shows the next part of tcp_close, which updates the slow start threshold for the 
route. 
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Figure 27.5. tcp_close function: update slow start threshold.

 

 

274-283

The slow start threshold is updated only if (1) it has been updated already (rmx_ssthresh is 
nonzero) or (2) rmx_sendpipe is specified by the administrator and the new value of 
snd_ssthresh is less than one-half the value of rmx_sendpipe. As the comment in the 
code indicates, TCP does not update the value of rmx_ssthresh until it is forced to because of 
packet loss; from that point on it considers itself free to adjust the value either up or down. 

284-290

The variable snd_ssthresh is maintained in bytes. The first conversion divides this variable by 
the MSS (t_maxseg), yielding the number of segments. The addition of one-half t_maxseg 
rounds the integer result. The lower bound on this result is two segments. 

291-297

The size of the IP and TCP headers (40) is added to the MSS and multipled by the number of 
segments. This value updates rmx_ssthresh, using the same filtering as in Figure 27.4 (one-
half the old plus one-half the new). 

Resource Release

The final part of tcp_close, shown in Figure 27.6, releases the memory resources held by the 
socket. 
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Figure 27.6. tcp_close function: release connection resources.

 

 
 

Release any mbufs on reassembly queue

299-306

If any segments are left on the connection’s reassembly queue, they are discarded. This queue is for 
segments that arrive out of order but within the receive window. They are held in a reassembly queue 
until the required "earlier" segments are received, at which time they are reassembled and passed to 
the application in the correct order. We discuss this in more detail in Section 27.9. 

Release header template and TCP control block

307-311

The template of the IP and TCP headers is released by m_free and the TCP control block is 
released by free. soisdisconnected marks the socket as disconnected. 

Release PCB

312-318

If the Internet PCB for this socket is the one currently cached by TCP, the cache is marked as empty 
by setting tcp_last_inpcb to the head of TCP’s PCB list. The PCB is then detached, which 
releases the memory used by the PCB. 

27.5. tcp_mss Function 

The tcp_mss function is called from two other functions: 

1. from tcp_output, when a SYN segment is being sent, to include an MSS option, and 
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2. from tcp_input, when an MSS option is received in a SYN segment. 
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The tcp_mss function checks for a cached route to the destination and calculates the MSS to use 
for this connection. 

Figure 27.7 shows the first part of tcp_mss, which acquires a route to the destination if one is not 
already held by the PCB. 

Figure 27.7. tcp_mss function: acquire a route if one is not held by the PCB.

 

 
 

Acquire a route if necessary

1391-1417

If the socket does not have a cached route, rtalloc acquires one. The interface pointer associated 
with the outgoing route is saved in ifp. Knowing the outgoing interface is important, since its 
associated MTU can affect the MSS announced by TCP. If a route is not acquired, the default of 512 
(tcp_mssdflt) is returned immediately. 

The next part of tcp_mss, shown in Figure 27.8, checks whether the route has metrics associated 
with it; if so, the variables t_rttmin, t_srtt, and t_rttvar can be initialized from the 
metrics. 
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Figure 27.8. tcp_mss function: check if the route has an associated RTT 

metric.

 

 
 

Initialize smoothed RTT estimator

1420-1432

If there are no RTT measurements yet for the connection (t_srtt is 0) and rmx_rtt is nonzero, 
the latter initializes the smoothed RTT estimator t_srtt. If the RTV_RTT bit in the routing 
metric lock flag is set, it indicates that rmx_rtt should also be used to initialize the minimum RTT 
for this connection (t_rttmin). We saw that tcp_newtcpcb initializes t_rttmin to 2 
ticks. 

rmx_rtt (in units of microseconds) is converted to t_srtt (in units of ticks x 8). This is the 
reverse of the conversion done in Figure 27.4. Notice that t_rttmin is set to one-eighth the value 
of t_srtt, since the former is not divided by the scale factor TCP_RTT_SCALE.  

Initialize smoothed mean deviation estimator

1433-1439

If the stored value of rmx_rttvar is nonzero, it is converted from units of microseconds into 
ticks x 4 and stored in t_rttvar. But if the value is 0, t_rttvar is set to t_rtt, that is, 
the variation is set to the mean. This defaults the variation to – 1 RTT. Since the units of the former 
are ticks x 4 and the units of the latter are ticks x 8, the value of t_srtt is converted accordingly. 
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Calculate initial RTO

1440-1442

The current RTO is calculated and stored in t_rxtcur, using the unscaled equation 

 

 

A multipler of 2, instead of 4, is used to calculate the first RTO. This is the same equation that was 
used in Figure 25.21. Substituting the scaling relationships we get 

 

 

which is the second argument to TCPT_RANGESET.  

The next part of tcp_mss, shown in Figure 27.9, calculates the MSS. 

Figure 27.9. tcp_mss function: calculate MSS.
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Use MSS from routing table MTU

1444-1450

If the MTU is set in the routing table, mss is set to that value. Otherwise mss starts at the value of 
the outgoing interface MTU minus 40 (the default size of the IP and TCP headers). For an Ethernet, 
mss would start at 1460. 

Round MSS down to multiple of MCLBYTES

1451-1457

The goal of these lines of code is to reduce the value of mss to the next-lower multiple of the mbuf 
cluster size, if mss exceeds MCLBYTES. If the value of MCLBYTES (typically 1024 or 2048) 
logically ANDed with the value minus 1 equals 0, then MCLBYTES is a power of 2. For example, 
1024 (0x400) logically ANDed with 1023 (0x3ff) is 0. 

The value of mss is reduced to the next-lower multiple of MCLBYTES by clearing the appropriate 
number of low-order bits: if the cluster size is 1024, logically ANDing mss with the one’s 
complement of 1023 (0xfffffc00) clears the low-order 10 bits. For an Ethernet, this reduces 
mss from 1460 to 1024. If the cluster size is 2048, logically ANDing mss with the one’s 
complement of 2047 (0xffff8000) clears the low-order 11 bits. For a token ring with an MTU of 
4464, this reduces the value of mss from 4424 to 4096. If MCLBYTES is not a power of 2, the 
rounding down to the next-lower multiple of MCLBYTES is done with an integer division followed 
by a multiplication. 

Check if destination local or nonlocal

1458-1459

If the foreign IP address is not local (in_localaddr returns 0), and if mss is greater than 512 
(tcp_mssdflt), it is set to 512. 

Whether an IP address is "local" or not depends on the value of the global 
subnetsarelocal, which is initialized from the symbol 
SUBNETSARELOCAL when the kernel is compiled. The default value is 1, 
meaning that an IP address with the same network ID as one of the host’s interfaces is 
considered local. If the value is 0, an IP address must have the same network ID and 
the same subnet ID as one of the host’s interfaces to be considered local. 

This minimization for nonlocal hosts is an attempt to avoid fragmentation across 
wide-area networks. It is a historical artifact from the ARPANET when the MTU 
across most WAN links was 1006. As discussed in Section 11.7 of Volume 1, most 
WANs today support an MTU of 1500 or greater. See also the discussion of the path 
MTU discovery feature (RFC 1191 [Mogul and Deering 1990]), in Section 24.2 of 
Volume 1. Net/3 does not support path MTU discovery. 

The final part of tcp_mss is shown in Figure 27.10. 
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Figure 27.10. tcp_mss function: complete processing.

 

 
 

Other end's MSS is upper bound

1461-1472

The argument offer is nonzero when this function is called from tcp_input, and its value is 
the MSS advertised by the other end. If the value of mss is greater than the value advertised by the 
other end, it is set to the value of offer. For example, if the function calculates an mss of 1024 
but the advertised value from the other end is 512, mss must be set to 512. Conversely, if mss is 
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calculated as 536 (say the outgoing MTU is 576) and the other end advertises an MSS of 1460, TCP 
will use 536. TCP can always use a value less than the advertised MSS, but it can’t exceed the 
advertised value. The argument offer is 0 when this function is called by tcp_output to send 
an MSS option. The value of mss is also lower-bounded by 32. 

1473-1483

If the value of mss has decreased from the default set by tcp_newtcpcb in the variable 
t_maxseg (512), or if TCP is processing a received MSS option (offer is nonzero), the 
following steps occur. First, if the value of rmx_sendpipe has been stored for the route, its value 
will be used as the send buffer high-water mark (Figure 16.4). If the buffer size is less than mss, the 
smaller value is used. This should never happen unless the application explicitly sets the send buffer 
size to a small value, or the administrator sets rmx_sendpipe to a small value, since the high-
water mark of the send buffer defaults to 8192, larger than most values for the MSS. 

Round buffer sizes to multiple of MSS

1484-1489

The send buffer size is rounded up to the next integral multiple of the MSS, bounded by the value of 
sb_max (262,144 on Net/3, which is 256x1024). The socket’s high-water mark is set by 
sbreserve. For example, the default high-water mark is 8192, but for a local TCP connection on 
an Ethernet with a cluster size of 2048 (i.e., an MSS of 1460) this code increases the high-water mark 
to 8760 (which is 6x1460). But for a nonlocal connection with an MSS of 512, the high-water mark is 
left at 8192. 

1490

The value of t_maxseg is set, either because it decreased from the default (512) or because an 
MSS option was received from the other end. 

1491-1499

The same logic just applied to the send buffer is also applied to the receive buffer. 

Initialize congestion window and slow start threshold

1500-1509

The value of the congestion window, snd_cwnd, is set to one segment. If the rmx_ssthresh 
value in the routing table is nonzero, the slow start threshold (snd_ssthresh) is set to that value, 
but the value must not be less than two segments. 

1510

The value of mss is returned by the function. tcp_input ignores this value in Figure 28.10 
(since it received an MSS from the other end), but tcp_output sends this value as the announced 
MSS in Figure 26.23. 
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Example

Let’s go through an example of a TCP connection establishment and the operation of tcp_mss, 
since it can be called twice: once when the SYN is sent and once when a SYN is received with an 
MSS option. 

1. The socket is created and tcp_newtcpcb sets t_maxseg to 512. 
2. The process calls connect, and tcp_output calls tcp_mss with an offer 

argument of 0, to include an MSS option with the SYN. Assuming a local destination, an 
Ethernet LAN, and an mbuf cluster size of 2048, mss is set to 1460 by the code in Figure 
27.9. Since offer is 0, Figure 27.10 leaves the value as 1460 and this is the function’s 
return value. The buffer sizes aren’t modified, since 1460 is larger than the default (512) and a 
value hasn’t been received from the other end yet. tcp_output sends an MSS option 
announcing a value of 1460. 

3. The other end replies with its SYN, announcing an MSS of 1024. tcp_input calls 
tcp_mss with an offer argument of 1024. The logic in Figure 27.9 still yields a value 
of 1460 for mss, but the call to min at the beginning of Figure 27.10 reduces this to 1024. 
Since the value of offer is nonzero, the buffer sizes are rounded up to the next integral 
multiple of 1024 (i.e., they’re left at 8192). t_maxseg is set to 1024. 

It might appear that the logic of tcp_mss is flawed: TCP announces an 
MSS of 1460 but receives an MSS of 1024 from the other end. While TCP is 
restricted to sending 1024-byte segments, the other end is free to send 1460-
byte segments. We might think that the send buffer should be a multiple of 
1024, but the receive buffer should be a multiple of 1460. Yet the code in 
Figure 27.10 sets both buffer sizes based on the received MSS. The 
reasoning is that even if TCP announces an MSS of 1460, since it receives 
an MSS of 1024 from the other end, the other end probably won’t send 1460-
byte segments, but will restrict itself to 1024-byte segments. 

27.6. tcp_ctlinput Function 

Recall from Figure 22.32 that tcp_ctlinput processes five types of ICMP errors: destination 
unreachable, parameter problem, source quench, time exceeded, and redirects. All redirects are passed 
to both TCP and UDP. For the other four errors, tcp_ctlinput is called only if a TCP segment 
caused the error. 

tcp_ctlinput is shown in Figure 27.11. It is similar to udp_ctlinput, shown in Figure 
23.30. 
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Figure 27.11. tcp_ctlinput function.

 

 

365-366

The only difference in the logic from udp_ctlinput is how an ICMP source quench error is 
handled. UDP ignores these errors since the PRC_QUENCH entry of inetctlerrmap is 0. 
TCP explicitly checks for this error, changing the notify function from its default of 
tcp_notify to tcp_quench.  

27.7. tcp_notify Function 

tcp_notify is called by tcp_ctlinput to handle destination unreachable, parameter 
problem, time exceeded, and redirect errors. This function is more complicated than its UDP 
counterpart, since TCP must intelligently handle soft errors for an established connection. Figure 
27.12 shows the tcp_notify function. 
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Figure 27.12. tcp_notify function.

 

 

328-345

If the connection is ESTABLISHED, the errors EHOSTUNREACH, ENETUNREACH, and 
EHOSTDOWN are ignored. 

This handling of these three errors is new with 4.4BSD. Net/2 and earlier releases 
recorded these errors in the connection’s soft error variable (t_softerror), and 
the error was reported to the process should the connection eventually fail. Recall 
that tcp_xmit_timer resets this variable to 0 when an ACK is received for a 
segment that hasn’t been retransmitted. 

346-353

If the connection is not yet established, TCP has retransmitted the current segment four or more times, 
and an error has already been recorded in t_softerror, the current error is recorded in the 
socket’s so_error variable. By setting this socket variable, the socket becomes readable and 
writable if the process calls select. Otherwise the current error is just saved in 
t_softerror. We saw that tcp_drop sets the socket error to this saved value if the 
connection is subsequently dropped because of a timeout. Any processes waiting to receive or send on 
the socket are then awakened to receive the error. 

27.8. tcp_quench Function 
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tcp_quench, which is shown in Figure 27.13, is called by tcp_ctlinput when a source 
quench is received for the connection, and by tcp_output (Figure 26.32) when ip_output 
returns ENOBUFS.  
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Figure 27.13. tcp_quench function.

 

 

The congestion window is set to one segment, causing slow start to take over. The slow start threshold 
is not changed (as it is when tcp_timers handles a retransmission timeout), so the window will 
open up exponentially until snd_ssthresh is reached, or congestion occurs. 

27.9. TCP_REASS Macro and tcp_reass Function 

TCP segments can arrive out of order, and it is TCP’s responsibility to place the misordered segments 
into the correct order for presentation to the process. For example, if a receiver advertises a window of 
4096 with byte number 0 as the next expected byte, and receives a segment with bytes 0—1023 (an in-
order segment) followed by a segment with bytes 2048-3071, this second segment is out of order. TCP 
does not discard the out-of-order segment if it is within the receive window. Instead it places the 
segment on the reassembly list for the connection, waiting for the missing segment to arrive (with 
bytes 1024-2047), at which time it can acknowledge bytes 1024-3071 and pass these 2048 bytes to the 
process. In this section we examine the code that manipulates the TCP reassembly queue, before 
discussing tcp_input in the next two chapters. 

If we assume that a single mbuf contains the IP header, TCP header, and 4 bytes of TCP data (recall 
the left half of Figure 2.14) we would have the arrangement shown in Figure 27.14. We also assume 
the data bytes are sequence numbers 7, 8, 9, and 10. 
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Figure 27.14. Example mbuf with IP and TCP headers and 4 bytes of data.

 

 

The ipovly and tcphdr structures form the tcpiphdr structure, which we showed in Figure 
24.12. We showed a picture of the tcphdr structure in Figure 24.10. In Figure 27.14 we show only 
the variables used in the reassembly: ti_next, ti_prev, ti_len, ti_sport,
ti_dport, and ti_seq. The first two are pointers that form a doubly linked list of all the out-
of-order segments for a given connection. The head of this list is the TCP control block for the 
connection: the seg_next and seg_prev members, which are the first two members of the 
structure. The ti_next and ti_prev pointers overlay the first 8 bytes of the IP header, which 
aren’t needed once the datagram reaches TCP. ti_len is the length of the TCP data, and is 
calculated and stored by TCP before verifying the TCP checksum. 
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TCP_REASS Macro

When data is received by tcp_input, the macro TCP_REASS, shown in Figure 27.15, is 
invoked to place the data onto the connection’s reassembly queue. This macro is called from only one 
place: see Figure 29.22. 

Figure 27.15. TCP_REASS macro: add data to reassembly queue for 

connection.

 

 

54-63

tp is a pointer to the TCP control block for the connection and ti is a pointer to the tcpiphdr 
structure for the received segment. If the following three conditions are all true: 

1. this segment is in-order (the sequence number ti_seq equals the next expected sequence 
number for the connection, rcv_nxt), and 

2. the reassembly queue for the connection is empty (seg_next points to itself, not some 
mbuf), and 

3. the connection is ESTABLISHED, 

the following steps take place: a delayed ACK is scheduled, rcv_nxt is updated with the amount 
of data in the segment, the flags argument is set to TH_FIN if the FIN flag is set in the TCP 
header of the segment, two statistics are updated, the data is appended to the socket’s receive buffer, 
and any receiving processes waiting for the socket are awakened. 

The reason all three conditions must be true is that, first, if the data is out of order, it must be placed 
onto the connection’s reassembly queue and the "preceding" segments must be received before 
anything can be passed to the process. Second, even if the data is in order, if there is out-of-order data 
already on the reassembly queue, there’s a chance that the new segment might fill a hole, allowing the 
received segment and one or more segments on the queue to all be passed to the process. Third, it is 
OK for data to arrive with a SYN segment that establishes a connection, but that data cannot be passed 
to the process until the connection is ESTABLISHED any  such data is just added to the reassembly 
queue when it arrives. 

64-67
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If these three conditions are not all true, the TCP_REASS macro calls the function tcp_reass 
to add the segment to the reassembly queue. Since the segment is either out of order, or the segment 
might fill a hole from previously received out-of-order segments, an immediate ACK is scheduled. 
One important feature of TCP is that a receiver should generate an immediate ACK when an out-of-
order segment is received. This aids the fast retransmit algorithm (Section 29.4). 

Before looking at the code for the tcp_reass function, we need to explain what’s done with the 
two port numbers in the TCP header in Figure 27.14, ti_sport and ti_dport. Once the TCP 
control block is located and tcp_reass is called, these two port numbers are no longer needed. 
Therefore, when a TCP segment is placed on a reassembly queue, the address of the corresponding 
mbuf is stored over these two port numbers. In Figure 27.14 this isn’t needed, because the IP and TCP 
headers are in the data portion of the mbuf, so the dtom macro works. But recalling our discussion of 
m_pullup in Section 2.6, if the IP and TCP headers are in a cluster (as in Figure 2.16, which is the 
normal case for a full-sized TCP segment), the dtom macro doesn’t work. We mentioned in that 
section that TCP stores its own back pointer from the TCP header to the mbuf, and that back pointer is 
stored over the two TCP port numbers. 

Figure 27.16 shows an example of this technique with two out-of-order segments for a connection, 
each segment stored in an mbuf cluster. The head of the doubly linked list of out-of-order segments is 
the seg_next member of the control block for this connection. To simplify the figure we don’t 
show the seg_prev pointer and the ti_next pointer of the last segment on the list. 
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Figure 27.16. Two out-of-order TCP segments stored in mbuf clusters.

 

 

The next expected sequence number is 1 (rcv_nxt) but we assume that segment was lost. The next 
two segments have been received, containing bytes 1461-4380, but they are out of order. The 
segments were placed into clusters by m_devget, as shown in Figure 2.16. 

The first 32 bits of the TCP header contain a back pointer to the corresponding mbuf. This back 
pointer is used in the tcp_reass function, shown next. 

tcp_reass Function

Figure 27.17 shows the first part of the tcp_reass function. The arguments are: tp, a pointer to 
the TCP control block for the received segment; ti, a pointer to the IP and TCP headers of the 
received segment; and m, a pointer to the mbuf chain for the received segment. As mentioned earlier, 
ti can point into the data area of the mbuf pointed to by m, or ti can point into a cluster. 
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Figure 27.17. tcp_reass function: first part.

 

 

69-83

We’ll see that tcp_input calls tcp_reass with a null ti pointer when a SYN is 
acknowledged (Figures 28.20 and 29.2). This means the connection is now established, and any data 
that might have arrived with the SYN (which tcp_reass had to queue earlier) can now be passed 
to the application. Data that arrives with a SYN cannot be passed to the process until the connection is 
established. The label present is in Figure 27.23. 

84-90

Go through the list of segments for this connection, starting at seg_next, to find the first one 
with a sequence number that is greater than the received sequence number (ti_seq). Note that the 
if statement is the entire body of the for loop. 

Figure 27.18 shows an example with two out-of-order segments already on the queue when a new 
segment arrives. We show the pointer q pointing to the next segment on the list, the one with bytes 
10-15. In this figure we also show the two pointers ti_next and ti_prev, the starting 
sequence number (ti_seq), the length (ti_len), and the sequence numbers of the data bytes. 
With the small segments we show, each segment is probably in a single mbuf, as in Figure 27.14. 
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Figure 27.18. Example of TCP reassembly queue with overlapping segments.

 

 

The next part of tcp_reass is shown in Figure 27.19. 

Figure 27.19. tcp_reass function: second part.

 

 

91-107

If there is a segment before the one pointed to by q, that segment may overlap the new segment. The 
pointer q is moved to the previous segment on the list (the one with bytes 4-8 in Figure 27.18) and the 
number of bytes of overlap is calculated and stored in i:  

i = q->ti_seq + q->ti_len - ti->ti_seq; 
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= 2
 

If i is greater than 0, there is overlap, as we have in our example. If the number of bytes of overlap in 
the previous segment on the list (i) is greater than or equal to the size of the new segment, then all the 
data bytes in the new segment are already contained in the previous segment on the list. In this case 
the duplicate segment is discarded. 

108-112

If there is only partial overlap (as there is in Figure 27.18), m_adj discards i bytes of data from the 
beginning of the new segment. The sequence number and length of the new segment are updated 
accordingly. q is moved to the next segment on the list. Figure 27.20 shows our example at this point. 

Figure 27.20. Update of Figure 27.18 after bytes 7 and 8 have been removed 

from new segment.

 

 

116

The address of the mbuf m is stored in the TCP header, over the source and destination TCP ports. We 
mentioned earlier in this section that this provides a back pointer from the TCP header to the mbuf, in 
case the TCP header is stored in a cluster, meaning that the macro dtom won’t work. The macro 
REASS_MBUF is 

#define REASS_MBUF(ti) (*(struct mbuf **)&((ti)->ti_t)) 
 

ti_t is the tcphdr structure (Figure 24.12) and the first two members of the structure are the two 
16-bit port numbers. The comment XXX in Figure 27.19 is because this hack assumes that a pointer 
fits in the 32 bits occupied by the two port numbers. 

The third part of tcp_reass is shown in Figure 27.21. It removes any overlap from the next 
segment in the queue. 
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Figure 27.21. tcp_reass function: third part.

 

 

117-135

If there is another segment on the list, the number of bytes of overlap between the new segment and 
that segment is calculated in i. In our example we have 

i = 9 + 2 - 10 
  = 1
 

since byte number 10 overlaps the two segments. 

Depending on the value of i, one of three conditions exists: 

1. If i is less than or equal to 0, there is no overlap. 
2. If i is less than the number of bytes in the next segment (q->ti_len), there is partial 

overlap and m_adj removes the first i bytes from the next segment on the list. 
3. If i is greater than or equal to the number of bytes in the next segment, there is complete 

overlap and that next segment on the list is deleted. 

136-139

The new segment is inserted into the reassembly list for this connection by insque. Figure 27.22 
shows the state of our example at this point. 
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Figure 27.22. Update of Figure 27.20 after removal of all overlapping bytes.

 

 

Figure 27.23 shows the final part of tcp_reass. It passes the data to the process, if possible. 

Figure 27.23. tcp_reass function: fourth part.

 

 

145-146

If the connection has not received a SYN (i.e., it is in the LISTEN or SYN_SENT state), data cannot 
be passed to the process and the function returns. When this function is called by TCP_REASS, the 
return value of 0 is stored in the flags argument to the macro. This can have the side effect of 
clearing the FIN flag. We’ll see that this side effect is a possibility when TCP_REASS is invoked in 
Figure 29.22, and the received segment contains a SYN, FIN, and data (not a typical segment, but 
valid). 
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147-149

ti starts at the first segment on the list. If the list is empty, or if the starting sequence number of the 
first segment on the list (ti->ti_seq) does not equal the next receive sequence number 
(rcv_nxt), the function returns a value of 0. If the second condition is true, there is still a hole in 
the received data starting with the next expected sequence number. For instance, in our example 
(Figure 27.22), if the segment with bytes 4-8 is the first on the list but rcv_nxt equals 2, bytes 2 
and 3 are still missing, so bytes 4-15 cannot be passed to the process. The return of 0 turns off the FIN 
flag (if set), because one or more data segments are still missing, so a received FIN cannot be 
processed yet. 

150-151

If the state is SYN_RCVD and the length of the segment is nonzero, the function returns a value of 0. 
If both of these conditions are true, the socket is a listening socket that has received in-order data with 
the SYN. The data is left on the connection’s queue, waiting for the three-way handshake to complete. 

152-164

This loop starts with the first segment on the list (which is known to be in order) and appends it to the 
socket’s receive buffer. rcv_nxt is incremented by the number of bytes in the segment. The loop 
stops when the list is empty or when the sequence number of the next segment on the list is out of 
order (i.e., there is a hole in the sequence space). When the loop terminates, the flags variable 
(which becomes the return value of the function) is 0 or TH_FIN, depending on whether the final 
segment placed in the socket’s receive buffer has the FIN flag set or not. 

After all the mbufs have been placed onto the socket’s receive buffer, sorwakeup wakes any 
process waiting for data to be received on the socket. 

27.10. tcp_trace Function 

In tcp_output, before sending a segment to IP for output, we saw the following call to 
tcp_trace in Figure 26.32: 

 if (so->so_options & SO_DEBUG) 
    tcp_trace(TA_OUTPUT, tp->t_state, tp, ti, 0); 
 

This call adds a record to a circular buffer in the kernel that can be examined with the trpt(8) 
program. Additionally, if the kernel is compiled with TCPDEBUG defined, and if the variable 
tcpconsdebug is nonzero, information is output on the system console. 

Any process can set the SO_DEBUG socket option for a TCP socket, causing the 
information to be stored in the kernel’s circular buffer. But trpt must read the 
kernel memory (/dev/kmem) to fetch this information, and this often requires 
special privileges. 

The SO_DEBUG socket option can be set for any type of socket (e.g., UDP or raw 
IP), but TCP is the only protocol that looks at the option. 

The information saved by the kernel is a tcp_debug structure, shown in Figure 27.24. 
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Figure 27.24. tcp_debug structure.

 

 

35-43

This is a large structure (196 bytes), since it contains two other structures: the tcpiphdr structure 
with the IP and TCP headers; and the tcpcb structure, the entire TCP control block. Since the entire 
TCP control block is saved, any variable in the control block can be printed by trpt. Also, if 
trpt doesn’t print the variable we’re interested in, we can modify the source code (it is available 
with the Net/3 release) to print whatever information we would like from the control block. The RTT 
variables in Figure 25.28 were obtained using this technique. 

53-55

We also show the declaration of the array tcp_debug, which is used as the circular buffer. The 
index into the array (tcp_debx) is initialized to 0. This array occupies almost 20,000 bytes. 

There are only four calls to tcp_trace in the kernel. Each call stores a different value in the 
td_act member of the structure, as shown in Figure 27.25. 

Figure 27.25. td_act values and corresponding call to tcp_trace.

 

 

Figure 27.27 shows the main body of the tcp_trace function. We omit the code that outputs 
directly to the console. 

48-133

ostate is the old state of the connection, when the function was called. By saving this value and 
the new state of the connection (which is in the control block) we can see the state transition that 
occurred. In Figure 27.25, TA_OUTPUT doesn’t change the state of the connection, but the other 
three calls can change the state. 
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Sample Output

Figure 27.26 shows the first four lines of tcpdump output corresponding to the three-way 
handshake and the first data segment from the example in Section 25.12. (Appendix A of Volume 1 
provides additional details on the tcpdump output format.) 

Figure 27.26. tcpdump output from example in Figure 25.28.

 

 

Figure 27.28 shows the corresponding output from trpt.  

This output contains a few changes from the normal trpt output. The 32-bit 
decimal sequence numbers are printed as unsigned values (trpt incorrectly prints 
them as signed numbers). Some values printed by trpt in hexadecimal have been 
output in decimal. The values from t_rtt through t_rxtcur were added to 
trpt by the authors, for Figure 25.28. 
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Figure 27.27. tcp_trace function: save information in kernel's circular 

buffer.
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Figure 27.28. trpt output from example in Figure 25.28.

 

 

At time 953738 the SYN is sent. Notice that only the lower 6 digits of the millisecond time are 
output i t would take 8 digits to represent 1 minute before midnight. The ending sequence number 
that is output is wrong (20288005). Four bytes are sent with the SYN, but these are the MSS option, 
not data. The retransmit timer is 6 seconds (REXMT) and the keepalive timer is 75 seconds (KEEP). 
These timer values are in 500-ms ticks. The value of 1 for t_rtt means this segment is being timed 
for an RTT measurement. 

This SYN segment is sent in response to the process calling connect. One millisecond later the 
trace record for this system call is added to the kernel’s buffer. Even though the call to connect 
generates the SYN segment, since the call to tcp_trace appears after processing the 
PRU_CONNECT request, the two trace records appear backward in the buffer. Also, when the 
process called connect, the connection state was CLOSED, and it changes to SYN_SENT. 
Nothing else changes from the first trace record to this one. 

The third trace record, at time 954103, occurs 365 ms after the first. (tcpdump shows a 362.7 ms 
difference.) This is how the values in the column "actual delta (ms)" in Figure 25.28 were computed. 
The connection state changes from SYN_SENT to ESTABLISHED when the segment with a SYN 
and an ACK is received. The RTT estimators are updated because the segment being timed was 
acknowledged. 

 945



ptg11539634

 946

The fourth trace record is the third segment of the three-way handshake: the ACK of the other end’s 
SYN. Since this segment contains no data, it is not timed (rtt is 0). 

After the ACK has been sent at time 954103, the connect system call returns to the process, which 
then calls write to send data. This generates TCP output, shown in trace record 5 at time 954153, 
50 ms after the three-way handshake is complete. 512 bytes of data are sent, starting with sequence 
number 20288002. The retransmission timer is set to 3 seconds and the segment is timed. 

This output is caused by an application write. Although we don’t show any more trace records, the 
next four are from PRU_SEND requests. The first PRU_SEND request generates the output of the 
first 512-byte segment that we show, but the other three do not cause output, since the connection has 
just started and is in slow start. Four trace records are generated because the system used for this 
example uses a TCP send buffer of 4096 and a cluster size of 1024. Once the send buffer is full, the 
process is put to sleep. 

27.11. Summary 

This chapter has covered a wide range of TCP functions that we’ll encounter in the following chapters. 

TCP connections can be aborted by sending an RST or they can be closed down gracefully, by 
sending a FIN and waiting for the four-way exchange of segments to complete. 

Eight variables are stored in each routing table entry, three of which are updated when a connection is 
closed and six of which can be used later when a new connection is established. This lets the kernel 
keep track of certain variables, such as the RTT estimators and the slow start threshold, between 
successive connections to the same destination. The system administrator can also set and lock some 
of these variables, such as the MTU, receive pipe size, and send pipe size, that affect TCP connections 
to that destination. 

TCP is tolerant of received ICMP errors none cause Net/3 to terminate an established connection. 
This handling of ICMP errors by Net/3 differs from earlier Berkeley releases. 

Received TCP segments can arrive out of order and can contain duplicate data, and TCP must handle 
these anomalies. We saw that a reassembly queue is maintained for each connection, and this holds 
the out-of-order segments along with segments that arrive before they can be passed to the application. 

Finally we looked at the type of information saved by the kernel when the SO_DEBUG socket option 
is enabled for a TCP socket. This trace information can be a useful diagnostic tool in addition to 
programs such as tcpdump.  

Exercises

27.1 Why is the errno value 0 for the last row in Figure 27.1?  

27.2 What is the maximum value that can be stored in rmx_rtt?  

27.3 To save the route information in Figure 27.3 for a given host, we enter a route into the 
routing table by hand for this destination. We then run the FTP client to send data to this 
host, making certain we send enough data, as described with Figure 27.4. But after 
terminating the FTP client we look at the routing table, and all the values for this host are 
still 0. What’s happening?  
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Chapter 28. TCP Input 

28.1. Introduction 

TCP input processing is the largest piece of code that we examine in this text. The function 
tcp_input is about 1100 lines of code. The processing of incoming segments is not complicated, 
just long and detailed. Many implementations, including the one in Net/3, closely follow the input 
event processing steps in RFC 793, which spell out in detail how to respond to the various input 
segments, based on the current state of the connection. 

The tcp_input function is called by ipintr (through the pr_input function in the 
protocol switch table) when a datagram is received with a protocol field of TCP. tcp_input 
executes at the software interrupt level. 

The function is so long that we divide its discussion into two chapters. Figure 28.1 outlines the 
processing steps in tcp_input. This chapter discusses the steps through RST processing, and the 
next chapter starts with ACK processing. 
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Figure 28.1. Summary of TCP input processing steps. 
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The first few steps are typical: validate the input segment (checksum, length, etc.) and locate the PCB 
for this connection. Given the length of the remainder of the function, however, an attempt is made to 
bypass all this logic with an algorithm called header prediction (Section 28.4). This algorithm is based 
on the assumption that segments are not typically lost or reordered, hence for a given connection TCP 
can often guess what the next received segment will be. If the header prediction algorithm works, 
notice that the function returns. This is the fast path through tcp_input.

The slow path through the function ends up at the label dodata, which tests a few flags and calls 
tcp_output if a segment should be sent in response to the received segment. 

There are also three labels at the end of the function that are jumped to when errors occur: 
dropafterack, dropwithreset, and drop. The term drop means to drop the 
segment being processed, not drop the connection, but when an RST is sent by dropwithreset 
it normally causes the connection to be dropped. 

The only other branching in the function occurs when a valid SYN is received in either the LISTEN or 
SYN_SENT states, at the switch following header prediction. When the code at 
trimthenstep6 finishes, it jumps to step6, which continues the normal flow. 

28.2. Preliminary Processing 

Figure 28.2 shows the declarations and the initial processing of the received TCP segment. 
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Figure 28.2. tcp_input function: declarations and preliminary processing. 

 

 

 

Get IP and TCP headers in first mbuf

170-204

The argument iphlen is the length of the IP header, including possible IP options. If the length is 
greater than 20 bytes, options are present, and ip_stripoptions discards the options. TCP 
ignores all IP options other than a source route, which is saved specially by IP (Section 9.6) and 
fetched later by TCP in Figure 28.7. If the number of bytes in the first mbuf in the chain is less than 
the size of the combined IP/TCP header (40 bytes), m_pullup moves the first 40 bytes into the first 
mbuf. 

The next piece of code, shown in Figure 28.3, verifies the TCP checksum and offset field. 
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Figure 28.3. tcp_input function: verify TCP checksum and offset field. 

 

 
 

Verify TCP checksum

205-217

tlen is the TCP length, the number of bytes following the IP header. Recall that IP has already 
subtracted the IP header length from ip_len. The variable len is then set to the length of the IP 
datagram, the number of bytes to be checksummed, including the pseudo-header. The fields in the 
pseudo-header are set, as required for the checksum calculation, as shown in Figure 23.19. 

Verify TCP offset field

218-228

The TCP offset field, ti_off, is the number of 32-bit words in the TCP header, including any TCP 
options. It is multiplied by 4 (to become the byte offset of the first data byte in the TCP segment) and 
checked for sanity. It must be greater than or equal to the size of the standard TCP header (20) and 
less than or equal to the TCP length. 

The byte offset of the first data byte is subtracted from the TCP length, leaving tlen with the number 
of bytes of data in the segment (possibly 0). This value is stored back into the TCP header, in the 
variable ti_len, and will be used throughout the function. 

Figure 28.4 shows the next part of processing: handling of certain TCP options. 
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Figure 28.4. tcp_input function: handle certain TCP options. 

 

 
 

Get headers plus option into first mbuf

230-236

If the byte offset of the first data byte is greater than 20, TCP options are present. m_pullup is 
called, if necessary, to place the standard IP header, standard TCP header, and any TCP options in the 
first mbuf in the chain. Since the maximum size of these three pieces is 80 bytes (20 + 20 + 40), they 
all fit into the first packet header mbuf on the chain. 

Since the only way m_pullup can fail here is when fewer than 20 plus off bytes 
are in the IP datagram, and since the TCP checksum has already been verified, we 
expect this call to m_pullup never to fail. Unfortunately the counter 
tcps_rcvshort is also shared by the call to m_pullup in Figure 28.2, so 
looking at the counter doesn’t tell us which call failed. Nevertheless, Figure 24.5 
shows that after receiving almost 9 million TCP segments, this counter is 0. 

Process timestamp option quickly

237-255

optlen is the number of bytes of options, and optp is a pointer to the first option byte. If the 
following three conditions are all true, only the timestamp option is present and it is in the desired 
format: 

1. (a) The TCP option length equals 12 (TCPOLEN_TSTAMP_APPA), or (b) the TCP option 
length is greater than 12 and optp[12] equals the end-of-option byte. 
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2. The first 4 bytes of options equals 0x0101080a (TCPOPT_TSTAMP_HDR, which we 
described in Section 26.6). 

3. The SYN flag is not set (i.e., this segment is for an established connection, hence if a 
timestamp option is present, we know both sides have agreed to use the option). 

If all three conditions are true, ts_present is set to 1; the two timestamp values are fetched and 
stored in ts_val and ts_ecr; and optp is set to null, since all the options have been parsed. The 
benefit in recognizing the timestamp option this way is to avoid calling the general option processing 
function tcp_dooptions later in the code. The general option processing function is OK for the 
other options that appear only with the SYN segment that creates a connection (the MSS and window 
scale options), but when the timestamp option is being used, it will appear with almost every segment 
on an established connection, so the faster it can be recognized, the better. 

The next piece of code, shown in Figure 28.5, locates the Internet PCB for the segment. 

Figure 28.5. tcp_input function: locate Internet PCB for segment. 

 

 
 

Save input flags and convert fields to host byte order

257-264

The received flags (SYN, FIN, etc.) are saved in the local variable tiflags, since they are 
referenced throughout the code. Two 16-bit values and the two 32-bit values in the TCP header are 
converted from network byte order to host byte order. The two 16-bit port numbers are left in network 
byte order, since the port numbers in the Internet PCB are in that order. 
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Locate Internet PCB

265-279

TCP maintains a one-behind cache (tcp_last_inpcb) containing the address of the PCB for the 
last received TCP segment. This is the same technique used by UDP. The comparison of the four 
elements in the socket pair is in the same order as done by udp_input. If the cache entry does not 
match, in_pcblookup is called, and the cache is set to the new PCB entry. 

TCP does not have the same problem that we encountered with UDP: wildcard entries in the cache 
causing a high miss rate. The only time a TCP socket has a wildcard entry is for a server listening for 
connection requests. Once a connection is made, all four entries in the socket pair contain nonwildcard 
values. In Figure 24.5 we see a cache hit rate of almost 80%. 

Figure 28.6 shows the next piece of code. 

Figure 28.6. tcp_input function: check if segment should be dropped. 

 

 
 

Drop segment and generate RST

280-287

If the PCB was not found, the input segment is dropped and an RST is sent as a reply. This is how 
TCP handles SYNs that arrive for a server that doesn’t exist, for example. Recall that UDP sends an 
ICMP port unreachable in this case. 

288-290

 954

If the PCB exists but a corresponding TCP control block does not exist, the socket is probably being 
closed (tcp_close releases the TCP control block first, and then releases the PCB), so the input 
segment is dropped and an RST is sent as a reply. 
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Silently drop segment

291-292

If the TCP control block exists, but the connection state is CLOSED, the socket has been created and a 
local address and local port may have been assigned, but neither connect nor listen has been 
called. The segment is dropped but nothing is sent as a reply. This scenario can happen if a client 
catches a server between the server’s call to bind and listen. By silently dropping the segment 
and not replying with an RST, the client’s connection request should time out, causing the client to 
retransmit the SYN. 

Unscale advertised window

293-297

If window scaling is to take place for this connection, both ends must specify their send scale factor 
using the window scale option when the connection is established. If the segment contains a SYN, the 
window scale factor has not been established yet, so tiwin is copied from the value in the TCP 
header. Otherwise the 16-bit value in the header is left shifted by the send scale factor into a 32-bit 
value. 

The next piece of code, shown in Figure 28.7, does some preliminary processing if the socket debug 
option is enabled or if the socket is listening for incoming connection requests. 



ptg11539634

Figure 28.7. tcp_input function: handle debug option and listening sockets. 

 

 
 

Save connection state and IP/TCP headers if socket debug option 
enabled

300-303

If the SO_DEBUG socket option is enabled the current connection state is saved (ostate) as well as 
the IP and TCP headers (tcp_saveti). These become arguments to tcp_trace when it is called 
at the end of the function (Figure 29.26). 

Create new socket if segment arrives for listening socket

304-319

When a segment arrives for a listening socket (SO_ACCEPTCONN is enabled by listen), a new 
socket is created by sonewconn. This issues the protocol’s PRU_ATTACH request (Figure 30.2), 
which allocates an Internet PCB and a TCP control block. But more processing is needed before TCP 
commits to accept the connection request (such as the fundamental question of whether the segment 
contains a SYN or not), so the flag dropsocket is set, to cause the code at the labels drop and 
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dropwithreset to discard the new socket if an error is encountered. If the received segment is 
OK, dropsocket is set back to 0 in Figure 28.17. 

320-326

inp and tp point to the new socket that has been created. The local address and local port are copied 
from the destination address and destination port of the IP and TCP headers. If the input datagram 
contained a source route, it was saved by save_rte. TCP calls ip_srcroute to fetch that source 
route, saving a pointer to the mbuf containing the source route option in inp_options. This option 
is passed to ip_output by tcp_output, and the reverse route is used for datagrams sent on this 
connection. 

327

The state of the new socket is set to LISTEN. If the received segment contains a SYN, the code in 
Figure 28.16 completes the connection request. 

Compute window scale factor

328-331

The window scale factor that will be requested is calculated from the size of the receive buffer. 65535 
(TCP_MAXWIN) is left shifted until the result exceeds the size of the receive buffer, or until the 
maximum window scale factor is encountered (14, TCP_MAX_WINSHIFT). Notice that the requested 
window scale factor is chosen based on the size of the listening socket’s receive buffer. This means the 
process must set the SO_RCVBUF socket option before listening for incoming connection requests or 
it inherits the default value in tcp_recvspace.

The maximum scale factor is 14, and 65535 x 214 is 1,073,725,440. This is far greater 
than the maximum size of the receive buffer (262,144 in Net/3), so the loop should 
always terminate with a scale factor much less than 14. See Exercises 28.1 and 28.2. 

Figure 28.8 shows the next part of TCP input processing. 

Figure 28.8. tcp_input function: reset idle time and keepalive timer, process 
options.
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Reset idle time and keepalive timer

334-339

t_idle is set to 0 since a segment has been received on the connection. The keepalive timer is also 
reset to 2 hours. 

Process TCP options if not in LISTEN state

340-346

If options are present in the TCP header, and if the connection state is not LISTEN, 
tcp_dooptions processes the options. Recall that if only a timestamp option appears for an 
established connection, and that option is in the format recommended by Appendix A of RFC 1323, it 
was already processed in Figure 28.4 and optp was set to a null pointer. If the socket is in the 
LISTEN state, tcp_dooptions is called in Figure 28.17 after the peer’s address has been recorded 
in the PCB, because processing the MSS option requires knowledge of the route that will be used to 
this peer. 

28.3. tcp_dooptions Function 

This function processes the five TCP options supported by Net/3 (Section 26.4): the EOL, NOP, MSS, 
window scale, and timestamp options. Figure 28.9 shows the first part of this function. 

Figure 28.9. tcp_dooptions function: handle EOL and NOP options. 
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Fetch option type and length

1213-1229

The options are scanned and an EOL (end-of-options) terminates the processing, causing the function 
to return. The length of a NOP is set to 1, since this option is not followed by a length byte (Figure 
26.16). The NOP will be ignored via the default in the switch statement. 

1230-1234

All other options have a length byte that is stored in optlen.

Any new options that are not understood by this implementation of TCP are also ignored. This occurs 
because: 

1. Any new options defined in the future will have an option length (NOP and EOL are the only 
two without a length), and the for loop skips optlen bytes each time around the loop. 

2. The default in the switch statement ignores unknown options. 

The final part of tcp_dooptions, shown in Figure 28.10, handles the MSS, window scale, and 
timestamp options. 
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Figure 28.10. tcp_dooptions function: process MSS, window scale, and timestamp 
options.

 

 
 

MSS option

1238-1246

If the length is not 4 (TCPOLEN_MAXSEG), or the segment does not have the SYN flag set, the 
option is ignored. Otherwise the 2 MSS bytes are copied into a local variable, converted to host byte 
order, and processed by tcp_mss. This has the side effect of setting the variable t_maxseg in 
the control block, the maximum number of bytes that can be sent in a segment to the other end. 

Window scale option

1247-1254

 960

If the length is not 3 (TCPOLEN_WINDOW), or the segment does not have the SYN flag set, the 
option is ignored. Net/3 remembers that it received a window scale request, and the scale factor is 
saved in requested_s_scale. Since only 1 byte is referenced by cp[2], there can’t be 
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alignment problems. When the ESTABLISHED state is entered, if both ends requested window 
scaling, it is enabled. 

Timestamp option

1255-1273

If the length is not 10 (TCPOLEN_TIMESTAMP), the segment is ignored. Otherwise the flag 
pointed to by ts_present is set to 1, and the two timestamps are saved in the variables pointed to 
by ts_val and ts_ecr. If the received segment contains the SYN flag, Net/3 remembers that a 
timestamp request was received. ts_recent is set to the received timestamp and 
ts_recent_age is set to tcp_now, the counter of the number of 500-ms clock ticks since 
the system was initialized. 

28.4. Header Prediction 

We now continue with the code in tcp_input, from where we left off in Figure 28.8. 

Header prediction was put into the 4.3BSD Reno release by Van Jacobson. The only description of 
the algorithm, other than the source code we’re about to examine, is in [Jacobson 1990b], which is a 
copy of three slides showing the code. 

Header prediction helps unidirectional data transfer by handling the two common cases. 

1. If TCP is sending data, the next expected segment for this connection is an ACK for 
outstanding data. 

2. If TCP is receiving data, the next expected segment for this connection is the next in-
sequence data segment. 

In both cases a small set of tests determines if the next expected segment has been received, and if so, 
it is handled in-line, faster than the general processing that follows later in this chapter and the next. 

[Partridge 1993] shows an even faster version of TCP header prediction from a 
research implementation developed by Van Jacobson. 

Figure 28.11 shows the first part of header prediction. 
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Figure 28.11. tcp_input function: header prediction, first part. 

 

 
 

Check if segment is the next expected

347-366

The following six conditions must all be true for the segment to be the next expected data segment or 
the next expected ACK: 

1. The connection state must be ESTABLISHED. 
2. The following four control flags must not be on: SYN, FIN, RST, or URG. The ACK flag 

must be on. In other words, of the six TCP control flags, the ACK flag must be set, the four 
just listed must be cleared, and it doesn’t matter whether PSH is set or cleared. (Normally in 
the ESTABLISHED state the ACK flag is always on unless the RST flag is on.) 

3. If the segment contains a timestamp option, the timestamp value from the other end 
(ts_val) must be greater than or equal to the previous timestamp received for this 
connection (ts_recent). This is basically the PAWS test, which we describe in detail in 
Section 28.7. If ts_val is less than ts_recent, this segment is out of order because it 
was sent before the most previous segment received on this connection. Since the other end 
always sends its timestamp clock (the global variable tcp_now in Net/3) as its timestamp 
value, the received timestamps of in-order segments always form a monotonic increasing 
sequence. 

The timestamp need not increase with every in-order segment. Indeed, on a Net/3 system that 
increments the timestamp clock (tcp_now) every 500 ms, multiple segments are often sent 
on a connection before that clock is incremented. Think of the timestamp and sequence 
number as forming a 64-bit value, with the sequence number in the low-order 32 bits and the 
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timestamp in the high-order 32 bits. This 64-bit value always increases by at least 1 for every 
in-order segment (taking into account the modulo arithmetic). 

4. The starting sequence number of the segment (ti_seq) must equal the next expected 
receive sequence number (rcv_nxt). If this test is false, then the received segment is 
either a retransmission or a segment beyond the one expected. 

5. The window advertised by the segment (tiwin) must be nonzero, and must equal the 
current send window (snd_wnd). This means the window has not changed. 

6. The next sequence number to send (snd_nxt) must equal the highest sequence number 
sent (snd_max). This means the last segment sent by TCP was not a retransmission. 

Update ts_recent from received timestamp

367-375

If a timestamp option is present and if its value passes the test described with Figure 26.18, the 
received timestamp (ts_val) is saved in ts_recent. Also, the current time (tcp_now) is 
recorded in ts_recent_age.

Recall our discussion with Figure 26.18 on how this test for a valid timestamp is 
flawed, and the correct test presented in Figure 26.20. In this header prediction code 
the TSTMP_GEQ test in Figure 26.20 is redundant, since it was already done as 
step 3 of the if test at the beginning of Figure 28.11. 

The next part of the header prediction code, shown in Figure 28.12, is for the sender of unidirectional 
data: process an ACK for outstanding data. 
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Figure 28.12. tcp_input function: header prediction, sender processing. 

 

 
 

Test for pure ACK

376-379

If the following four conditions are all true, this segment is a pure ACK. 

1. The segment contains no data (ti_len is 0). 
2. The acknowledgment field in the segment (ti_ack) is greater than the largest 

unacknowledged sequence number (snd_una). Since this test is "greater than" and not 
"greater than or equal to," it is true only if some positive amount of data is acknowledged by 
the ACK. 

3. The acknowledgment field in the segment (ti_ack) is less than or equal to the maximum 
sequence number sent (snd_max). 

4. The congestion window (snd_cwnd) is greater than or equal to the current send window 
(snd_wnd). This test is true only if the window is fully open, that is, the connection is not 
in the middle of slow start or congestion avoidance. 
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Update RTT estimators

384-388

If the segment contains a timestamp option, or if a segment was being timed and the acknowledgment 
field is greater than the starting sequence number being timed, tcp_xmit_timer updates the 
RTT estimators. 

Delete acknowledged bytes from send buffer

389-394

acked is the number of bytes acknowledged by the segment. sbdrop deletes those bytes from the 
send buffer. The largest unacknowledged sequence number (snd_una) is set to the 
acknowledgment field and the received mbuf chain is released. (Since the length is 0, there should be 
just a single mbuf containing the headers.) 

Stop retransmit timer

395-407

If the received segment acknowledges all outstanding data (snd_una equals snd_max), the 
retransmission timer is turned off. Otherwise, if the persist timer is off, the retransmit timer is restarted 
using t_rxtcur as the timeout. 

Recall that when tcp_output sends a segment, it sets the retransmit timer only if the timer is not 
currently enabled. If two segments are sent one right after the other, the timer is set when the first is 
sent, but not touched when the second is sent. But if an ACK is received only for the first segment, the 
retransmit timer must be restarted, in case the second was lost. 

Awaken waiting processes

408-409

If a process must be awakened when the send buffer is modified, sowwakeup is called. From 
Figure 16.5, SB_NOTIFY is true if a process is waiting for space in the buffer, if a process is 
selecting on the buffer, or if a process wants the SIGIO signal for this socket. 

Generate more output

410-411

If there is data in the send buffer, tcp_output is called because the sender’s window has moved 
to the right. snd_una was just incremented and snd_wnd did not change, so in Figure 24.17 the 
entire window has shifted to the right. 

The next part of header prediction, shown in Figure 28.13, is the receiver processing when the 
segment is the next in-sequence data segment. 
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Figure 28.13. tcp_input function: header prediction, receiver processing. 

 

 
 

Test for next in-sequence data segment

414-416

If the following four conditions are all true, this segment is the next expected data segment for the 
connection, and there is room in the socket buffer for the data. 

1. The amount of data in the segment (ti_len) is greater than 0. This is the else portion of 
the if at the beginning of Figure 28.12. 

2. The acknowledgment field (ti_ack) equals the largest unacknowledged sequence number. 
This means no data is acknowledged by this segment. 

3. The reassembly list of out-of-order segments for the connection is empty (seg_next 
equals tp). 

4. There is room in the receive buffer for the data in the segment. 

Complete processing of received data

423-435

The next expected receive sequence number (rcv_nxt) is incremented by the number of bytes of 
data. The IP header, TCP header, and any TCP options are dropped from the mbuf, and the mbuf 
chain is appended to the socket’s receive buffer. The receiving process is awakened by 
sorwakeup. Notice that this code avoids calling the TCP_REASS macro, since the tests 
performed by that macro have already been performed by the header prediction tests. The delayed-
ACK flag is set and the input processing is complete. 
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Statistics

How useful is header prediction? A few simple unidirectional transfers were run across a LAN 
(between bsdi and svr4, in both directions) and across a WAN (between 
vangogh.cs.berkeley.edu and ftp.uu.net in both directions). The netstat 
output (Figure 24.5) shows the two header prediction counters. 

On the LAN, with no packet loss but a few duplicate ACKs, header prediction worked between 97 and 
100% of the time. Across the WAN, however, the header prediction percentages dropped slightly to 
between 83 and 99%. 

Realize that header prediction works on a per-connection basis, regardless how much additional TCP 
traffic is being received by the host, while the PCB cache works on a per-host basis. Even though lots 
of TCP traffic can cause PCB cache misses, if packets are not lost on a given connection, header 
prediction still works on that connection. 

28.5. TCP Input: Slow Path Processing 

We continue with the code that’s executed if header prediction fails, the slow path through 
tcp_input. Figure 28.14 shows the next piece of code, which prepares the received segment for 
input processing. 

Figure 28.14. tcp_input function: drop IP and TCP headers. 

 

 
 

Drop IP and TCP headers, including TCP options

438-442

The data pointer and length of the first mbuf in the chain are updated to skip over the IP header, TCP 
header, and any TCP options. Since off is the number of bytes in the TCP header, including options, 
the size of the normal TCP header (20) must be subtracted from the expression. 
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Calculate receive window

443-455

win is set to the number of bytes available in the socket’s receive buffer. rcv_adv minus 
rcv_nxt is the current advertised window. The receive window is the maximum of these two 
values. The max is taken to ensure that the value is not less than the currently advertised window. 
Also, if the process has taken data out of the socket receive buffer since the window was last 
advertised, win could exceed the advertised window, so TCP accepts up to win bytes of data (even 
though the other end should not be sending more than the advertised window). 

This value is calculated now, since the code later in this function must determine how much of the 
received data (if any) fits within the advertised window. Any received data outside the advertised 
window is dropped: data to the left of the window is duplicate data that has already been received and 
acknowledged, and data to the right should not be sent by the other end. 

28.6. Initiation of Passive Open, Completion of Active Open 

If the state is LISTEN or SYN_SENT, the code shown in this section is executed. The expected 
segment in these two states is a SYN, and we’ll see that any other received segment is dropped. 

Initiation of Passive Open

Figure 28.15 shows the processing when the connection is in the LISTEN state. In this code the 
variables tp and inp refer to the new socket that was created in Figure 28.7, not the server’s 
listening socket. 

Figure 28.15. tcp_input function: check if SYN received for listening socket. 
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Drop if RST, ACK, or no SYN

473-478

If the received segment contains the RST flag, it is dropped. If it contains an ACK, it is dropped and 
an RST is sent as the reply. (The initial SYN to open a connection is one of the few segments that 
does not contain an ACK.) If the SYN flag is not set, the segment is dropped. The remaining code for 
this case handles the reception of a SYN for a connection in the LISTEN state. The new state will 
be SYN_RCVD. 

Figure 28.16 shows the next piece of code for this case.

Figure 28.16. tcp_input function: process SYN for listening socket. 

 

 
 

Drop if broadcast or multicast

479-486

If the packet was sent to a broadcast or multicast address, it is dropped. TCP is defined only for 
unicast applications. Recall that the M_BCAST and M_MCAST flags were set by 
ether_input, based on the destination hardware address of the frame. The IN_MULTICAST 
macro tests whether the IP address is a class D address. 

The comment reference to in_broadcast is because the Net/1 code (which did 
not support multicasting) called that function here, to check whether the destination 
IP address was a broadcast address. The setting of the M_BCAST and M_MCAST 
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flags by ether_input, based on the destination hardware address, was 
introduced with Net/2. 

This Net/3 code tests only whether the destination hardware address is a broadcast 
address, and does not call in_broadcast to test whether the destination IP 
address is a broadcast address, on the assumption that a packet should never be 
received with a destination IP address that is a broadcast address unless the packet 
was sent to the hardware broadcast address. This assumption is made to avoid calling 
in_broadcast. Nevertheless, if a Net/3 system receives a SYN destined for a 
broadcast IP address but a unicast hardware address, that segment will be processed 
by the code in Figure 28.16. 

The destination address argument to IN_MULTICAST needs to be converted to 
host byte order. 

Get mbuf for client's IP address and port

487-496

An mbuf is allocated to hold a sockaddr_in structure, and the structure is filled in with the 
client’s IP address and port number. The IP address is copied from the source address in the IP header 
and the port number is copied from the source port number in the TCP header. This structure is used 
shortly to connect the server’s PCB to the client, and then the mbuf is released. 

The XXX comment is probably because of the cost associated with obtaining an 
mbuf just for the call to in_pcbconnect that follows. But this is the slow 
processing path for TCP input. Figure 24.5 shows that less than 2% of all received 
segments execute this code. 

Set local address in PCB

497-499

laddr is the local address bound to the socket. If the server bound the wildcard address to the 
socket (the normal scenario), the destination address from the IP header becomes the local address in 
the PCB. Note that the destination address from the IP header is used, regardless of which local 
interface the datagram was received on. 

Notice that laddr cannot be the wildcard address, because in Figure 28.7 it is 
explicitly set to the destination IP address from the received datagram. 

Connect PCB to peer

500-505

in_pcbconnect connects the server’s PCB to the client. This fills in the foreign address and 
foreign process in the PCB. The mbuf is then released. 

The next piece of code, shown in Figure 28.17 completes the processing for this case.
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Figure 28.17. tcp_input function: complete processing of SYN received in LISTEN state. 

 

 
 

Allocate and initialize IP and TCP header template

506-511

A template of the IP and TCP headers is created by tcp_template. The call to sonewconn 
in Figure 28.7 allocated the PCB and TCP control block for the new connection, but not the header 
template. 

Process any TCP options

512-514

If TCP options are present, they are processed by tcp_dooptions. The call to this function in 
Figure 28.8 was done only if the connection was not in the LISTEN state. This function is called now 
for a listening socket, after the foreign address is set in the PCB, since the foreign address is used by 
the tcp_mss function: to get a route to the peer, and to check if the peer is "local" or "foreign" 
(with regard to the peer’s network ID and subnet ID, used to select the MSS). 

Initialize ISS

515-519

The initial send sequence number is normally copied from the global tcp_iss, which is then 
incremented by 64,000 (TCP_ISSINCR divided by 2). If the local variable iss is nonzero, 
however, its value is used instead of tcp_iss to initialize the send sequence number for the 
connection. 
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A server is started on port 27 on the host with an IP address of 128.1.2.3. 
A client on host 192.3.4.5 establishes a connection with this server. The client’s ephemeral 
port is 3000. The socket pair on the server is {128.1.2.3, 27, 192.3.4.5, 3000}. 
The server actively closes the connection, putting this socket pair into the TIME_WAIT state. 
While the connection is in this state, the last receive sequence number is remembered in the 
TCP control block. Assume its value is 100,000. 
Before this connection leaves the TIME_WAIT state, a new SYN is received from the same 
port on the same client host (192.3.4.5, port 3000), which locates the PCB corresponding to 
the connection in the TIME_WAIT state, not the PCB for the listening server. Assume the 
sequence number of this new SYN is 200,000. 
Since this connection does not correspond to a listening socket in the LISTEN state, the code 
we just looked at is not executed. Instead, the code in Figure 28.29 is executed, and we’ll see 
that it contains the following logic: if the sequence number of the new SYN (200,000) is 
greater than the last sequence number received from this client (100,000), then (1) the local 
variable iss is set to 100,000 plus 128,000, (2) the connection in the TIME_WAIT state is 
completely closed (its PCB and TCP control block are deleted), and (3) a jump is made to 
findpcb (Figure 28.5). 
This time the server’s listening PCB will be located (assuming the listening server is still 
running), causing the code in this section to be executed. The local variable iss (now 
228,000) is used in Figure 28.17 to initialize tcp_iss for the new connection. 

This logic, which is allowed by RFC 1122, lets the same client and server reuse the same socket pair 
as long as the server does the active close. This also explains why the global variable tcp_iss is 
incremented by 64,000 each time any process issues a connect (Figure 30.4): to ensure that if a 
single client reopens the same connection with the same server repeatedly, a larger ISS is used each 
time, even if no data was transferred on the previous connection, and even if the 500-ms timer (which 
increments tcp_iss) has not expired since the last connection. 

Initialize sequence number variables in control block

520-522

In Figure 28.17, the initial receive sequence number (irs) is copied from the sequence number in the 
SYN segment. The following two macros initialize the appropriate variables in the TCP control block: 

    #define tcp_rcvseqinit(tp) \ 
        (tp)->rcv_adv = (tp)->rcv_nxt = (tp)->irs + 1 

    #define tcp_sendseqinit(tp) \ 
        (tp)->snd_una = (tp)->snd_nxt = (tp)->snd_max = 
(tp)->snd_up = \ 
            (tp)->iss 
 

The addition of 1 in the first macro is because the SYN occupies a sequence number. 

ACK the SYN and change state

523-525

The TF_ACKNOW flag is set since the ACK of a SYN is not delayed. The connection state becomes 
SYN_RCVD, and the connection-establishment timer is set to 75 seconds (TCPTV_KEEP_INIT). 
Since the TF_ACKNOW flag is set, at the bottom of this function tcp_output will be called. 
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Looking at Figure 24.16 we see that tcp_outflags will cause a segment with the SYN and 
ACK flags to be sent. 

526-528

TCP is now committed to the new socket created in Figure 28.7, so the dropsocket flag is 
cleared. The code at trimthenstep6 is jumped to, to complete processing of the SYN segment. 
Remember that a SYN segment can contain data, although the data cannot be passed to the application 
until the connection enters the ESTABLISHED state. 

Completion of Active Open

Figure 28.18 shows the first part of processing when the connection is in the SYN_SENT state. TCP is 
expecting to receive a SYN. 

Figure 28.18. tcp_input function: check if SYN in response to active open. 

 

 
 

Verify received ACK

530-546

When TCP sends a SYN in response to an active open by a process, we’ll see in Figure 30.4 that the 
connection’s iss is copied from the global tcp_iss and the macro tcp_sendseqinit 
(shown at the end of the previous section) is executed. Assuming the ISS is 365, Figure 28.19 shows 
the send sequence variables after the SYN is sent by tcp_output.
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Figure 28.19. Send variables after SYN is sent with sequence number 365. 

 

 

tcp_sendseqinit sets all four of these variables to 365, then Figure 26.31 increments two of 
them to 366 when the SYN segment is output. Therefore, if the received segment in Figure 28.18 
contains an ACK, and if the acknowledgment field is less than or equal to iss (365) or greater than 
snd_max (366), the ACK is invalid, causing the segment to be dropped and an RST sent in reply. 
Notice that the received segment for a connection in the SYN_SENT state need not contain an ACK. 
It can contain only a SYN, which is called a simultaneous open (Figure 24.15), and is described 
shortly. 

Process and drop RST segment

547-551

If the received segment contains an RST, it is dropped. But the ACK flag was checked first because 
receipt of an acceptable ACK (which was just verified) and an RST in response to a SYN is how the 
other end tells TCP that its connection request was refused. Normally this is caused by the server 
process not being started on the other host. In this case tcp_drop sets the socket’s so_error 
variable, causing an error to be returned to the process that called connect.

Verify SYN flag set

552-553

If the SYN flag is not set in the received segment, it is dropped. 

The remainder of this case handles the receipt of a SYN (with an optional ACK) in response to 
TCP’s SYN. The next part of tcp_input, shown in Figure 28.20, continues processing the SYN. 
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Figure 28.20. tcp_input function: process received SYN in response to an active open. 

 

 
 

Process ACK

554-558

If the received segment contains an ACK, snd_una is set to the acknowledgment field. In Figure 
28.19, snd_una becomes 366, since 366 is the only acceptable value for the acknowledgment field. 
If snd_nxt is less than snd_una (which shouldn’t happen, given Figure 28.19), snd_nxt is 
set to snd_una.

Turn off retransmission timer

559

The retransmission timer is turned off. 

This is a bug. This timer should be turned off only if the ACK flag is set, since the 
receipt of a SYN without an ACK is a simultaneous open, and doesn’t mean the other 
end received TCP’s SYN. 

 975



ptg11539634

 976

Initialize receive sequence numbers

560-562

The initial receive sequence number is copied from the sequence number of the received segment. The 
tcp_rcvseqinit macro (shown at the end of the previous section) initializes rcv_adv and 
rcv_nxt to the receive sequence number, plus 1. The TF_ACKNOW flag is set, causing 
tcp_output to be called at the bottom of this function. The segment it sends will contain 
rcv_nxt as the acknowledgment field (Figure 26.27), which acknowledges the SYN just received. 

563-564

If the received segment contains an ACK, and if snd_una is greater than the ISS for the 
connection, the active open is complete, and the connection is established. 

This second test appears superfluous. At the beginning of Figure 28.20 snd_una 
was set to the received acknowledgment field if the ACK flag was on. Also the if 
following the case statement in Figure 28.18 verified that the received 
acknowledgment field is greater than the ISS. So at this point in the code, if the ACK 
flag is set, we’re already guaranteed that snd_una is greater than the ISS. 

Connection is established

565-566

soisconnected sets the socket state to connected, and the state of the TCP connection is set to 
ESTABLISHED. 

Check for window scale option

567-572

If TCP sent the window scale option in its SYN and the received SYN also contains the option, the 
option is enabled and the two variables snd_scale and rcv_scale are set. Since the TCP 
control block is initialized to 0 by tcp_newtcpcb, these two variables correctly default to 0 if 
the window scale option is not used. 

Pass any queued data to process

573-574

Since data can arrive for a connection before the connection is established, any such data is now 
placed in the receive buffer by calling tcp_reass with a null pointer as the second argument. 

This test is unnecessary. In this piece of code, TCP has just received the SYN with an 
ACK that moves it from the SYN_SENT state to the ESTABLISHED state. If data 
appears with this received SYN segment, it isn’t processed until the label dodata 
near the end of the function. If TCP just received a SYN without an ACK (a 
simultaneous open) but with some data, that data is handled later (Figure 29.2) when 
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the ACK is received that moves the connection from the SYN_RCVD state to the 
ESTABLISHED state. 

Although it is valid for data to accompany a SYN, and Net/3 handles this type of 
received segment correctly, Net/3 never generates such a segment. 

Update RTT estimators

575-580

If the SYN that is ACKed was being timed, tcp_xmit_timer initializes the RTT estimators 
based on the measured RTT for the SYN. 

TCP ignores a received timestamp option here, and checks only the t_rtt counter. 
TCP sends a timestamp in a SYN generated by an active open (Figure 26.24) and if 
the other end agrees to the option, the other end should echo the received timestamp 
in its SYN. (Net/3 echoes the received timestamp in a SYN in Figure 28.10.) This 
would allow TCP to use the received timestamp here, instead of t_rtt, but since 
both have the same precision (500 ms) there’s no advantage in using the timestamp 
value. The real advantage in using the timestamp option, instead of the t_rtt 
counter, is with large pipes, when lots of segments are in flight at once, providing 
more RTT timings and (it is hoped) better estimators. 

Simultaneous open

581-582

When TCP receives a SYN without an ACK in the SYN_SENT state, it is a simultaneous open and 
the connection moves to the SYN_RCVD state. 

The next piece of code, shown in Figure 28.21, handles any data received with the SYN. The label 
trimthenstep6 is also jumped to at the end of Figure 28.17. 

Figure 28.21. tcp_input function: common processing for receipt of SYN. 
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584-589

The sequence number of the segment is incremented by 1 to account for the SYN. If there is any data 
in the segment, ti_seq now contains the starting sequence number of the first byte of data. 

Drop any received data that follows receive window

590-597

ti_len is the number of data bytes in the segment. If it is greater than the receive window, the 
excess data (ti_len minus rcv_wnd) is dropped by m_adj. The negative argument to this 
function causes the data to be trimmed from the end of the mbuf chain (Figure 2.20). ti_len is 
updated to be the new amount of data in the mbuf chain and in case the FIN flag was set, it is cleared. 
This is because the FIN would follow the final data byte, which was just discarded because it was 
outside the receive window. 

If too much data is received with a SYN, and if the SYN is in response to an active 
open, the other end received TCP’s SYN, which contained a window advertisement. 
This means the other end ignored the advertised window and is exhibiting unsocial 
behavior. But if too much data accompanies a SYN performing an active open, the 
other end has not received a window advertisement, so it has to guess how much data 
can accompany its SYN. 

Force update of window variables

598-599

snd_wl1 is set the received sequence number minus 1. We’ll see in Figure 29.15 that this causes 
the three window update variables, snd_wnd, snd_wl1, and snd_wl2, to be updated. The 
receive urgent pointer (rcv_up) is set to the received sequence number. A jump is made to 
step6, which refers to a step in RFC 793, and we cover this in Figure 29.15. 

28.7. PAWS: Protection Against Wrapped Sequence Numbers 

The next part of tcp_input, shown in Figure 28.22, provides protection against wrapped 
sequence numbers: the PAWS algorithm from RFC 1323. Also recall our discussion of the timestamp 
option in Section 26.6. 
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Figure 28.22. tcp_input function: process timestamp option. 

 

 
 

Basic PAWS test

602-613

ts_present was set by tcp_dooptions if a timestamp option was present. If the following 
three conditions are all true, the segment is dropped: 

1. the RST flag is not set (Exercise 28.8), 
2. TCP has received a valid timestamp from this peer (ts_recent is nonzero), and 
3. the received timestamp in this segment (ts_val) is less than the previously received 

timestamp from this peer. 

PAWS is built on the premise that the 32-bit timestamp values wrap around at a much lower 
frequency than the 32-bit sequence numbers, on a high-speed connection. Exercise 28.6 shows that 
even at the highest possible timestamp counter frequency (incrementing by 1 bit every millisecond), 
the sign bit of the timestamp wraps around only every 24 days. On a high-speed network such as a 
gigabit network, the sequence number can wrap in 17 seconds (Section 24.3 of Volume 1). Therefore, 
if the received timestamp value is less than the most recent one from this peer, this segment is old and 
must be discarded (subject to the outdated timestamp test that follows). The packet might be discarded 
later in the input processing because the sequence number is "old," but PAWS is intended for high-
speed connections where the sequence numbers can wrap quickly. 
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Notice that the PAWS algorithm is symmetric: it not only discards duplicate data segments but also 
discards duplicate ACKs. All received segments are subject to PAWS. Recall that the header 
prediction code also applied the PAWS test (Figure 28.11). 

Check for outdated timestamp

614-627

There is a small possibility that the reason the PAWS test fails is because the connection has been idle 
for a long time. The received segment is not a duplicate; it is just that because the connection has been 
idle for so long, the peer’s timestamp value has wrapped around when compared to the most recent 
timestamp from that peer. 

Whenever ts_recent is copied from the timestamp in a received segment, ts_recent_age 
records the current time (tcp_now). If the time at which ts_recent was saved is more than 24 
days ago, it is set to 0 to invalidate it. The constant TCP_PAWS_IDLE is defined to be (24 x 24 x 
60 x 60 x 2), the final 2 being the number of ticks per second. The received segment is not dropped in 
this case, since the problem is not a duplicated segment, but an outdated timestamp. See also Exercises 
28.6 and 28.7. 

Figure 28.23 shows an example of an outdated timestamp. The system on the left is a non-Net/3 
system that increments its timestamp clock at the highest frequency allowed by RFC 1323: once every 
millisecond. The system on the right is a Net/3 system. 

Figure 28.23. Example of outdated timestamp. 

 

 

When the data segment arrives with a timestamp of 1, that value is saved in ts_recent and 
ts_recent_age is set to the current time (tcp_now), as shown in Figures 28.11 and 28.35. 
The connection is then idle for 25 days, during which time tcp_now will increase by 4,320,000 (25 
x 24 x 60 x 60 x 2). During these 25 days the other end’s timestamp clock will increase by 
2,160,000,000 (25 x 24 x 60 x 60 x 1000). During this interval the timestamp "changes sign" with 
regard to the value 1, that is, 2,147,483,649 is greater than 1, but 2,147,483,650 is less than 1 (recall 
Figure 24.26). Therefore, when the data segment is received with a timestamp of 2,160,000,001, this 
value is less than ts_recent (1), when compared using the TSTMP_LT macro, so the PAWS 
test fails. But since tcp_now minus ts_recent_age is greater than 24 days, the reason for 
the failure is that the connection has been idle for more than 24 days, and the segment is accepted. 
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Drop duplicate segment

628-633

The segment is determined to be a duplicate based on the PAWS algorithm, and the timestamp is not 
outdated. It is dropped, after being acknowledged (since all duplicate segments are acknowledged). 

Figure 24.5 shows a much smaller value for tcps_pawsdrop (22) than for 
tcps_rcvduppack (46,953). This is probably because fewer systems support 
the timestamp option today, causing most duplicate packets to be discarded by later 
tests in TCP’s input processing instead of by PAWS. 

28.8. Trim Segment so Data is Within Window 

This section trims the received segment so that it contains only data that is within the advertised 
window: 

duplicate data at the beginning of the received segment is discarded, and 
data that is beyond the end of the window is discarded from the end of the segment. 

What remains is new data within the window. The code shown in Figure 28.24 checks if there is any 
duplicate data at the beginning of the segment. 

Figure 28.24. tcp_input function: check for duplicate data at beginning of segment. 

 

 
 

Check if any duplicate data at front of segment

635-636

If the starting sequence number of the received segment (ti_seq) is less than the next receive 
sequence number expected (rcv_nxt), data at the beginning of the segment is old and todrop 
will be greater than 0. These data bytes have already been acknowledged and passed to the application 
(Figure 24.18). 
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Remove duplicate SYN

637-645

If the SYN flag is set, it refers to the first sequence number in the segment, which is known to be old. 
The SYN flag is cleared and the starting sequence number of the segment is incremented by 1 to skip 
over the duplicate SYN. Furthermore, if the urgent offset in the received segment (ti_urp) is 
greater than 1, it must be decremented by 1, since the urgent offset is relative to the starting sequence 
number, which was just incremented. If the urgent offset is 0 or 1, it is left alone, but in case it was 1, 
the URG flag is cleared. Finally todrop is decremented by 1 (since the SYN occupies a sequence 
number). 

The handling of duplicate data at the front of the segment continues in Figure 28.25. 

Figure 28.25. tcp_input function: handle completely duplicate segment. 
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Check for entire duplicate packet

646-648

If the amount of duplicate data at the front of the segment is greater than or equal to the size of the 
segment, the entire segment is a duplicate. 

Check for duplicate FIN

649-663

The next check is whether the FIN is duplicated. Figure 28.26 shows an example of this. 

Figure 28.26. Example of duplicate packet with FIN flag set. 

 

 

In this example todrop equals 5, which is greater than or equal to ti_len (4). Since the FIN flag 
is set and todrop equals ti_len plus 1, todrop is set to 4, the FIN flag is cleared, and the 
TF_ACKNOW flag is set, forcing an immediate ACK to be sent at the end of this function. This 
example also works for other segments if ti_seq plus ti_len equals 10. 

The code contains the comment regarding 4.2BSD keepalives. This code (another 
test within the if statement) is omitted. 

Generate duplicate ACK

664-672

If todrop is nonzero (the completely duplicate segment contains data) or the ACK flag is not set, 
the segment is dropped and an ACK is generated by dropafterack. This normally occurs when 
the other end did not receive our ACK, causing the other end to retransmit the segment. TCP generates 
another ACK. 
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Handle simultaneous open or self-connect

664-672

This code also handles either a simultaneous open or a socket that connects to itself. We go over both 
of these scenarios in the next section. If todrop equals 0 (there is no data in the completely 
duplicate segment) and the ACK flag is set, processing is allowed to continue. 

This if statement is new with 4.4BSD. Earlier Berkeley-derived systems just had a 
jump to dropafterack. These systems could not handle either a simultaneous 
open or a socket connecting to itself. 

Nevertheless, the piece of code in this figure still has bugs, which we describe at the 
end of this section. 

Update statistics for partial duplicate segments

673-676

This else clause is executed when todrop is less than the segment length: only part of the 
segment contains duplicate bytes. 

Remove duplicate data and update urgent offset

677-685

The duplicate bytes are removed from the front of the mbuf chain by m_adj and the starting 
sequence number and length adjusted appropriately. If the urgent offset points to data still in the mbuf, 
it is also adjusted. Otherwise the urgent offset is set to 0 and the URG flag is cleared. 

The next part of input processing, shown in Figure 28.27, handles data that arrives after the process 
has terminated. 

Figure 28.27. tcp_input function: handle data that arrives after the process terminates. 

 

 

687-696
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If the socket has no descriptor referencing it, the process has closed the connection (the state is any 
one of the five with a value greater than CLOSE_WAIT in Figure 24.16), and there is data in the 
received segment, the connection is closed. The segment is then dropped and an RST is output. 

Because of TCP’s half-close, if a process terminates unexpectedly (perhaps it is terminated by a 
signal), when the kernel closes all open descriptors as part of process termination, a FIN is output by 
TCP. The connection moves into the FIN_WAIT_1 state. But the receipt of the FIN by the other end 
doesn’t tell TCP whether this end performed a half-close or a full-close. If the other end assumes a 
half-close, and sends more data, it will receive an RST from the code in Figure 28.27. 

The next piece of code, shown in Figure 28.29, removes any data from the end of the received 
segment that is beyond the right edge of the advertised window. 

Calculate number of bytes beyond right edge of window

697-703

todrop contains the number of bytes of data beyond the right edge of the window. For example, in 
Figure 28.28, todrop would be (6 + 5) minus (4 + 6), or 1. 

Figure 28.28. Example of received segment with data beyond right edge of window. 
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Figure 28.29. tcp_input function: remove data beyond right edge of window. 

 

 
 

Check for new incarnation of a connection in the TIME_WAIT state

704-718

If todrop is greater than or equal to the length of the segment, the entire segment will be dropped. 
If the following three conditions are all true: 

1. the SYN flag is set, and 
2. the connection is in the TIME_WAIT state, and 
3. the new starting sequence number is greater than the final sequence number for the 

connection, 

this is a request for a new incarnation of a connection that was recently terminated and is currently in 
the TIME_WAIT state. This is allowed by RFC 1122, but the ISS for the new connection must be 
greater than the last sequence number used (rcv_nxt). TCP adds 128,000 (TCP_ISSINCR), 
which becomes the ISS when the code in Figure 28.17 is executed. The PCB and TCP control block 
for the connection in the TIME_WAIT state is discarded by tcp_close. A jump is made to 
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findpcb (Figure 28.5) to locate the PCB for the listening server, assuming it is still running. The 
code in Figure 28.7 is then executed, creating a new socket for the new connection, and finally the 
code in Figures 28.16 and 28.17 will complete the new connection request. 

Check for probe of closed window

719-728

If the receive window is closed (rcv_wnd equals 0) and the received segment starts at the left edge 
of the window (rcv_nxt), then the other end is probing TCP’s closed window. An immediate ACK 
is sent as the reply, even though the ACK may still advertise a window of 0. Processing of the 
received segment also continues for this case. 

Drop other segments that are completely outside window

729-730

The entire segment lies outside the window and it is not a window probe, so the segment is discarded 
and an ACK is sent as the reply. This ACK will contain the expected sequence number. 

Handle segments that contain some valid data

731-735

The data to the right of the window is discarded from the mbuf chain by m_adj and ti_len is 
updated. In the case of a probe into a closed window, this discards all the data in the mbuf chain and 
sets ti_len to 0. Finally the FIN and PSH flags are cleared. 

When to Drop an ACK

The code in Figure 28.25 has a bug that causes a jump to dropafterack in several cases when 
the code should fall through for further processing of the segment [Carlson 1993; Lanciani 1993]. In 
an actual scenario, when both ends of a connection had a hole in the data on the reassembly queue and 
both ends enter the persist state, the connection becomes deadlocked as both ends throw away 
perfectly good ACKs. 

The fix is to simplify the code at the beginning of Figure 28.25. Instead of jumping to 
dropafterack, a completely duplicate segment causes the FIN flag to be turned off and an 
immediate ACK to be generated at the end of the function. Lines 646—676 in Figure 28.25 are 
replaced with the code shown in Figure 28.30. 
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Figure 28.30. Correction for lines 646–676 of Figure 28.25.

 

This code also corrects another bug present in the original code (Exercise 28.9). 

 

28.9. Self-Connects and Simultaneous Opens 

It is instructive to look at the steps involved in a socket connecting to itself to see how the one-line fix 
to Figure 28.25 that was added to 4.4BSD allows this. This same fix allowed simultaneous opens to 
work, which wasn’t handled correctly prior to 4.4BSD. 

A process creates a socket and connects it to itself using the system calls: socket, bind a local 
port (say 3000), and then connect to this same port and some local IP address. If the connect 
succeeds, the socket is connected to itself: anything written to the socket can be read back from the 
socket. This is similar to a full-duplex pipe, but with a single descriptor instead of two descriptors. 
Although this is of limited use within a process, we’ll see that the state transitions are the same as they 
are for a simultaneous open. If your system doesn’t allow a socket to connect to itself, it probably 
doesn’t handle simultaneous opens correctly either, and the latter are required by RFC 1122. Some 
people are surprised that a self-connect even works, given that a single Internet PCB and a single TCP 
control block are used. But TCP is a full-duplex, symmetric protocol and it maintains separate 
variables for each direction of data flow. 

Figure 28.31 shows the send sequence space when the process calls connect. A SYN segment is 
sent and the state becomes SYN_SENT. 

Figure 28.31. Send sequence space when SYN is sent for self-connect. 
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The SYN is received and processed in Figures 28.18 and 28.20, but since the SYN does not contain an 
ACK the resulting state is SYN_RCVD. According to the state transition diagram (Figure 24.15), this 
looks like a simultaneous open. Figure 28.32 shows the receive sequence space. 

Figure 28.32. Receive sequence space after received SYN is processed. 

 

 

Figure 28.20 sets the TF_ACKNOW flag and the segment generated by tcp_output will contain 
a SYN and an ACK (the tcp_outflags value in Figure 24.16). The sequence number of the 
SYN is 153 and the acknowledgment number is 154. 

Nothing changes in the send sequence space from Figure 28.20, except the state is now SYN_SENT. 
Figure 28.33 shows the receive sequence space when the segment with the SYN and ACK is received. 

Figure 28.33. Receive sequence space when segment with SYN and ACK received. 

 

 

Since the connection state is SYN_RCVD, the segment is not processed by the active open or passive 
open code that we saw earlier in this chapter. It must be processed by the SYN_RCVD code that we’ll 
examine in Figure 29.2. But it is first processed by Figure 28.24, and it looks like a duplicate SYN: 

    todrop = rcv_nxt - ti_seq 
           = 154 - 153 
           = 1 
 

Since the SYN flag is set, the flag is cleared, ti_seq becomes 154, and todrop becomes 0. But 
the test at the beginning of Figure 28.25 is true, because todrop equals the length of the segment 
(0). The segment is counted as a duplicate packet and the code with the comment "Handle the case 
when a bound socket connects to itself" is executed. Earlier releases jumped to dropafterack, 
which skipped the necessary code to handle the SYN_RCVD state, preventing the connection from 
ever being established. Instead, Net/3 continues processing the received segment if todrop equals 0 
and the ACK flag is set, both of which are true in this example. This allows the SYN_RCVD 
processing to happen later in the function, which moves the connection to the ESTABLISHED state. 

It is also interesting to look at the sequence of function calls in this self-connect. This is shown in 
Figure 28.34. 
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Figure 28.34. Sequence of function calls for self-connect. 

 

 

The order of the operations goes from the left to the right. The steps that we show begin with the 
process calling connect. This issues the PRU_CONNECT request, which sends a SYN down the 
protocol stack. Since the segment is destined for the host’s own IP address it is routed to the loopback 
interface, which adds the segment to ipintrq and generates a software interrupt. 

The software interrupt causes ipintr to execute, which calls tcp_input. This function calls 
tcp_output, causing a SYN segment with an ACK to be sent down the protocol stack. It is 
again added to ipintrq by the loopback interface, and a software interrupt is generated. When this 
interrupt is processed by ipintr, the function tcp_input is called, and it moves the 
connection to the ESTABLISHED state. 

28.10. Record Timestamp 

The next part of tcp_input, shown in Figure 28.35, handles a received timestamp option. 
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Figure 28.35. tcp_input function: record timestamp. 

 

 

737-746

If the received segment contains a timestamp, the timestamp value is saved in ts_recent. We 
discussed in Section 26.6 how this code used by Net/3 is flawed. The expression 

    ((tiflags & (TH_SYN|TH_FIN)) != 0) 
 

is 0 if neither of the two flags is set, or 1 if either is set. This effectively adds 1 to ti_len if either 
flag is set. 

28.11. RST Processing 

Figure 28.36 shows the switch statement to handle the RST flag, which depends on the connection 
state. 
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Figure 28.36. tcp_input function: process RST flag. 

 

 
 

SYN_RCVD state

759-761

The socket’s error code is set to ECONNREFUSED, and a jump is made a few lines forward to close 
the socket. 

This state can be entered from two directions. Normally it is entered from the LISTEN state, after a 
SYN has been received. TCP replied with a SYN and an ACK but received an RST in reply. Perhaps 
the other end sent its SYN and then terminated before the reply arrived, causing it to send an RST. In 
this case the socket referred to by so is the new socket created by sonewconn in Figure 28.7. 
Since dropsocket will still be true, the socket is discarded at the label drop. The listening 
descriptor isn’t affected at all. This is why we show the state transition from SYN_RCVD back to 
LISTEN in Figure 24.15. 

This state can also be entered by a simultaneous open, after a process has called connect. In this 
case the socket error is returned to the process. 
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Other states

762-777

The receipt of an RST in the ESTABLISHED, FIN_WAIT_1, FIN_WAIT_2, or CLOSE_WAIT states 
returns the error ECONNRESET. In the CLOSING, LAST_ACK, and TIME_WAIT state an error is 
not generated, since the process has closed the socket. 

Allowing an RST to terminate a connection in the TIME_WAIT state circumvents 
the reason this state exists. RFC 1337 [Braden 1992] discusses this and other forms 
of "TIME_WAIT assassination hazards" and recommends not letting an RST 
prematurely terminate the TIME_WAIT state. See Exercise 28.10 for an example. 

The next piece of code, shown in Figure 28.37, checks for erroneous SYNs and verifies that an ACK 
is present. 

Figure 28.37. tcp_input function: handle SYN-full and ACK-less segments. 

 

 

778-785

If the SYN flag is still set, this is an error and the connection is dropped with the error 
ECONNRESET.

786-790

If the ACK flag is not set, the segment is dropped. The remainder of this function, which we continue 
in the next chapter, assumes the ACK flag is set. 

28.12. Summary 

This chapter has started our detailed look at TCP input. It continues in the next chapter. 

The code in this chapter verifies the segment’s checksum, processes any TCP options, handles SYNs 
that initiate or complete connection requests, trims excess data from the beginning or end of the 
segment, and processes the RST flag. 
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Header prediction is a successful attempt to handle common cases with the minimum amount of 
processing. Although the general processing steps that we’ve covered handle all possible cases (which 
they must), many segments are well behaved and the processing steps can be minimized. 

Exercises

28.1 Given that the maximum size of a socket buffer is 262,144 in Net/3, what are the possible 
window scale shift factors calculated by Figure 28.7? 

28.2 Given that the maximum size of a socket buffer is 262,144 in Net/3, what is the maximum 
throughput possible with a round-trip time of 60 ms? (Hint: See Figure 24.5 in Volume 1 
and solve for the bandwidth.) 

28.3 Why are the two timestamp values fetched using bcopy in Figure 28.10? 

28.4 We mentioned in Section 26.6 that TCP correctly handles timestamp options in a format 
other than the one recommended in Appendix A of RFC 1323. While this is true, what is 
the penalty for not following the recommended format? 

28.5 The PRU_ATTACH request allocates the PCB and the TCP control block, but doesn’t 
call tcp_template to allocate the header template. Instead we saw in Figure 28.17 
that the header template is allocated when the SYN arrives. Why doesn’t the 
PRU_ATTACH request allocate this template? 

28.6 Read RFC 1323 to determine why the limit of 24 days was chosen in Figure 28.22. 

28.7 The comparison of tcp_now minus ts_recent_age to TCP_PAWS_IDLE in 
Figure 28.22 is also subject to sign bit wrap around, if the connection is idle for a period 
much longer than 24 days. With the 500-ms timestamp clock used by Net/3, when does 
this become a problem? 

28.8 Read RFC 1323 to find out why RST segments are exempt from the PAWS test in Figure 
28.22. 

28.9 A client sends a SYN and the server responds with a SYN/ACK. The client moves to the 
ESTABLISHED state and responds with an ACK, but this ACK is lost. The server resends 
its SYN/ACK. Describe the processing steps when the client receives this duplicate 
SYN/ACK. 

28.10 A client and server have an established connection and the server performs the active 
close. The connection terminates normally and the socket pair goes into the TIME_WAIT 
state on the server. Before this 2MSL wait expires on the server, the same client (i.e., the 
same socket pair on the client) sends a SYN to the server’s socket pair but with a sequence 
number that is less than the ending sequence number from the previous incarnation of this 
connection. Describe what happens. 
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Chapter 29. TCP Input (Continued) 

29.1. Introduction 

This chapter continues the discussion of TCP input processing, picking up where the previous chapter 
left off. Recall that the final test in Figure 28.37 was that either the ACK flag was set or, if not, the 
segment was dropped. 

The ACK flag is handled, the window information is updated, the URG flag is processed, and any data 
in the segment is processed. Finally the FIN flag is processed and tcp_output is called, if 
required. 

29.2. ACK Processing Overview 

We begin this chapter with ACK processing, a summary of which is shown in Figure 29.1. The 
SYN_RCVD state is handled specially, followed by common processing for all remaining states. 
(Remember that a received ACK in either the LISTEN or SYN_SENT state was discussed in the 
previous chapter.) This is followed by special processing for the three states in which a received ACK 
causes a state transition, and for the TIME_WAIT state, in which the receipt of an ACK causes the 
2MSL timer to be restarted. 
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Figure 29.1. Summary of ACK processing.

29.3. Completion of Passive Opens and Simultaneous Opens 

The first part of the ACK processing, shown in Figure 29.2, handles the SYN_RCVD state. As 
mentioned in the previous chapter, this handles the completion of a passive open (the common case) 
and also handles simultaneous opens and self-connects (the infrequent case). 
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Figure 29.2. tcp_input function: received ACK in SYN_RCVD state.

Verify received ACK

801-806

For the ACK to acknowledge the SYN that was sent, it must be greater than snd_una (which is set 
to the ISS for the connection, the sequence number of the SYN, by tcp_sendseqinit) and less 
than or equal to snd_max. If so, the socket is marked as connected and the state becomes 
ESTABLISHED.

Since soisconnected wakes up the process that performed the passive open (normally a 
server), we see that this doesn't occur until the last of the three segments in the three-way handshake 
has been received. If the server is blocked in a call to accept, that call now returns; if the server is 
blocked in a call to select waiting for the listening descriptor to become readable, it is now 
readable. 

Check for window scale option

807-812

If TCP sent a window scale option and received one, the send and receive scale factors are saved in 
the TCP control block. Otherwise the default values of snd_scale and rcv_scale in the TCP 
control block are 0 (no scaling). 
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Pass queued data to process

813

Any data queued for the connection can now be passed to the process. This is done by tcp_reass
with a null pointer as the second argument. This data would have arrived with the SYN that moved the 
connection into the SYN_RCVD state. 

814

snd_wl1 is set to the received sequence number minus 1. We'll see in Figure 29.15 that this causes 
the three window update variables to be updated. 

29.4. Fast Retransmit and Fast Recovery Algorithms 

The next part of ACK processing, shown in Figure 29.3, handles duplicate ACKs and determines if 
TCP's fast retransmit and fast recovery algorithms [Jacobson 1990c] should come into play. The two 
algorithms are separate but are normally implemented together [Floyd 1994].
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Figure 29.3. tcp_input function: check for completely duplicate ACK.

The fast retransmit algorithm occurs when TCP deduces from a small number (normally 3) of 
consecutive duplicate ACKs that a segment has been lost and deduces the starting sequence 
number of the missing segment. The missing segment is retransmitted. The algorithm is 
mentioned in Section 4.2.2.21 of RFC 1122, which states that TCP may generate an 
immediate ACK when an out-of-order segment is received. We saw that Net/3 generates the 
immediate duplicate ACKs in Figure 27.15. This algorithm first appeared in the 4.3BSD 
Tahoe release and the subsequent Net/1 release. In these two implementations, after the 
missing segment was retransmitted, the slow start phase was entered. 
The fast recovery algorithm says that after the fast retransmit algorithm (that is, after the 
missing segment has been retransmitted), congestion avoidance but not slow start is 
performed. This is an improvement that allows higher throughput under moderate congestion, 
especially for large windows. This algorithm appeared in the 4.3BSD Reno release and the 
subsequent Net/2 release. 

Net/3 implements both fast retransmit and fast recovery, as we describe shortly. 

In the discussion of Figure 24.17 we noted that an acceptable ACK must be in the range 
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snd_una < acknowledgment field <= snd_max

This first test of the acknowledgment field compares it only to snd_una. The comparison against 
snd_max is in Figure 29.5. The reason for separating the tests is so that the following five tests can 
be applied to the received segment: 

1. If the acknowledgment field is less than or equal to snd_una, and 
2. the length of the received segment is 0, and 
3. the advertised window (tiwin) has not changed, and 
4. TCP has outstanding data that has not been acknowledged (the retransmission timer is 

nonzero), and 
5. the received segment contains the biggest ACK TCP has seen (the acknowledgment field 

equals snd_una),

then this segment is a completely duplicate ACK. (Tests 1, 2, and 3 are in Figure 29.3; tests 4 and 5 
are at the beginning of Figure 29.4.)

Figure 29.4. tcp_input function: duplicate ACK processing.

TCP counts the number of these duplicate ACKs that are received in a row (in the variable 
t_dupacks), and when the number reaches a threshold of 3 (tcprexmtthresh), the lost 
segment is retransmitted. This is the fast retransmit algorithm described in Section 21.7 of Volume 1. 
It works in conjunction with the code we saw in Figure 27.15: when TCP receives an out-of-order 
segment, it is required to generate an immediate duplicate ACK, telling the other end that a segment 
might have been lost and telling it the value of the next expected sequence number. The goal of the 
fast retransmit algorithm is for TCP to retransmit immediately what appears to be the missing 
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1001

segment, instead of waiting for the retransmission timer to expire. Figure 21.7 of Volume 1 gives a 
detailed example of how this algorithm works. 

The receipt of a duplicate ACK also tells TCP that a packet has "left the network," because the other 
end had to receive an out-of-order segment to send the duplicate ACK. The fast recovery algorithm 
says that after some number of consecutive duplicate ACKs have been received, TCP should perform 
congestion avoidance (i.e., slow down) but need not wait for the pipe to empty between the two 
connection end points (slow start). The expression "a packet has left the network" means a packet has 
been received by the other end and has been added to the out-of-order queue for the connection. The 
packet is not still in transit somewhere between the two end points. 

If only the first three tests shown earlier are true, the ACK is still a duplicate and is counted by the 
statistic tcps_rcvdupack, but the counter of the number of consecutive duplicate ACKs for 
this connection (t_dupacks) is reset to 0. If only the first test is true, the counter t_dupacks
is reset to 0. 

The remainder of the fast recovery algorithm is shown in Figure 29.4. When all five tests are true, the 
fast recovery algorithm processes the segment depending on the number of these consecutive 
duplicate ACKs that have been received. 

1. t_dupacks equals 3 (tcprexmtthresh). Congestion avoidance is performed and 
the missing segment is retransmitted. 

2. t_dupacks exceeds 3. Increase the congestion window and perform normal TCP output. 
3. t_dupacks is less than 3. Do nothing. 

Number of consecutive duplicate ACKs reaches threshold of 3

861-868

When t_dupacks reaches 3 (tcprexmtthresh), the value of snd_nxt is saved in onxt
and the slow start threshold (ssthresh) is set to one-half the current congestion window, with a 
minimum value of two segments. This is what was done with the slow start threshold when the 
retransmission timer expired in Figure 25.27, but we'll see later in this piece of code that the fast 
recovery algorithm does not set the congestion window to one segment, as was done with the timeout. 

Turn off retransmission timer

869-870

The retransmission timer is turned off and, in case a segment is currently being timed, t_rtt is set 
to 0. 

Retransmit missing segment

871-873

snd_nxt is set to the starting sequence number of the segment that appears to have been lost (the 
acknowledgment field of the duplicate ACK) and the congestion window is set to one segment. This 
causes tcp_output to send only the missing segment. (This is shown by segment 63 in Figure 
21.7 of Volume 1.) 
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1002

Set congestion window

874-875

The congestion window is set to the slow start threshold plus the number of segments that the other 
end has cached. By cached we mean the number of out-of-order segments that the other end has 
received and generated duplicate ACKs for. These cannot be passed to the process at the other end 
until the missing segment (which was just sent) is received. Figures 21.10 and 21.11 in Volume 1 
show what happens with the congestion window and slow start threshold when the fast recovery 
algorithm is in effect. 

Set snd_nxt

876-878

The value of the next sequence number to send is set to the maximum of its previous value (onxt)
and its current value. Its current value was modified by tcp_output when the segment was 
retransmitted. Normally this causes snd_nxt to be set back to its previous value, which means that 
only the missing segment is retransmitted, and that future calls to tcp_output carry on with the 
next segment in sequence. 

Number of consecutive duplicate ACKs exceeds threshold of 3

879-883

The missing segment was retransmitted when t_dupacks equaled 3, so the receipt of each 
additional duplicate ACK means that another packet has left the network. The congestion window is 
incremented by one segment. tcp_output sends the next segment in sequence, and the duplicate 
ACK is dropped. (This is shown by segments 67, 69, and 71 in Figure 21.7 of Volume 1.) 

884-885

This statement is executed when the received segment contains a duplicate ACK, but either the length 
is nonzero or the advertised window changed. Only the first of the five tests described earlier is true. 
The counter of consecutive duplicate ACKs is set to 0. 

Skip remainder of ACK processing

886

This break is executed in three cases: 

(1) only the first of the five tests described earlier is true, or 

(2) only the first three of the five tests is true, or 

(3) the ACK is a duplicate, but the number of consecutive duplicates is less than the threshold of 3. 

For any of these cases the ACK is still a duplicate and the break goes to the end of the switch
that started in Figure 29.2, which continues processing at the label step6.
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To understand the purpose in this aggressive window manipulation, consider the following example. 
Assume the window is eight segments, and segments 1 through 8 are sent. Segment 1 is lost, but the 
remainder arrive OK and are acknowledged. After the ACKs for segments 2, 3, and 4 arrive, the 
missing segment (1) is retransmitted. TCP would like the subsequent ACKs for 5 through 8 to allow 
some of the segments starting with 9 to be sent, to keep the pipe full. But the window is 8, which 
prevents segments 9 and above from being sent. Therefore, the congestion window is temporarily 
inflated by one segment each time another duplicate ACK is received, since the receipt of the 
duplicate ACK tells TCP that another segment has left the pipe at the other end. When the 
acknowledgment of segment 1 is finally received, the next figure reduces the congestion window back 
to the slow start threshold. This increase in the congestion window as the duplicate ACKs arrive, and 
its subsequent decrease when the fresh ACK arrives, can be seen visually in Figure 21.10 of Volume 
1.

29.5. ACK Processing 

The ACK processing continues with Figure 29.5.

Figure 29.5. tcp_input function: ACK processing continued.

Adjust congestion window

888-895

If the number of consecutive duplicate ACKs exceeds the threshold of 3, this is the first nonduplicate 
ACK after a string of four or more duplicate ACKs. The fast recovery algorithm is complete. Since the 
congestion window was incremented by one segment for every consecutive duplicate after the third, if 
it now exceeds the slow start threshold, it is set back to the slow start threshold. The counter of 
consecutive duplicate ACKs is set to 0. 

Check for out-of-range ACK

896-899

Recall the definition of an acceptable ACK, 

snd_una < acknowledgment field <= snd_max
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If the acknowledgment field is greater than snd_max, the other end is acknowledging data that 
TCP hasn't even sent yet! This probably occurs on a high-speed connection when the sequence 
numbers wrap and a missing ACK reappears later. As we can see in Figure 24.5, this rarely happens 
(since today's networks aren't fast enough). 

Calculate number of bytes acknowledged

900-902

At this point TCP knows that it has an acceptable ACK. acked is the number of bytes 
acknowledged. 

The next part of ACK processing, shown in Figure 29.6, deals with RTT measurements and the 
retransmission timer. 

Figure 29.6. tcp_input function: RTT measurements and retransmission 

timer.

Update RTT estimators

903-915

If either (1) a timestamp option was present, or (2) a segment was being timed and the 
acknowledgment number is greater than the starting sequence number of the segment being timed, 
tcp_xmit_timer updates the RTT estimators. Notice that the second argument to this function 
when timestamps are used is the current time (tcp_now) minus the timestamp echo reply 
(ts_ecr) plus 1 (since the function subtracts 1). 

1004

Delayed ACKs are the reason for the greater-than test of the sequence numbers. For example, if TCP 
sends and times a segment with bytes 1–1024, followed by a segment with bytes 1025–2048, if an 
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1005

ACK of 2049 is returned, this test will consider whether 2049 is greater than 1 (the starting sequence 
number of the segment being timed), and since this is true, the RTT estimators are updated. 

Check if all outstanding data has been acknowledged

916-924

If the acknowledgment field of the received segment (ti_ack) equals the maximum sequence 
number that TCP has sent (snd_max), all outstanding data has been acknowledged. The 
retransmission timer is turned off and the needoutput flag is set to 1. This flag forces a call to 
tcp_output at the end of this function. Since there is no more data waiting to be acknowledged, 
TCP may have more data to send that it has not been able to send earlier because the data was beyond 
the right edge of the window. Now that a new ACK has been received, the window will probably 
move to the right (snd_una is updated in Figure 29.8), which could allow more data to be sent. 

Unacknowledged data outstanding

925-926

Since there is additional data that has been sent but not acknowledged, if the persist timer is not on, 
the retransmission timer is restarted using the current value of t_rxtcur.

Karn's Algorithm and Timestamps

Notice that timestamps overrule the portion of Karn's algorithm (Section 21.3 of Volume 1) that says: 
when a timeout and retransmission occurs, the RTT estimators cannot be updated when the 
acknowledgment for the retransmitted data is received (the retransmission ambiguity problem). In 
Figure 25.26 we saw that t_rtt was set to 0 when a retransmission took place, because of Karn's 
algorithm. If timestamps are not present and it is a retransmission, the code in Figure 29.6 does not 
update the RTT estimators because t_rtt will be 0 from the retransmission. But if a timestamp is 
present, t_rtt isn't examined, allowing the RTT estimators to be updated using the received 
timestamp echo reply. With RFC 1323 timestamps the ambiguity is gone since the ts_ecr value 
was copied by the other end from the segment being acknowledged. The other half of Karn's 
algorithm, specifying that an exponential backoff must be used with retransmissions, still holds, of 
course. 

Figure 29.7 shows the next part of ACK processing, updating the congestion window. 
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Figure 29.7. tcp_input function: open congestion window in response to 

ACKs.

Update congestion window

927-942

One of the rules of slow start and congestion avoidance is that a received ACK increases the 
congestion window. By default the congestion window is increased by one segment for each received 
ACK (slow start). But if the current congestion window is greater than the slow start threshold, it is 
increased by 1 divided by the congestion window, plus a constant fraction of a segment. The term 

   incr * incr / cw 

is

   t_maxseg * t_maxseg / snd_cwnd 

which is 1 divided by the congestion window, taking into account that snd_cwnd is maintained in 
bytes, not segments. The constant fraction is the segment size divided by 8. The congestion window is 
then limited by the maximum value of the send window for this connection. Example calculations of 
this algorithm are in Section 21.8 of Volume 1. 

Adding in the constant fraction (the segment size divided by 8) is wrong [Floyd 
1994]. But it has been in the BSD sources since 4.3BSD Reno and is still in 4.4BSD 
and Net/3. It should be removed. 

The next part of tcp_input, shown in Figure 29.8, removes the acknowledged data from the 
send buffer. 
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Figure 29.8. tcp_input function: remove acknowledged data from send buffer.

Remove acknowledged bytes from the send buffer

943-946

If the number of bytes acknowledged exceeds the number of bytes on the send buffer, snd_wnd is 
decremented by the number of bytes in the send buffer and TCP knows that its FIN has been ACKed. 
That number of bytes is then removed from the send buffer by sbdrop. This method for detecting 
the ACK of a FIN works only because the FIN occupies 1 byte in the sequence number space. 

947-951

Otherwise the number of bytes acknowledged is less than or equal to the number of bytes in the send 
buffer, so ourfinisacked is set to 0, and acked bytes of data are dropped from the send 
buffer.

Wakeup processes waiting on send buffer

951-956

sowwakeup awakens any processes waiting on the send buffer. snd_una is updated to contain 
the oldest unacknowledged sequence number. If this new value of snd_una exceeds snd_nxt,
the latter is updated, since the intervening bytes have been acknowledged. 

Figure 29.9 shows how snd_nxt can end up with a sequence number that is less than snd_una.
Assume two segments are transmitted, the first with bytes 1–512 and the second with bytes 513–1024. 

Figure 29.9. Two segments sent on a connection.
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The retransmission timer then expires before an acknowledgment is returned. The code in Figure 
25.26 sets snd_nxt back to snd_una, slow start is entered, tcp_output is called, and one 
segment containing bytes 1–512 is retransmitted. tcp_output increases snd_nxt to 513, and 
we have the scenario shown in Figure 29.10.

Figure 29.10. Continuation of Figure 29.9 after retransmission timer expires.

At this point an ACK of 1025 arrives (either the two original segments or the ACK was delayed 
somewhere in the network). The ACK is valid since it is less than or equal to snd_max, but 
snd_nxt will be less than the updated value of snd_una.

The general ACK processing is now complete, and the switch shown in Figure 29.11 handles four 
special cases. 

Figure 29.11. tcp_input function: receipt of ACK in FIN_WAIT_1 state.
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Receipt of ACK in FIN_WAIT_1 state

958-971

In this state the process has closed the connection and TCP has sent the FIN. But other ACKs can be 
received for data segments sent before the FIN. Therefore the connection moves into the 
FIN_WAIT_2 state only when the FIN has been acknowledged. The flag ourfinisacked is set 
in Figure 29.8; this depends on whether the number of bytes ACKed exceeds the amount of data in the 
send buffer or not. 

Set FIN_WAIT_2 timer

972-975

We also described in Section 25.6 how Net/3 sets a FIN_WAIT_2 timer to prevent an infinite wait in 
the FIN_WAIT_2 state. This timer is set only if the process completely closed the connection (i.e., the 
close system call or its kernel equivalent if the process was terminated by a signal), and not if the 
process performed a half-close (i.e., the FIN was sent but the process can still receive data on the 
connection). 

Figure 29.12 shows the receipt of an ACK in the CLOSING state. 

Figure 29.12. tcp_input function: receipt of ACK in CLOSING state.

Receipt of ACK in CLOSING state

979-992

If the ACK is for the FIN (and not for some previous data segment), the connection moves into the 
TIME_WAIT state. Any pending timers are cleared (such as a pending retransmission timer), and the 
TIME_WAIT timer is started with a value of twice the MSL. 

The processing of an ACK in the LAST_ACK state is shown in Figure 29.13.
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Figure 29.13. tcp_input function: receipt of ACK in LAST_ACK state.

Receipt of ACK in LAST_ACK state

993-1004

If the FIN is ACKed, the new state is CLOSED. This state transition is handled by tcp_close,
which also releases the Internet PCB and TCP control block. 

Figure 29.14 shows the processing of an ACK in the TIME_WAIT state. 

Figure 29.14. tcp_input function: receipt of ACK in TIME_WAIT state.

Receipt of ACK in TIME WAIT state

1005-1014

In this state both ends have sent a FIN and both FINs have been acknowledged. If TCP's ACK of the 
remote FIN was lost, however, the other end will retransmit the FIN (with an ACK). TCP drops the 
segment and resends the ACK. Additionally, the TIME_WAIT timer must be restarted with a value of 
twice the MSL. 

29.6. Update Window Information 

1010

There are two variables in the TCP control block that we haven't described yet: snd_wl1 and 
snd_wl2.
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snd_wl1 records the sequence number of the last segment used to update the send window 
(snd_wnd).
snd_wl2 records the acknowledgment number of the last segment used to update the send 
window. 

Our only encounter with these variables so far was when a connection was established (active, 
passive, or simultaneous open) and snd_wl1 was set to ti_seq minus 1. We said this was to 
guarantee a window update, which we'll see in the following code. 

The send window (snd_wnd) is updated from the advertised window in the received segment 
(tiwin) if any one of the following three conditions is true: 

1. The segment contains new data. Since snd_wl1 contains the starting sequence number of 
the last segment that was used to update the send window, if 

2.            snd_wl1 < ti_seq 

this condition is true. 

3. The segment does not contain new data (snd_wl1 equals ti_seq), but the segment 
acknowledges new data. The latter condition is true if 

4.            snd_wl2 < ti_ack 

since snd_wl2 records the acknowledgment number of the last segment that updated the 
send window. 

5. The segment does not contain new data, and the segment does not acknowledge new data, but 
the advertised window is larger than the current send window. 

The purpose of these tests is to prevent an old segment from affecting the send window, since the send 
window is not an absolute sequence number, but is an offset from snd_una.

Figure 29.15 shows the code that implements the update of the send window. 

Figure 29.15. tcp_input function: update window information.
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Check if send window should be updated

1015-1023

This if test verifies that the ACK flag is set along with any one of the three previously stated 
conditions. Recall that a jump was made to step6 after the receipt of a SYN in either the LISTEN 
or SYN_SENT state, and in the LISTEN state the SYN does not contain an ACK. 

The term TAC referred to in the comment is a "terminal access controller." These 
were Telnet clients on the ARPANET. 

1024-1027

If the received segment is a pure window update (the length is 0 and the ACK does not acknowledge 
new data, but the advertised window is larger), the statistic tcps_rcvwinupd is incremented. 

Update variables

1028-1033

The send window is updated and new values of snd_wl1 and snd_wl2 are recorded. 
Additionally, if this advertised window is the largest one TCP has received from this peer, the new 
value is recorded in max_sndwnd. This is an attempt to guess the size of the other end's receive 
buffer, and it is used in Figure 26.8. needoutput is set to 1 since the new value of snd_wnd
might enable a segment to be sent. 

29.7. Urgent Mode Processing 

The next part of TCP input processing handles segments with the URG flag set. 

Figure 29.16. tcp_input function: urgent mode processing.
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Check if URG flag should be processed

1035-1039

These segments must have the URG flag set, a nonzero urgent offset (ti_urp), and the connection 
must not have received a FIN. The macro TCPS_HAVERCVDFIN is true only for the 
TIME_WAIT state, so the URG is processed in any other state. This is contrary to a comment 
appearing later in the code stating that the URG flag is ignored in the CLOSE_WAIT, CLOSING, 
LAST_ACK, or TIME_WAIT states. 

Ignore bogus urgent offsets

1040-1050

If the urgent offset plus the number of bytes already in the receive buffer exceeds the maximum size 
of a socket buffer, the urgent notification is ignored. The urgent offset is set to 0, the URG flag is 
cleared, and the rest of the urgent mode processing is skipped. 

The next piece of code, shown in Figure 29.17, processes the urgent pointer. 
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Figure 29.17. tcp_input function: processing of received urgent pointer.

1051-1065

If the starting sequence number of the received segment plus the urgent offset exceeds the current 
receive urgent pointer, a new urgent pointer has been received. For example, when the 3-byte segment 
that was sent in Figure 26.30 arrives at the receiver, we have the scenario shown in Figure 29.18.
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Figure 29.18. Receiver side when segment from Figure 26.30 arrives.

Normally the receive urgent pointer (rcv_up) equals rcv_nxt. In this example, since the if
test is true (4 plus 3 is greater than 4), the new value of rcv_up is calculated as 7. 

Calculate receive urgent pointer

1066-1070

The out-of-band mark in the socket's receive buffer is calculated, taking into account any data bytes 
already in the receive buffer (so_rcv.sb_cc). In our example, assuming there is no data already 
in the receive buffer, so_oobmark is set to 2: that is, the byte with the sequence number 6 is 
considered the out-of-band byte. If this out-of-band mark is 0, the socket is currently at the out-of-
band mark. This happens if the send system call that sends the out-of-band byte specifies a length of 
1, and if the receive buffer is empty when this segment arrives at the other end. This reiterates that 
Berkeley-derived systems consider the urgent pointer to point to the first byte of data after the out-of-
band byte. 

Notify process of TCP's urgent mode

1071-1072

sohasoutofband notifies the process that out-of-band data has arrived for the socket. The two 
flags TCPOOB_HAVEDATA and TCPOOB_HADDATA are cleared. These two flags are used with 
the PRU_RCVOOB request in Figure 30.8.

Pull out-of-band byte out of normal data stream

1074-1085

If the urgent offset is less than or equal to the number of bytes in the received segment, the out-of-
band byte is contained in the segment. With TCP's urgent mode it is possible for the urgent offset to 
point to a data byte that has not yet been received. If the SO_OOBINLINE constant is defined 
(which it always is for Net/3), and if the corresponding socket option is not enabled, the receiving 
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1016

process wants the out-of-band byte pulled out of the normal stream of data and placed into the variable 
t_iobc. This is done by tcp_pulloutofband, which we cover in the next section. 

Notice that the receiving process is notified that the sender has entered urgent mode, regardless of 
whether the byte pointed to by the urgent pointer is readable or not. This is a feature of TCP's urgent 
mode. 

Adjust receive urgent pointer if not urgent mode

1086-1093

When the receiver is not processing an urgent pointer, if rcv_nxt is greater than the receive urgent 
pointer, rcv_up is moved to the right and set equal to rcv_nxt. This keeps the receive urgent 
pointer at the left edge of the receive window so that the comparison using SEQ_GT at the beginning 
of Figure 29.17 will work correctly when an URG flag is received. 

If the solution to Exercise 26.6 is implemented, corresponding changes will have to 
go into Figures 29.16 and 29.17 also. 

29.8. tcp_pulloutofband Function 

This function is called from Figure 29.17 when 

1. urgent mode notification arrives in a received segment, and 
2. the out-of-band byte is contained within the segment (i.e., the urgent pointer points into the 

received segment), and 
3. the SO_OOBINLINE socket option is not enabled for this socket. 

This function removes the out-of-band byte from the normal stream of data (i.e., the mbuf chain 
containing the received segment) and places it into the t_iobc variable in the TCP control block 
for the connection. The process reads this variable using the MSG_OOB flag with the recv system 
call: the PRU_RCVOOB request in Figure 30.8. Figure 29.19 shows the function. 
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Figure 29.19. tcp_pulloutofband function: place out-of-band byte into 
t_iobc.

1282-1289

Consider the example in Figure 29.20. The urgent offset is 3, therefore the urgent pointer is 7, and the 
sequence number of the out-of-band byte is 6. There are 5 bytes in the received segment, all contained 
in a single mbuf. 

Figure 29.20. Received segment with an out-of-band byte.

The variable cnt is 2 and since m_len (which is 5) is greater than 2, the true portion of the if
statement is executed. 
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1290-1298

cp points to the shaded byte with a sequence number of 6. This is placed into the variable 
t_iobc, which contains the out-of-band byte. The TCPOOB_HAVEDATA flag is set and 
bcopy moves the next 2 bytes (with sequence numbers 7 and 8) left 1 byte, giving the arrangement 
shown in Figure 29.21.

Figure 29.21. Result from Figure 29.20 after removal of out-of-band byte.

Remember that the numbers 7 and 8 specify the sequence numbers of the data bytes, not the contents 
of the data bytes. The length of the mbuf is decremented from 5 to 4 but ti_len is left as 5, for 
sequencing of the segment into the socket's receive buffer. Both the TCP_REASS macro and the 
tcp_reass function (which are called in the next section) increment rcv_nxt by ti_len,
which in this example must be 5, because the next expected receive sequence number is 9. Also notice 
in this function that the length field in the packet header (m_pkthdr.len) in the first mbuf is not 
decremented by 1. This is because that length field is not used by sbappend, which appends the 
data to the socket's receive buffer. 

Skip to next mbuf in chain

1299-1302

The out-of-band byte is not contained in this mbuf, so cnt is decremented by the number of bytes in 
the mbuf and the next mbuf in the chain is processed. Since this function is called only when the 
urgent offset points into the received segment, if there is not another mbuf on the chain, the break
causes the call to panic.

29.9. Processing of Received Data 

tcp_input continues by taking the received data (if any) and either appending it to the socket's 
receive buffer (if it is the next expected segment) or placing it onto the socket's out-of-order queue. 
Figure 29.22 shows the code that performs this task. 
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Figure 29.22. tcp_input function: merge received data into sequencing queue 

for socket.

1094-1105

Segment data is processed if 

1. the length of the received data is greater than 0 or the FIN flag is set, and 
2. a FIN has not yet been received for the connection. 

The macro TCP_REASS processes the data. If the data is in sequence (i.e., the next expected data 
for this connection), the delayed-ACK flag is set, rcv_nxt is incremented, and the data is 
appended to the socket's receive buffer. If the data is out of order, the macro calls tcp_reass to 
add the data to the connection's reassembly queue (which might fill a hole and cause already-queued 
data to be appended to the socket's receive buffer). 

Recall that the final argument to the macro (tiflags) can be modified. Specifically, if the data is 
out of order, tcp_reass sets tiflags to 0, clearing the FIN flag (if it was set). That's why the 
if statement is true if the FIN flag is set even if there is no data in the segment. 

Consider the following example. A connection is established and the sender immediately transmits 
three segments: one with bytes 1–1024, another with bytes 1025–2048, and another with the FIN flag 
but no data. The first segment is lost, so when the second arrives (bytes 1025–2048) the receiver 
places it onto the out-of-order list and generates an immediate ACK. When the third segment with the 
FIN flag is received, the code in Figure 29.22 is executed. Even though the data length is 0, since the 
FIN flag is set, TCP_REASS is invoked, which calls tcp_reass. Since ti_seq (2049, the 
sequence number of the FIN) does not equal rcv_nxt (1), tcp_reass returns 0 (Figure 27.23),
which in the TCP_REASS macro sets tiflags to 0. This clears the FIN flag, preventing the code 
that follows (Section 29.10) from processing the FIN flag. 
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Guess size of other end's send buffer

1106-1111

The calculation of len is attempt to guess the size of the other end's send buffer. Consider the 
following example. A socket has a receive buffer size of 8192 (the Net/3 default), so TCP advertises a 
window of 8192 in its SYN. The first segment with bytes 1–1024 is then received. Figure 29.23 shows 
the state of the receive space after TCP_REASS has incremented rcv_nxt to account for the 
received segment. 

Figure 29.23. Receipt of bytes 1–1024 into a 8192-byte receive window.

The calculation of len yields 1024. The value of len will increase as the other end sends more data 
into the receive window, but it will never exceed the size of the other end's send buffer. Recall that the 
variable max_sndwnd, calculated in Figure 29.15, is an attempt to guess the size of the other 
end's receive buffer. 

This variable len is never used! It is left over code from Net/1 when the variable 
max_rcvd was stored in the TCP control block after the calculation of len:

    if (len > tp->max_rcvd) 
         tp->max_rcvd = len; 

But even in Net/1 the variable max_rcvd was never used. 

1112-1115

If the length is 0 and the FIN flag is not set, or if a FIN has already been received for the connection, 
the received mbuf chain is discarded and the FIN flag is cleared. 

29.10. FIN Processing 

The next step in tcp_input, shown in Figure 29.24, handles the FIN flag. 
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Figure 29.24. tcp_input function: FIN processing, first half.

Process first FIN received on connection

1116-1125

If the FIN flag is set and this is the first FIN received for this connection, socantrcvmore marks 
the socket as write-only, TF_ACKNOW is set to acknowledge the FIN immediately (i.e., it is not 
delayed), and rcv_nxt steps over the FIN in the sequence space. 

1126

The remainder of FIN processing is handled by a switch that depends on the connection state. 
Notice that the FIN is not processed in the CLOSED, LISTEN, or SYN_SENT states, since in these 
three states a SYN has not been received to synchronize the received sequence number, making it 
impossible to validate the sequence number of the FIN. A FIN is also ignored in the CLOSING, 
CLOSE_WAIT, and LAST_ACK states, because in these three states the FIN is a duplicate. 

SYN_RCVD or ESTABLISHED states

1127-1134

From either the ESTABLISHED or SYN_RCVD states, the CLOSE_WAIT state is entered. 

The receipt of a FIN in the SYN_RCVD state is unusual, but legal. It is not shown in 
Figure 24.15. It means a socket is in the LISTEN state when a segment containing a 
SYN and a FIN is received. Alternatively, a SYN is received for a listening socket, 
moving the connection to the SYN_RCVD state but before the ACK is received a 
FIN is received. (We know the segment does not contain a valid ACK, because if it 
did the code in Figure 29.2 would have moved the connection to the ESTABLISHED 
state.)

The next part of FIN processing is shown in Figure 29.25
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Figure 29.25. tcp_input function: FIN processing, second half.

FIN_WAIT_1 state

1135-1141

Since ACK processing is already complete for this segment, if the connection is in the FIN_WAIT_1 
state when the FIN is processed, it means a simultaneous close is taking place—the two FINs from 
each end have passed in the network. The connection enters the CLOSING state. 

FIN_WAIT_2 state

1142-1148

The receipt of the FIN moves the connection into the TIME_WAIT state. When a segment containing 
a FIN and an ACK is received in the FIN_WAIT_1 state (the typical scenario), although Figure 24.15
shows the transition directly from the FIN_WAIT_1 state to the TIME_WAIT state, the ACK is 
processed in Figure 29.11, moving the connection to the FIN_WAIT_2 state. The FIN processing here 
moves the connection into the TIME_WAIT state. Because the ACK is processed before the FIN, the 
FIN_WAIT_2 state is always passed through, albeit momentarily. 

Start TIME_WAIT timer

1149-1152

Any pending TCP timer is turned off and the TIME_WAIT timer is started with a value of twice the 
MSL. (If the received segment contained a FIN and an ACK, Figure 29.11 started the FIN_WAIT_2 
timer.) The socket is disconnected. 
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TIME_WAIT state

1153-1159

If a FIN arrives in the TIME_WAIT state, it is a duplicate, and similar to Figure 29.14, the 
TIME_WAIT timer is restarted with a value of twice the MSL. 

29.11. Final Processing 

The final part of the slow path through tcp_input along with the label dropafterack is 
shown in Figure 29.26.

Figure 29.26. tcp_input function: final processing.

SO_DEBUG socket option

1161-1162

If the SO_DEBUG socket option is enabled, tcp_trace appends the trace record to the kernel's 
circular buffer. Remember that the code in Figure 28.7 saved both the original connection state and 
the IP and TCP headers, since these values may have changed in this function. 

Call tcp_output

1163-1168

If either the needoutput flag was set (Figures 29.6 and 29.15) or if an immediate ACK is 
required, tcp_output is called. 
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dropafterack

1169-1179

An ACK is generated only if the RST flag was not set. (A segment with an RST is never ACKed.) The 
mbuf chain containing the received segment is released, and tcp_output generates an immediate 
ACK.

Figure 29.27 completes the tcp_input function. 

Figure 29.27. tcp_input function: final processing.

dropwithreset

1180-1188

An RST is generated unless the received segment also contained an RST, or the received segment was 
sent as a broadcast or multicast. An RST is never generated in response to an RST, since this could 
lead to RST storms (a continual exchange of RST segments between two end points). 

This code contains the same error that we noted in Figure 28.16: it does not check 
whether the destination address of the received segment was a broadcast address. 
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Similarly, the destination address argument to IN_MULTICAST needs to be 
converted to host byte order. 

Sequence number and acknowledgment number of RST segment

1189-1196

The values of the sequence number field, the acknowledgment field, and the ACK flag of the RST 
segment depend on whether the received segment contained an ACK. 

Figure 29.28 summarizes these fields in the RST segment that is generated. 

Figure 29.28. Values of fields in RST segment generated.

Realize that the ACK flag is normally set in all segments except when an initial SYN is sent (Figure 
24.16). The fourth argument to tcp_respond is the acknowledgment field, and the fifth 
argument is the sequence number. 

Rejecting connections

1192-1193

If the SYN flag is set, ti_len must be incremented by 1, causing the acknowledgment field of the 
RST to be 1 greater than the received sequence number of the SYN. This code is executed when a 
SYN arrives for a nonexistent server. When the Internet PCB is not found in Figure 28.6, a jump is 
made to dropwithreset. But for the received RST to be acceptable to the other end, the 
acknowledgment field must ACK the SYN (Figure 28.18). Figure 18.14 of Volume 1 contains an 
example of this type of RST segment. 

Finally note that tcp_respond builds the RST in the first mbuf of the received chain and releases 
any remaining mbufs in the chain. When that mbuf finally makes its way to the device driver, it will 
be discarded. 

Destroy temporarily created socket

1197-1199

If a temporary socket was created in Figure 28.7 for a listening server, but the code in Figure 28.16
found the received segment to contain an error, dropsocket will be 1. If so, that socket is now 
destroyed. 
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Drop (without ACK or RST)

1201-1206

tcp_trace is called when a segment is dropped without generating an ACK or an RST. If the 
SO_DEBUG flag is set and an ACK is generated, tcp_output generates a trace record. If the 
SO_DEBUG flag is set and an RST is generated, a trace record is not generated for the RST. 

1207-1211

The mbuf chain containing the received segment is released and the temporary socket is destroyed if 
dropsocket is nonzero. 

29.12. Implementation Refinements 

The refinements to speed up TCP processing are similar to the ones described for UDP (Section 
23.12). Multiple passes over the data should be avoided and the checksum computation should be 
combined with a copy. [Dalton et al. 1993] describe these modifications. 

The linear search of the TCP PCBs is also a bottleneck when the number of connections increases. 
[McKenney and Dove 1992] address this problem by replacing the linear search with hash tables. 

[Partridge 1993] describes a research implementation being developed by Van Jacobson that greatly 
reduces the TCP input processing. The received packet is processed by IP (about 25 instructions on a 
RISC system), then by a demultiplexer to locate the PCB (about 10 instructions), and then by TCP 
(about 30 instructions). These 30 instructions perform header prediction and calculate the pseudo-
header checksum. If the segment passes the header prediction test, contains data, and the process is 
waiting for the data, the data is copied into the process buffer and the remainder of the TCP checksum 
is calculated and verified (a one-pass copy and checksum). If the TCP header prediction fails, the slow 
path through the TCP input processing occurs. 

29.13. Header Compression 

We now describe TCP header compression. Although header compression is not part of TCP input, 
we needed to cover TCP thoroughly before describing header compression. Header compression is 
described in detail in RFC 1144 [Jacobson 1990a]. It was designed by Van Jacobson and is sometimes 
called VJ header compression. Our purpose in this section is not to go through the header compression 
source code (a well-commented version of which is presented in RFC 1144, and which is 
approximately the same size as tcp_output), but to provide an overview of the algorithm. Be 
sure to distinguish between header prediction (Section 28.4) and header compression. 

Introduction

Most implementations of SLIP and PPP support header compression. Although header compression 
could, in theory, be used with any data link, it is intended for slow-speed serial links. Header 
compression works with TCP segments only—it does nothing with other IP datagrams (e.g., ICMP, 
IGMP, UDP, etc.). Header compression reduces the size of the combined IP/TCP header from its 
normal 40 bytes to as few as 3 bytes. This reduces the size of a typical TCP segment from an 
interactive application such as Rlogin or Telnet from 41 bytes to 4 bytes—a big saving on a slow-
speed serial link. 
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Each end of the serial link maintains two connection state tables, one for datagrams sent and one for 
datagrams received. Each table allows a maximum of 256 entries, but typically there are 16 entries in 
this table, allowing up to 16 different TCP connections to be compressed at any time. Each entry 
contains an 8-bit connection ID (hence the limit of 256), some flags, and the complete uncompressed 
IP/TCP header from the most recent datagram. The 96-bit socket pair that uniquely identifies each 
connection—the source and destination IP addresses and source and destination TCP ports—are 
contained in this uncompressed header. Figure 29.29 shows an example of these tables. 

Figure 29.29. A pair of connection state tables at each end of a link (e.g., SLIP 

link).

Since a TCP connection is full duplex, header compression can be applied in both directions. Each end 
must implement both compression and decompression. A connection appears in both tables, as shown 
in Figure 29.29. In this example, the entry with a connection ID of 1 in the top two tables has a source 
IP address of 128.1.2.3, source TCP port of 1500, destination IP address of 192.3.4.5, and a 
destination TCP port of 25. The entry with a connection ID of 2 in the bottom two tables is for the 
other direction of the same connection. 

We show these tables as arrays, but the source code defines each entry as a structure, and a connection 
table is a circular linked list of these structures. The most recently used structure is stored at the head 
of the list. 

By saving the most recent uncompressed header at each end, only the differences in various header 
fields from the previous datagram to the current datagram are transmitted across the link (along with a 
special first byte indicating which fields follow). Since some header fields don't change at all from one 
datagram to the next, and other header fields change by small amounts, this differential coding 
provides the savings. Header compression works with the IP and TCP headers only—the data contents 
of the TCP segment are not modified. 

Figure 29.30 shows the steps involved at the sending side when it has an IP datagram to send across a 
link using header compression. 
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Figure 29.30. Steps involved in header compression at sender side.

Three different types of datagrams are sent and must be recognized at the receiver: 

1. Type IP is specified with the high-order 4 bits of the first byte equal to 4. This is the normal 
IP version number in the IP header (Figure 8.8). The normal, uncompressed datagram is 
transmitted across the link. 

2. Type COMPRESSED_TCP is specified by setting the high-order bit of the first byte. This 
looks like an IP version between 8 and 15 (i.e., the remaining 7 bits of this byte are used by 
the compression algorithm). The compressed header and uncompressed data are transmitted 
across the link, as we describe later in this section. 

3. Type UNCOMPRESSED_TCP is specified with the high-order 4 bits of the first byte equal 
to 7. The normal, uncompressed datagram is transmitted across the link, but the IP protocol 
field (which equals 6 for TCP), is replaced with the connection ID. This identifies the 
connection state table entry for the receiver. 

The receiver can identify the datagram type by examining its first byte. The code that does this was 
shown in Figure 5.13. In Figure 5.16 the sender calls sl_compress_tcp to check if a TCP 
segment is compressible, and the return value of this function is logically ORed into the first byte of 
the datagram. 

Figure 29.31 shows an illustration of the first byte that is sent across the link. 

Figure 29.31. First byte transmitted across link.
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The 4 bits shown as "-" comprise the normal IP header length field. The 7 bits shown as C, I, P, 
S, A, W, and U indicate which optional fields follow. We describe these fields shortly. 

Figure 29.32 shows the complete IP datagram for the various datagrams that are sent. 

Figure 29.32. Different types of IP datagrams possible with header compression.

We show two datagrams with a type of IP: one that is not a TCP segment (e.g., a protocol of UDP, 
ICMP, or IGMP), and one that is a TCP segment. This is to illustrate the differences between the TCP 
segment sent as type IP and the TCP segment sent as type UNCOMPRESSED_TCP: the first 4 
bits are different as is the protocol field in the IP header. 

Datagrams are not candidates for header compression if the protocol is not TCP, or if the protocol is 
TCP but any one of the following conditions is true. 

The datagram is an IP fragment: either the fragment offset is nonzero or the more-fragments 
bit is set. 
Any one of the SYN, FIN, or RST flags is set. 
The ACK flag is not set. 

If any one of these three conditions is true, the datagram is sent as type IP.

Furthermore, even if the datagram is a TCP segment that looks compressible, it is possible to abort the 
compression and send the datagram as type UNCOMPRESSED_TCP if certain fields have changed 
between the current datagram and the last datagram sent for this connection. These are fields that 
normally do not change for a given connection, so the compression scheme was not designed to 
encode their differences from one datagram to the next. The TOS field and the don't fragment bit are 
examples. Also, when the differences in some fields are greater than 65535, the compression 
algorithm fails and the datagram is sent uncompressed. 

Compression of Header Fields

We now describe how the fields in the IP and TCP headers, shown in Figure 29.33, are compressed. 
The shaded fields normally don't change during a connection. 
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Figure 29.33. Combined IP and TCP headers: shaded fields normally don't 

change.

If any of the shaded fields have changed from the previous segment on this connection to the current 
segment, the segment is sent uncompressed. We don't show IP options or TCP options in this figure, 
but if either are present and have changed from the previous segment, the segment is sent 
uncompressed (Exercise 29.7).

If the algorithm transmitted only the nonshaded fields when the shaded fields do not change from the 
previous segment, about a 50% savings would result. VJ header compression does even better than 
this, by knowing which fields in the IP and TCP headers normally don't change. Figure 29.34 shows 
the format of the compressed IP/TCP header. 
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Figure 29.34. Format of compressed IP/TCP header.

The smallest compressed header consists of 3 bytes: the first byte (the flag bits) followed by the 16-bit 
TCP checksum. For protection against possible link errors, the TCP checksum is always transmitted 
without any change. (SLIP provides no link-layer checksum, although PPP does provide one.) 

The other six fields, connid, urgoff, win, ack, seq, and ipid, are optional. We show the number 
of bytes used to encode all the fields to the left of the field in Figure 29.34. The largest compressed 
header appears to be 19 bytes, but we'll see shortly that the 4 bits SAWU can never be set at the same 
time in a compressed header, so the largest size is actually 16 bytes. 

Six of the 7 bits in the first byte specify which of the six optional fields are present. The high-order bit 
of the first byte is always set to 1. This identifies the datagram type as COMPRESSED_TCP.
Figure 29.35 summarizes the 7 bits, which we now describe. 

Figure 29.35. The 7 bits in the compressed header.
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C If this bit is 0, this segment has the same connection ID as the previous compressed or 
uncompressed segment. If this flag is 1, connid is the connection ID, a value between 0 and 255. 

I If this bit is 0, the IP identification field has increased by 1 (the typical case). If this bit is 1, ipid
is the current value of ip_id minus its previous value. 

P This bit is a copy of the PSH flag from the TCP segment. Since the PSH flag doesn't follow any 
established pattern, it must be explicitly specified for each segment. 

S If this bit is 0, the TCP sequence number has not changed. If this bit is 1, seq is the current value 
of th_seq minus its previous value. 

A If this bit is 0, the TCP acknowledgment number has not changed (the typical case). If this bit is 1, 
ack is the current value of th_ack minus its previous value. 

W If this bit is 0, the TCP window has not changed (the typical case). If this bit is 1, win is the 
current value of th_win minus its previous value. 

U If this bit is 0, the URG flag in the segment is not set and the urgent offset has not changed from 
its previous value (the typical case). If this bit is 1, urgoff is the current value of th_urg and the 
URG flag is set. If the urgent offset changes without the URG flag being set, the segment is sent 
uncompressed. (This often occurs in the first segment following urgent data.) 

The differences are encoded as the current value minus the previous value, because most of these 
differences will be small positive numbers (with win being an exception) given the way these fields 
normally change. 

We note that five of the optional fields in Figure 29.34 are encoded in 0, 1, or 3 bytes. 

0
bytes:

If the corresponding flag is not set, nothing is encoded for the field. 

1
byte:

If the value to send is between 1 and 255, a single byte encodes the value. 

3
bytes:

If the value to send is either 0 or between 256 and 65535, 3 bytes encode the value: the first 
byte is 0, followed by the 2-byte value. This always works for the three 16-bit values, urgoff,

win, and ipid; but if the difference to encode for the two 32-bit values, ack and seq, is 
less than 0 or greater than 65535, the segment is sent uncompressed. 

If we compare the nonshaded fields in Figure 29.33 with the possible fields in Figure 29.34 we notice 
that some fields are never transmitted. 

The IP total length field is not transmitted since most link layers provide the length of a 
received message to the receiver. 
Since the only field in the IP header that is being transmitted is the identification field, the IP 
checksum is also omitted. This is a hop-by-hop checksum that protects only the IP header 
across any given link. 

Special Cases

Two common cases are detected and transmitted as special combinations of the 4 low-order bits: 
SAWU. Since urgent data is rare, if the URG flag in the segment is set and both the sequence number 
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and window also change (implying that the 4 low-order bits would be 1011 or 1111), the segment is 
sent uncompressed. Therefore if the 4 low-order bits are sent as 1011 (called *SA) or 1111 (called *S),
the following two special cases apply: 

*SA The sequence number and acknowledgment number both increase by the amount of data in the 
last segment, the window and urgent offset don't change, and the URG flag is not set. This 
special case avoids encoding both seq and ack.

This case occurs frequently for both directions of echoed terminal traffic. Figures 19.3 and 19.4 
of Volume 1 give examples of this type of data flow across an Rlogin connection. 

*S The sequence number changes by the amount of data in the last segment, the acknowledgment 
number, window, and urgent offset don't change, and the URG flag is not set. This special case 
avoids encoding seq.

This case occurs frequently for the sending side of a unidirectional data transfer (e.g., FTP). 
Figures 20.1, 20.2, and 20.3 of Volume 1 give examples of this type of data transfer. This case 
also occurs for the sender of nonechoed terminal traffic (e.g., commands that are not echoed by a 
full-screen editor). 

Examples

Two simple examples were run across the SLIP link between the systems bsdi and slip in Figure
1.17. This SLIP link uses header compression in both directions. The tcpdump program described 
in Appendix A of Volume 1 was also run on the host bsdi to save a copy of all the frames. This 
program has an option that outputs the compressed header, showing all the fields in Figure 29.34.

Two traces were obtained: a short portion of an Rlogin connection and a file transfer from bsdi to 
slip using FTP. Figure 29.36 shows a summary of the different frame types for both connections. 

Figure 29.36. Counts of different frame types for Rlogin and FTP connections.

The two entries of 75 verify our claim that this special case often occurs for both directions of echoed 
terminal traffic. The entry of 325 verifies our claim that this special case occurs frequently for the 
sending side of a unidirectional data transfer. 
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The 10 frames of type IP for the FTP example correspond to four segments with the SYN flag set 
and six segments with the FIN flag set. FTP uses two connections: one for the interactive commands 
and one for the file transfer. 

The UNCOMPRESSED_TCP frame types normally correspond to the first segment following 
connection establishment, the one that establishes the connection ID. An additional few are seen in 
these examples when the type of service is set (the Net/3 Rlogin and FTP clients and servers all set the 
TOS field after the connection is established). 

Figure 29.37 shows the distribution of the compressed-header sizes. The average size of the 
compressed header for the final four columns in Figure 29.37 is 3.1, 4.1, 6.0, and 3.3 bytes, a 
significant savings compared to the uncompressed 40-byte headers, especially for the interactive 
connection. 

Figure 29.37. Distribution of compressed-header sizes.

Almost all of the 325 6-byte headers in the FTP input column contain only a ack of 256, which being 
greater than 255 is encoded in 3 bytes. The SLIP MTU is 296, so TCP uses an MSS of 256. Almost all 
of the 250 3-byte headers in the FTP output column contain the *S special case (sequence number 
change only) with a change of 256 bytes. But since this change refers to the amount of data in the 
previous segment, nothing is transmitted other than the flag byte and the TCP checksum. The 78 4-
byte headers in the FTP output column are this same special case, but with a change in the IP 
identification field also (Exercise 29.8).

Configuration

Header compression must be enabled on a given SLIP or PPP link. With a SLIP link there are 
normally two flags that can be set when the interface is configured: enable header compression and 
autoenable header compression. These two flags are set using the link0 and link2 flags to the 
ifconfig command, respectively. Normally a client (the dialin host) decides whether to use 
header compression or not. The server (the host or terminal server to which the client dials in) 
specifies the autoenable flag only. If header compression is enabled by the client, its TCP will send a 
datagram of type UNCOMPRESSED_TCP to specify the connection ID. When the server sees this 
packet it enables header compression (since it was in the autoenable mode). If the server never sees 
this type of packet, it never enables header compression for this line. 

PPP allows the negotiation of options between the two ends of the link when the link is established. 
One of the options that can be negotiated is whether to use header compression or not. 
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29.14. Summary 

This chapter completes our detailed look at TCP input processing. We started with the processing of 
an ACK in the SYN_RCVD state, which completes a passive open, a simultaneous open, or a self-
connect. 

The fast retransmit algorithm lets TCP detect a dropped segment after receiving a specified number of 
consecutive duplicate ACKs and retransmit the segment before the retransmission timer expires. Net/3 
combines the fast retransmit algorithm with the fast recovery algorithm, which tries to keep the data 
flowing from the sender to the receiver, albeit at a slower rate, using congestion avoidance but not 
slow start. 

ACK processing then discards the acknowledged data from the socket's send buffer and handles a few 
TCP states specially, when the receipt of an ACK changes the connection state. 

The URG flag is processed, if set, and TCP's urgent mode is mapped into the socket abstraction of 
out-of-band data. This is complicated because the process can receive the out-of-band byte inline or in 
a special out-of-band buffer, and TCP can receive urgent notification before the data byte referenced 
by the urgent pointer has been received. 

TCP input processing completes by calling TCP_REASS to merge the received data into either the 
socket's receive buffer or the socket's out-of-order queue, processing the FIN flag, and calling 
tcp_output if a segment must be generated in response to the received segment. 

TCP header compression is a technique used on SLIP and PPP links to reduce the size of the IP and 
TCP headers from the normal 40 bytes to around 3-6 bytes (typically). This is done by recognizing 
that most fields in these headers don't change from one segment to the next on a given connection, and 
the fields that do change often change by a small amount. This allows a flag byte to be sent indicating 
which fields have changed, and the changes are encoded as differences from the previous segment. 

Exercises

29.1 A client connects to a server and no segments are lost. Which process, the client or server, 
completes its open of the connection first? 

29.2 A Net/3 system receives a SYN for a listening socket and the SYN segment also contains 
50 bytes of data. What happens? 

29.3 Continue the previous exercise assuming that the client does not retransmit the 50 bytes of 
data; instead the client responds with a segment that acknowledges the server's SYN/ACK 
and contains a FIN. What happens? 

29.4 A Net/3 client performs a passive open to a listening server. The server's response to the 
client's SYN is a segment with the expected SYN/ACK, but the segment also contains 50 
bytes of data and the FIN flag. List the processing steps for the client's TCP. 

29.5 Figure 18.19 in Volume 1 and Figure 14 in RFC 793 both show four segments exchanged 
during a simultaneous close. But if we trace a simultaneous close between two Net/3 
systems, or if we watch the close sequence following a self-connect on a Net/3 system, we 
see six segments, not four. The extra two segments are a retransmission of the FIN by each 
end when the other's FIN is received. Where is the bug and what is the fix? 
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29.6 Page 72 of RFC 793 says that when data in the send buffer is acknowledged by the other 
end "Users should receive positive acknowledgments for buffers which have been sent and 
fully acknowledged (i.e., send buffer should be returned with 'ok' response)." Does Net/3 
provide this notification? 

29.7 What effect do the options defined in RFC 1323 have on TCP header compression? 

29.8 What effect does the Net/3 assignment of the IP identification field have on TCP header 
compression? 
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Chapter 30. TCP User Requests 

30.1. Introduction 

This chapter looks at the TCP user-request function tcp_usrreq, which is called as the 
protocol’s pr_usrreq function to handle many of the system calls that reference a TCP socket. 
We also look at tcp_ctloutput, which is called when the process calls setsockopt for a 
TCP socket. 

30.2. tcp_usrreq Function 

TCP’s user-request function is called for a variety of operations. Figure 30.1 shows the beginning and 
end of tcp_usrreq. The body of the switch is shown in following figures. The function 
arguments, some of which differ depending on the request, are described in Figure 15.17. 
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Figure 30.1. Body of tcp_usrreq function.

 

 
 

in_control processes ioctl requests

45-58

The PRU_CONTROL request is from the ioctl system call. The function in_control 
processes the request completely. 
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Control information is invalid

59-64

A call to sendmsg specifying control information is invalid for a TCP socket. If this happens, the 
mbufs are released and EINVAL is returned. 

65-66

This remainder of the function executes at splnet. This is overly conservative locking to avoid 
sprinkling the individual case statements with calls to splnet when the calls are really 
necessary. As we mentioned with Figure 23.15, setting the processor priority to splnet only stops 
a software interrupt from causing the IP input routine to be executed (which could call 
tcp_input). It does not prevent the interface layer from accepting incoming packets and placing 
them onto IP’s input queue. 

The pointer to the Internet PCB is obtained from the socket structure pointer. The only time the 
resulting PCB pointer is allowed to be a null pointer is when the PRU_ATTACH request is issued, 
which occurs in response to the socket system call. 

67-81

If inp is nonnull, the current connection state is saved in ostate for the call to tcp_trace at 
the end of the function. 

We now discuss the individual case statements. The PRU_ATTACH request, shown in Figure 
30.2, is issued by the socket system call and by sonewconn when a connection request arrives 
for a listening socket (Figure 28.7). 
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Figure 30.2. tcp_usrreq function: PRU_ATTACH and PRU_DETACH requests.

 

 
 

PRU_ATTACH request

83-94

If the socket structure already points to a PCB, EISCONN is returned. tcp_attach completes 
the processing: it allocates and initializes the Internet PCB and the TCP control block. 

95-96

If the SO_LINGER socket option is set, and the linger time is 0, it is set to 120 
(TCP_LINGERTIME). 

How can a socket option be set before the PRU_ATTACH request is issued? It is 
impossible to set a socket option before calling socket, but sonewconn also 
issues the PRU_ATTACH request. The PRU_ATTACH request is issued after 
sonewconn copies the so_options from the listening socket to the newly 
created socket. This code prevents a newly accepted connection from inheriting a 
linger time of 0 from the listening socket. 

There is a bug here. The constant TCP_LINGERTIME is initialized to 120 in the 
header tcp_timer.h with the comment "linger at most 2 minutes." But the 
so_linger value becomes the final argument to the kernel’s tsleep function 
(called from soclose), which becomes the final argument to the kernel’s 
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timeout function and is in clock ticks, not seconds. If the system’s clock-tick 
frequency (hz) is 100, this value for the linger time is 1.2 seconds, not 2 minutes. 

97

tp is now set to the pointer to the socket’s TCP control block. This is required at the end, in case the 
SO_DEBUG socket option is set. 

PRU_DETACH request

99-111

The close system call issues the PRU_DETACH request if the PRU_DISCONNECT request 
fails. If the connection has not been completed (the connection state is less than ESTABLISHED), 
nothing needs to be sent to the other end. But if the connection has been established, 
tcp_disconnect initiates TCP’s connection-close sequence (e.g., any pending data is sent, 
followed by a FIN). 

The test for the state being greater than LISTEN is incorrect, because if the state is 
SYN_SENT or SYN_RCVD, both of which are greater than LISTEN, 
tcp_disconnect just calls tcp_close. This case could be simplified 
by just calling tcp_disconnect.

Figure 30.3 shows the processing for the bind and listen system calls. 

Figure 30.3. tcp_usrreq function: PRU_BIND and PRU_LISTEN requests.

 

 

112-119

All the work for a PRU_BIND request is done by in_pcbbind.

120-128

For the PRU_LISTEN request, if the socket has not been bound with a local port, in_pcbbind 
assigns one automatically. This is rare, since most servers explicitly bind their well-known port, 
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although RPC (remote procedure call) servers typically bind an ephemeral port and then register the 
port with the Port Mapper. (Section 29.4 of Volume 1 describes the Port Mapper.) The connection 
state is set to LISTEN. This is the main purpose of listen: to set the socket’s state so that incoming 
connections are accepted (i.e., a passive open). 

Figure 30.4 shows the processing for the connect system call: an active open normally initiated by 
a client. 

Figure 30.4. tcp_usrreq function: PRU_CONNECT request.

 

 
 

Assign ephemeral port

129-141

If the socket has not been bound with a local port, in_pcbbind assigns one automatically. This is 
typical for clients, which normally don’t care about the value of the local port. 
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Connect PCB

142-144

in_pcbconnect acquires a route to the destination, determines the outgoing interface, and 
verifies that the socket pair is unique. 

Initialize IP and TCP headers

145-150

tcp_template allocates an mbuf for a copy of the IP and TCP headers, and it initializes both 
headers with as much information as possible. The only way for this function to fail is for the kernel to 
run out of mbufs. 

Calculate window scale factor

151-154

The window scale value for the receive buffer is calculated: 65535 (TCP_MAXWIN) is left shifted 
until the value is greater than or equal to the size of the receive buffer (so_rcv.sb_hiwat). The 
resulting shift count (between 0 and 14) is the scale factor that will be sent in the SYN. (We saw 
identical code in Figure 28.7 that was executed for a passive open.) Since the window scale option is 
sent in the SYN resulting from a connect, the process must set the SO_RCVBUF socket option 
before calling connect, or the default buffer size is used (tcp_recvspace from Figure 
24.3). 

Set socket and connection state

155-158

soisconnecting sets the appropriate bits in the socket’s state variable, and the state of the TCP 
connection is set to SYN_SENT. This causes the call to tcp_output that follows to send the 
SYN (see the tcp_outflags value in Figure 24.16). The connection-establishment timer is 
initialized to 75 seconds. tcp_output will also set the retransmission timer for the SYN, as 
shown in Figure 25.15. 

Initialize sequence numbers

159-161

The initial send sequence number is copied from the global tcp_iss. This global is then 
incremented by 64,000 (TCP_ISSINCR divided by 2). We saw this same handling of tcp_iss 
when the ISS was initialized after a listening server received a SYN (Figure 28.17). The send 
sequence numbers are then initialized by tcp_sendseqinit.



ptg11539634

Send initial SYN

162

tcp_output sends the initial SYN to initiate the connection. A local error (for example, out of 
mbufs or no route to destination) is returned by tcp_output, which becomes the return value 
from tcp_usrreq, which is returned to the process. 

Figure 30.5 shows the processing for the PRU_CONNECT2, PRU_DISCONNECT, and 
PRU_ACCEPT requests. 

Figure 30.5. tcp_usrreq function: PRU_CONNECT2, PRU_DISCONNECT, and 

PRU_ACCEPT requests.

 

 

164-169

The PRU_CONNECT2 request, a result of the socketpair system call, is invalid for the TCP 
protocol. 

170-183

The close system call issues the PRU_DISCONNECT request. If the connection has been 
established, a FIN must be sent and the normal TCP close sequence followed. This is done by 
tcp_disconnect.
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The comment beginning with "SHOULD IMPLEMENT" refers to the fact that a 
socket that encounters an error cannot be reused. For example, if a client issues a 
connect and receives an error, it cannot issue another connect on the same 
socket. Instead, the socket with the error must be closed, a new socket created with 
socket, and the connect issued on the new socket. 

184-191

All the work associated with the accept system call is done by the socket layer and the protocol 
layer. The PRU_ACCEPT request just returns the IP address and port number of the peer to the 
process. 

The PRU_SHUTDOWN, PRU_RCVD, and PRU_SEND requests are processed in Figure 30.6. 

Figure 30.6. tcp_usrreq function: PRU_SHUTDOWN, PRU_RCVD, and 

PRU_SEND requests.

 

 
 

PRU_SHUTDOWN request

192-200

This request is issued by soshutdown when the process calls shutdown to prevent any further 
output. socantsendmore sets the socket’s flags to prevent any future output. 
tcp_usrclosed sets the connection state according to Figure 24.15. tcp_output attempts 
to send the FIN, but if there is still pending data to send to the other end, that data is sent before the 
FIN is sent. 

 1045



ptg11539634

PRU_RCVD request

201-206

This request is issued by soreceive after the process has read data from the socket’s receive 
buffer. TCP needs to know about this since the receive buffer may now have enough room to allow 
the advertised window to increase. tcp_output will determine whether a window update 
segment should be sent. 

PRU_SEND request

207-214

In Figure 23.14 we showed how the five write functions ended up issuing this request. sbappend 
adds the data to the socket’s send buffer (where it must wait until acknowledged by the other end), and 
tcp_output sends a segment, if possible. 

Figure 30.7 shows the processing of the PRU_ABORT and PRU_SENSE requests. 

Figure 30.7. tcp_usrreq function: PRU_ABORT and PRU_SENSE requests.

 

 
 

PRU_ABORT request

215-220

A PRU_ABORT request is issued for a TCP socket by soclose if the socket is a listening socket 
(e.g., a server) and if there are pending connections for the server that have already initiated or 
completed the three-way handshake, but have not been accepted by the server yet. tcp_drop 
sends an RST if the connection is synchronized. 

PRU_SENSE request

221-224

The fstat system call generates the PRU_SENSE request. TCP returns the size of the send buffer 
as the st_blksize element of the stat structure. 
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Figure 30.8 shows the PRU_RCVOOB request, issued by soreceive when the process issues a 
read system call specifying the MSG_OOB flag to read out-of-band data. 

Figure 30.8. tcp_usrreq function: PRU_RCVOOB request.

 

 
 

Verify that reading out-of-band data is appropriate

225-232

It is an error for the process to try to read out-of-band data if any one of the following three conditions 
is true: 

1. if the socket’s out-of-band mark is 0 (so_oobmark) and the socket is not at the mark (the 
SS_RCVATMARK flag is not set), or 

2. if the SO_OOBINLINE socket option is set, or 
3. if the TCPOOB_HADDATA flag is set for the connection (i.e., the connection did have an 

out-of-band byte, but it has already been read). 

The error EINVAL is returned if any one of these is true. 

Check that out-of-band byte has arrived

233-236

If none of the three conditions above is true, but the TCPOOB_HAVEDATA flag is false, this 
indicates that TCP has received an urgent mode notification from the other end, but the byte whose 
sequence number is 1 less than the urgent pointer has not been received yet (Figure 29.17). The error 
EWOULDBLOCK is returned. It is possible for TCP to send an urgent notification with an urgent 
offset referencing a byte that the sender has not been able to send yet. Figure 26.7 of Volume 1 shows 
an example of this scenario, which often happens if the sender’s data transmission has been stopped by 
a zero-window advertisement. 
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Return out-of-band byte

237-238

The single byte of out-of-band data that was stored in t_iobc by tcp_pulloutofband is 
returned to the process. 

Flip flags

239-241

If the process is actually reading the out-of-band byte (as compared to peeking at it with the 
MSG_PEEK flag), this exclusive OR turns the HAVE flag off and the HAD flag on. We are 
guaranteed at this point in the case statement that the HAVE flag is set and the HAD flag is cleared. 
The purpose of the HAD flag is to prevent the process from trying to read the out-of-band byte more 
than once. Once the HAD flag is set, it is not cleared until a new urgent pointer is received from the 
other end (Figure 29.17). 

The reason for this hard-to-understand exclusive OR, instead of the simpler 

     tp->t_oobflags = TCPOOB_HADDATA; 
 

is to allow additional bits in t_oobflags to be used. Net/3, however, only uses the 2 bits that 
we’ve described. 

The PRU_SENDOOB request, shown in Figure 30.9, is issued by sosend when the process writes 
data and specifies the MSG_OOB flag. 

Figure 30.9. tcp_usrreq function: PRU_SENDOOB request.
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Check for room and append to send buffer

242-247

The process is allowed to exceed the size of the send buffer by up to 512 bytes when sending out-of-
band data. The socket layer is more permissive, allowing out-of-band data to exceed the size of the 
send buffer by 1024 bytes (Figure 16.24). sbappend adds the data to the end of the send buffer. 

Calculate urgent pointer

248-257

The urgent pointer (snd_up) points to the byte following the final byte from the write request. We 
showed this in Figure 26.30, assuming the process writes 3 bytes of data with the MSG_OOB flag set 
and that the send buffer was empty. Realize that if the process writes more than 1 byte of data with the 
MSG_OOB flag set, only the final byte is considered the out-of-band byte when the data is received 
by a Berkeley-derived system. 

Force TCP output

258-261

t_force is set to 1 and tcp_output is called. This causes a segment to be sent with the URG 
flag set and with a nonzero urgent offset, even if no data can be sent because of a zero-window 
advertisement. Figure 26.7 of Volume 1 shows the transmission of an urgent segment into a closed 
window. 

The final three requests are shown in Figure 30.10. 

Figure 30.10. tcp_usrreq function: PRU_SOCKADDR, PRU_PEERADDR, and 

PRU_SLCWTIMO requests.

 

 

262-267
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The getsockname and getpeername system calls issue the PRU_SOCKADDR and 
PRU_PEERADDR requests, respectively. The functions in_setsockaddr and 
in_setpeeraddr fetch the information from the PCB, storing the result in the addr argument. 

268-275

The PRU_SLOWTIMO request is issued by the tcp_slowtimo function. As the comment 
indicates, the only reason tcp_slowtimo doesn’t call tcp_timers directly is to allow the 
timer expiration to be traced by the call to tcp_trace at the end of the function (Figure 30.1). For 
the trace record to show which one of the four TCP timer counters expired, tcp_slowtimo 
passes the index into the t_timer array (Figure 25.1) as the nam argument, and this is left shifted 
8 bits and logically ORed into the request value (req). The trpt program knows about this hack 
and handles it accordingly. 

30.3. tcp_attach Function 

The tcp_attach function is called by tcp_usrreq to process the PRU_ATTACH request 
(i.e., when the socket system call is issued or when a new connection request arrives for a listening 
socket). Figure 30.11 shows the code. 

Figure 30.11. tcp_attach function: create a new TCP socket.
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Allocate space for send buffer and receive buffer

361-372

If space has not been allocated for the socket’s send and receive buffers, sbreserve sets them 
both to 8192, the default values of the global variables tcp_sendspace and 
tcp_recvspace (Figure 24.3). 

Whether these defaults are adequate depends on the MSS for each direction of the 
connection, which depends on the MTU. For example, [Comer and Lin 1994] show 
that anomalous behavior occurs if the send buffer is less than three times the MSS, 
which drastically reduces performance. Some implementations have much higher 
defaults, such as 61,444 bytes, realizing the effect these defaults have on 
performance, especially with higher MTUs (e.g., FDDI and ATM). 

Allocate Internet PCB and TCP control block

373-377

in_pcballoc allocates an Internet PCB and tcp_newtcpcb allocates a TCP control block 
and links it to the PCB. 

378-384

The code with the comment XXX is executed if the call to malloc in tcp_newtcpcb fails. 
Remember that the PRU_ATTACH request is issued as a result of the socket system call, and 
when a connection request arrives for a listening socket (sonewconn). In the latter case the socket 
flag SS_NOFDREF is set. If this flag is left on, the call to sofree by in_pcbdetach 
releases the socket structure. As we saw in tcp_input, this structure should not be released 
until that function is done with the received segment (the dropsocket flag in Figure 29.27). 
Therefore the current value of the SS_NOFDREF flag is saved in the variable nofd when 
in_pcbdetach is called, and reset before tcp_attach returns. 

385-386

The TCP connection state is initialized to CLOSED. 

30.4. tcp_disconnect Function 

tcp_disconnect, shown in Figure 30.12, initiates a TCP disconnect. 



ptg11539634

Figure 30.12. tcp_disconnect function: initiate TCP disconnect.

 

 
 

Connection not yet synchronized

396-402

If the socket is not yet in the ESTABLISHED state (i.e., LISTEN, SYN_SENT, or SYN_RCVD), 
tcp_close just releases the PCB and the TCP control block. Nothing needs to be sent to the other 
end since the connection has not been synchronized. 

Hard disconnect

403-404

If the connection is synchronized, the SO_LINGER socket option is set, and the linger time 
(so_linger) is set to 0, the connection is dropped by tcp_drop. This sets the connection 
state to CLOSED, sends an RST to the other end, and releases the PCB and TCP control block. The 
connection does not pass through the TIME_WAIT state. The call to close that caused the 
PRU_DISCONNECT request will discard any data still in the send or receive buffers. 

If the SO_LINGER socket option has been set with a nonzero linger time, it is handled by 
soclose.

Graceful disconnect

405-406

This code is executed when the connection has been synchronized but the SO_LINGER option 
either was not set or was set with a nonzero linger time. TCP’s normal connection termination steps 
must be followed. soisdisconnecting sets the socket’s state. 
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Discard pending receive data

407

Any pending data in the receive buffer is discarded by sbflush, since the process has closed the 
socket. The send buffer is left alone, however, and tcp_output will try to send what remains. We 
say "try" because there’s no guarantee that the data still to be sent will be transmitted successfully. The 
other end might crash before it receives and acknowledges the data, or even if the TCP module at the 
other end receives and acknowledges the data, the system might crash before the application at the 
other end reads the data. Since the local process has closed the socket, if TCP gives up trying to send 
what remains in the send buffer (because its retransmission timer finally expires), there is no way to 
notify the process of the error. 

Change connection state

408-410

tcp_usrclosed moves the connection into the next state, based on the current state. This 
normally moves the connection to the FIN_WAIT_1 state, since the connection is typically closed 
from the ESTABLISHED state. We’ll see that tcp_usrclosed always returns the current 
control block pointer (tp), since the state must be synchronized to get to this point in the code, so 
tcp_output is always called to send a segment. If the connection moves from the 
ESTABLISHED to the FIN_WAIT_1 state, this causes a FIN to be sent. 

30.5. tcp_usrclosed Function 

This function, shown in Figure 30.13, is called from tcp_disconnect and when the 
PRU_SHUTDOWN request is processed. 

Figure 30.13. tcp_usrclosed function: move connection to next state, based 

on process close.
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Simple close when SYN not received

429-434

If a SYN has not been received on the connection, a FIN need not be sent. The new state is CLOSED 
and tcp_close releases the Internet PCB and the TCP control block. 

Move to FIN_WAIT_1 state

435-438

In the SYN_RCVD and ESTABLISHED states, the new state is FIN_WAIT_1, which causes the next 
call to tcp_output to send a FIN (the tcp_outflags value in Figure 24.16). 

Move to LAST_ACK state

439-441

In the CLOSE_WAIT state, the close moves the connection into the LAST_ACK state. The next call 
to tcp_output will cause a FIN to be sent. 

443-444

If the connection state is either FIN_WAIT_2 or TIME_WAIT, soisdisconnected marks the 
socket state appropriately. 

30.6. tcp_ctloutput Function 

The tcp_ctloutput function is called by the getsockopt and setsockopt system 
calls when the descriptor argument refers to a TCP socket and when the level is not 
SOL_SOCKET. Figure 30.14 shows the two socket options supported by TCP. 

Figure 30.14. Socket options supported by TCP.

 

 

Figure 30.15 shows the first part of the function. 
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Figure 30.15. tcp_ctloutput function: first part.

 

 

296-303

The processor priority is set to splnet while the function executes, and inp points to the Internet 
PCB for the socket. If inp is null, the mbuf is released if the operation was to set a socket option, and 
an error is returned. 

304-308

If the level (the second argument to the getsockopt and setsockopt system calls) is not 
IPPROTO_TCP, the command is for some other protocol (i.e., IP). For example, it is possible to 
create a TCP socket and set the IP source routing socket option. In this example IP processes the 
socket option, not TCP. ip_ctloutput handles the command. 

309

The command is for TCP, so tp is set to the TCP control block. 

The remainder of the function is a switch with two cases: one for PRCO_SETOPT (shown in 
Figure 30.16) and one for PRCO_GETOPT (shown in Figure 30.17). 
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Figure 30.16. tcp_ctloutput function: set a socket option.

 

 

Figure 30.17. tcp_ctloutput function: get a socket option.

 

 

315-316

m is an mbuf containing the fourth argument to setsockopt. For both of the TCP options the 
mbuf must contain an integer value. If either the mbuf pointer is null, or the amount of data in the 
mbuf is less than the size of an integer, an error is returned. 
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TCP_NODELAY option

317-321

If the integer value is nonzero, the TF_NODELAY flag is set. This disables the Nagle algorithm in 
Figure 26.8. If the integer value is 0, the Nagle algorithm is enabled (the default) and the 
TF_NODELAY flag is cleared. 

TCP_MAXSEG option

322-327

A process can only decrease the MSS. When a TCP socket is created, tcp_newtcpcb initializes 
t_maxseg to its default of 512. When a SYN is received from the other end with an MSS option, 
tcp_input calls tcp_mss, and t_maxseg can be set as high as the outgoing interface 
MTU (minus 40 bytes for the default IP and TCP headers), which is 1460 for an Ethernet. Therefore, 
after a call to socket but before a connection is established, a process can only decrease the MSS 
from its default of 512. After a connection is established, the process can decrease the MSS from 
whatever value was selected by tcp_mss.

4.4BSD was the first Berkeley release to allow the MSS to be set with a socket 
option. Prior releases only allowed a getsockopt for the MSS. 

Release mbuf

332-333

The mbuf chain is released. 

Figure 30.17 shows the processing for the PRCO_GETOPT command. 

335-337

Both TCP socket options return an integer to the process, so m_get obtains an mbuf and its length is 
set to the size of an integer. 

339-341

TCP_NODELAY returns the current status of the TF_NODELAY flag: 0 if the flag is not set (the 
Nagle algorithm is enabled) or TF_NODELAY if the flag is set. 

342-344

The TCP_MAXSEG option returns the current value of t_maxseg. As we said in our discussion 
of the PRCO_SETOPT command, the value returned depends whether the socket has been 
connected yet. 
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30.7. Summary 

The tcp_usrreq function is straightforward because most of the required processing is done by 
other functions. The PRU_xxx requests form the glue between the protocol-independent system calls 
and the TCP protocol processing. 

The tcp_ctloutput function is also simple because only two socket options are supported by 
TCP: enable or disable the Nagle algorithm, and set or fetch the maximum segment size. 

Exercises

30.1 Now that we’ve covered all of TCP, list the processing steps and the TCP state transitions 
when a client goes through the normal steps of socket, connect, write (a 
request to the server), read (a reply from the server), and close. Do the same 
exercise for the server end. 

30.2 If a process sets the SO_LINGER socket option with a linger time of 0 and then calls 
close, we showed how tcp_disconnect is called, which causes an RST to be 
sent. What happens if a process sets this socket option with a linger time of 0 but is then 
killed by a signal instead of calling close? Is the RST segment still sent? 

30.3 The description for TCP_LINGERTIME in Figure 25.4 is the "maximum #seconds for 
SO_LINGER socket option." Given the code in Figure 30.2, is this description correct? 

30.4 A Net/3 client calls socket and connect to actively open a connection to a server. 
The server is reached through the client’s default router. A total of 1,129 segments are sent 
by the client host to the server. Assuming the route to the destination does not change, 
how many routing table lookups are done on the client host for this connection? Explain. 

30.5 Obtain the sock program described in Appendix C of Volume 1. Run it as a sink server 
with a pause before reading (-P) and a large receive buffer. Then run the same program 
on another system as a source client. Watch the data with tcpdump. Verify that TCP’s 
ACK-every-other-segment does not occur and that the only ACKs seen from the server are 
delayed ACKs. 

30.6 Modify the SO_KEEPALIVE socket option so that the parameters can be configured on 
a per-connection basis. 

30.7 Read RFC 1122 to determine why it recommends that an implementation should allow an 
RST to carry data. Modify the Net/3 code to implement this. 
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Chapter 31. BPF: BSD Packet Filter 

31.1. Introduction 

The BSD Packet Filter (BPF) is a software device that "taps" network interfaces. A process accesses a 
BPF device by opening /dev/bpf0, /dev/bpf1, and so on. Each BPF device can be 
opened only by one process at a time. 

Since each BPF device allocates 8192 bytes of buffer space, the system administrator 
typically limits the number of BPF devices. If open returns EBUSY, the device is 
in use, and a process tries the next device until the open succeeds. 

The device is configured with several ioctl commands that associate the device with a network 
interface and install filters to receive incoming packets selectively. Packets are received by reading 
from the device, and packets are queued on the network interface by writing to the device. 

We will use the term packet even though frame is more accurate, since BPF works at 
the data-link layer and includes the link-layer headers in the frames it sends and 
receives. 

BPF works only with network interfaces that been modified to support BPF. In Chapter 3 we saw that 
the Ethernet, SLIP, and loopback drivers call bpfattach. This call configures the interface for 
access through the BPF devices. In this section we show how the BPF device driver is organized and 
how packets move between the driver and the network interfaces. 

BPF is normally used as a diagnostic tool to examine the traffic on a locally attached network. The 
tcpdump program is the best example of such a tool and is described in Appendix A of Volume 1. 
Normally the user is interested in packets between a given set of machines, or for a particular protocol, 
or even for a particular TCP connection. A BPF device can be configured with a filter that discards or 
accepts incoming packets according to a filter specification. Filters are specified as instructions to a 
pseudomachine. The details of BPF filters are not discussed in this text. For more information about 
filters, see bpf(4) and [McCanne and Jacobson 1993]. 

31.2. Code Introduction 

The code for the portion of the BPF device driver that we describe resides in the two headers and one 
C file listed in Figure 31.1. 

Figure 31.1. Files discussed in this chapter.

 

 
 

Global Variables

The global variables introduced in this chapter are shown in Figure 31.2. 
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Figure 31.2. Global variables introduced in this chapter.

 

 
 

Statistics

Figure 31.3 shows the two statistics collected in the bpf_d structure for every active BPF device. 

Figure 31.3. Statistics collected in this chapter.

 

 

The remainder of this chapter is divided into four sections: 

BPF interface structures, 
BPF device descriptors, 
BPF input processing, and 
BPF output processing. 

31.3. bpf_if Structure 

BPF keeps a list of the network interfaces that support BPF. Each interface is described by a 
bpf_if structure, and the global pointer bpf_iflist points to the first structure in the list. 
Figure 31.4 shows a BPF interface structure. 

Figure 31.4. bpf_if structure.

 

 

67-69
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bif_next points to the next BPF interface structure in the list. bif_dlist points to a list of 
BPF devices that have been opened and configured to tap this interface. 

70

bif_driverp points to a bpf_if pointer stored in the ifnet structure of the tapped 
interface. When the interface is not tapped, *bif_driverp is null. When a BPF device is 
configured to tap an interface, *  is changed to point back to the bif_if structure and tells the 
interface to begin passing packets to BPF. 

71

The type of interface is saved in bif_dlt. The values for our example interfaces are shown in 
Figure 31.5. 

Figure 31.5. bif_dlt values.

 

 

72-74

Each packet accepted by BPF has a BPF header prepended to it. bif_hdrlen is the size of the 
header. Finally, bif_ifp points to the ifnet structure for the associated interface. 

Figure 31.6 shows the bpf_hdr structure that is prepended to every incoming packet. 

Figure 31.6. bpf_hdr structure.

 

 

122-128

bh_tstamp records the time the packet was captured. bh_caplen is the number of bytes saved 
by BPF, and bh_datalen is the number of bytes in the original packet. bh_headlen is the 
size of the bpf_hdr structure plus any padding. This value should match bif_hdrlen for the 
receiving interface and is used by processes to interpret the packets read from the BPF device. 
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Figure 31.7 shows how bpf_if structures are connected to the ifnet structures for each of our 
three sample interfaces (le_softc [0], sl_softc [0], and loif). 

Figure 31.7. bpf_if and ifnet structures.

 

 

Notice that bif_driverp points to the if_bpf and sc_bpf pointers in the network 
interfaces and not to the interface structures. 

The SLIP device uses sc_bpf, instead of the if_bpf member. One reason 
might be that the SLIP BPF code was written before the if_bpf member was 
added to the ifnet structure. The ifnet structure in Net/2 does not include a 
if_bpf member. 

The link-type and header-length members are initialized for all three interfaces according to the 
information passed by each driver in the call to bpfattach.

In Chapter 3 we saw that bpfattach was called by the Ethernet, SLIP, and loop-back drivers. The 
linked list of BPF interface structures is built as each device driver calls bpfattach during 
initialization. The function is shown in Figure 31.8. 
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Figure 31.8. bpfattach function.

 

 

1053-1063

bpfattach is called by each device driver that supports BPF. The first argument is the pointer 
saved in bif_driverp (described with Figure 31.4). The second argument points to the ifnet 
structure of the interface. The third argument identifies the data-link type, and the fourth argument 
identifies the size of link-layer header passed with the packet. A new bpf_if structure is allocated 
for the interface. 

Initialize bpf_if structure

1064-1070

The bpf_if structure is initialized from the arguments and inserted into the front of the BPF 
interface list, bpf_iflist.
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Compute BPF header size

1071-1077

bif_hdrlen is set to force the network-layer header (e.g., the IP header) to start on a longword 
boundary. This improves performance and avoids unnecessary alignment restrictions for the BPF 
filter. Figure 31.9 shows the overall organization of the captured BPF packet for each of our three 
sample interfaces. 

Figure 31.9. BPF packet organization.

 

 

The ether_header structure was described with Figure 4.10, the SLIP pseudo-link header was 
described with Figure 5.14, and the loopback pseudo-link header was described with Figure 5.28. 

Notice that the SLIP and loopback packets require 2 bytes of padding to force the IP header to appear 
on a 4-byte boundary. 

Initialize bpf_dtab table

1078-1083

This code initializes the BPF descriptor table, which is described with Figure 31.10. The initialization 
occurs the first time bpfattach is called and is skipped thereafter. 
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Figure 31.10. bpf_d structure.

 

 
 

Print console message

1084-1085

A short message is printed to the console to announce that the interface has been configured for use by 
BPF. 

31.4. bpf_d Structure 

To begin tapping an interface, a process opens a BPF device and issues ioctl commands to select 
the interface, the read buffer size, and timeouts, and to specify a BPF filter. Each BPF device has an 
associated bpf_d structure, shown in Figure 31.10. 

45-46

bpf_d structures are placed on a linked list when more than one BPF device is attached to the same 
network interface. bd_next points to the next structure in the list. 

Packet buffers

47-52

Each bpf_d structure has two packet buffers associated with it. Incoming packets are always stored 
in the buffer attached to bd_sbuf (the store buffer). The other buffer is either attached to 
bd_fbuf (the free buffer), which means it is empty, or to bd_hbuf (the hold buffer), which 
means it contains packets that are being read by a process. bd_slen and bd_hlen record the 
number of bytes saved in the store and hold buffer respectively. 
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When the store buffer becomes full, it is attached to bd_hbuf and the free buffer is attached to 
bd_sbuf. When the hold buffer is emptied, it is attached to bd_fbuf. The macro 
ROTATE_BUFFERS attaches the store buffer to bd_hbuf, attaches the free buffer to 
bd_sbuf, and clears bd_fbuf. It is called when the store buffer becomes full, or when the 
process doesn’t want to wait for more packets. 

bd_bufsize records the size of the two buffers associated with the device. It defaults to 4096 
(BPF_BUFSIZE) bytes. The default value can be changed by patching the kernel, or 
bd_bufsize can be changed for a particular BPF device with the BIOCSBLEN ioctl 
command. The BIOCGBLEN command returns the current value of bd_bufsize, which can 
never exceed 32768 (BPF_MAXBUFSIZE) bytes. There is also a minimum size of 32 
(BPF_MINBUFSIZE) bytes. 

53-57

bd_bif points to the bpf_if structure associated with the BPF device. The BIOCSETIF 
command specifies the device. bd_rtout is the number of clock ticks to delay while waiting for 
packets to appear. bd_filter points to the BPF filter code for this device. Two statistics, which 
are available to a process through the BIOCGSTATS command, are kept in bd_rcount and 
bd_dcount.

58-63

bd_promisc is set with the BIOCPROMISC command and causes the interface to operate in 
promiscuous mode. bd_state is unused. bd_immediate is set with the 
BIOCIMMEDIATE command and causes the driver to return each packet as it is received instead of 
waiting for the hold buffer to fill. bd_pad pads the bpf_d structure to a longword boundary, and 
bd_sel holds the selinfo structure for the select system call. We don’t describe the use of 
select with a BPF device, but select itself is described in Section 16.13. 

bpfopen Function

When open is called for a BPF device, the call is routed to bpfopen (Figure 31.11) for 
processing. 
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Figure 31.11. bpfopen function.

 

 

256-263

The number of BPF devices is limited at compile time to NBPFILTER. The minor device number 
specifies the device and ENXIO is returned if it is too large. This happens when the system 
administrator creates more /dev/bpfx entries than the value NBPFILTER.

Allocate bpf_d structure

264-275

Only one process is allowed access to a BPF device at a time. If the bpf_d structure is already 
active, EBUSY is returned. Programs such as tcpdump try the next device when this error is 
returned. If the device is available, the entry in the bpf_dtab table specified by the minor device 
number is cleared and the size of the packet buffers is set to the default value. 

bpfioctl Function

Once the device is opened, it is configured with ioctl commands. Figure 31.12 summarizes the 
ioctl commands used with BPF devices. Figure 31.13 shows the bpfioctl function. Only the 
code for BIOCSETF and BIOCSETIF is shown. We have omitted the ioctl commands that 
are not discussed in this text. 
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Figure 31.12. BPF ioctl commands.

 

 

Figure 31.13. bpfioctl function.

 

 

501-509

As with bpfopen, the minor device number selects the bpf_d structure from the bpf_dtab 
table. The command is processed by the cases within the switch. We show two commands, 
BIOCSETF and BIOCSETIF, as well as the default case. 

 1068
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The bpf_setf function installs the filter passed in addr, and bpf_setif attaches the 
named interface to the bpf_d structure. We don’t show the implementation of bpf_setf in this 
text. 

668-673

If the command is not recognized, EINVAL is returned. 

Figure 31.14 shows the bpf_d structure after bpf_setif has attached it to the LANCE interface 
in our example system. 

Figure 31.14. BPF device attached to the Ethernet interface.

 

 

In the figure, bif__dlist points to bpf_dtab[0], the first and only descriptor in the 
descriptor list for the Ethernet interface. In bpf_dtab[0], the bd_sbuf and bd_hbuf
members point to the store and hold buffers. Each buffer is 4096 (bd_bufsize) bytes long. 
bd_bif points back to the bpf_if structure for the interface. 

if_bpf in the ifnet structure (le_softc[0]) also points back to the bpf_if structure. 
As shown in Figures 4.19 and 4.11, when if_bpf is nonnull, the driver begins passing packets to 
the BPF device by calling bpf_tap.
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Figure 31.15 shows the same structures after a second BPF device is opened and attached to the same 
Ethernet network interface as in Figure 31.10. 

Figure 31.15. Two BPF devices attached to the Ethernet interface.

 

 

When the second BPF device is opened, a new bpf_d structure is allocated from the bpf_dtab 
table, in this case, bpf_dtab[1]. The second BPF device is also attached to the Ethernet 
interface, so bif_dlist points to bpf_dtab[l], and bpf_dtab[l].bd_next 
points to bpf_dtab[0], which is the first BPF descriptor attached to the Ethernet interface. 
Separate store and hold buffers are allocated and attached to the new descriptor structure. 

bpf_setif Function

The bpf_setif function, which associates the BPF descriptor with a network interface, is shown 
in Figure 31.16. 
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Figure 31.16. bpf_setif function.
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721-746

The first part of bpf_setif separates the text portion of the name in the ifreq structure (Figure 
4.23) from the numeric portion. The numeric portion is saved in unit. For example, if the first 4 
bytes of ifr_name start is "sl1\0", after this code executes they are "sl\0\0" and unit 
is 1. 

Locate matching ifnet structure

747-754

The for loop searches the interfaces that support BPF (the ones in bpf_iflist) for the one 
specified in the ifreq structure. 

755-768

If the matching interface is not up ENETDOWN is returned. If the interface is up, bpf_allocate 
attaches the free and store buffers to the bpf_d structure, if they have not already been allocated. 

Attach bpf_d structure

769-777

If no interface is attached to the BPF device, or if a different interface from the one specified in the 
ifreq structure is attached, bpf_detachd discards the previous interface (if any), and 
bpf_attachd attaches the new interface to the device. 

778-784

reset_d resets the packet buffers, discarding any pending packets in the process. The function 
returns 0 to indicate success or returns ENXIO if the interface was not located. 

bpf_attachd Function

The bpf_attachd function shown in Figure 31.17 associates a BPF descriptor structure with a 
BPF device and with a network interface. 
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Figure 31.17. bpf_attachd function.

 

 

189-203

First, bd_bif is set to point to the BPF interface structure for the network device. Next, the 
bpf_d structure is inserted into the front of the list of bpf_d structures associated with the device. 
Finally, the BPF pointer within the network interface is changed to point to the BPF structure, which 
causes the interface to begin passing packets to the BPF device. 

31.5. BPF Input 

Once the BPF device is opened and configured, a process uses the read system call to receive 
packets from the interface. The BPF tap collects copies of the incoming packets so BPF does not 
interfere with normal network processing. Incoming packets are collected in the store and hold buffers 
associated with each BPF device. 

bpf_tap Function

We described the call to bpf_tap by the LANCE device driver with Figure 4.11 and use this call to 
describe the bpf_tap. The call (from Figure 4.11) is: 

    bpf_tap(le->sc_if.if_bpf, buf, len + sizeof(struct 
ether_header));
 

The bpf_tap function is shown in Figure 31.18. 
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Figure 31.18. bpf_tap function.

 

 

869-882

The first argument is a pointer to the bpf_if structure, which is set by bpfattach. The 
second argument is a pointer to the incoming packet, including the Ethernet header. The third 
argument is the number of bytes contained in the buffer, in this case, the size of the Ethernet header 
(14 bytes) plus the size of the data portion of the Ethernet frame. 

Pass packet to one or more BPF devices

883-890

The for loop traverses the list of BPF devices attached to the interface. For each device, the packet 
is passed to bpf_filter. If the filter accepts the packet, it returns the number of bytes to capture 
and catchpacket saves a copy of the packet. If the filter rejects the packet, slen is 0 and the 
loop continues. When the loop completes, bpf_tap returns. This mechanism enables each BPF 
device to have a separate filter when multiple BPF devices are associated with the same network 
interface. 

The loopback driver calls bpf_mtap to pass packets to BPF. This function is similar to bpf_tap 
but copies the packet from an mbuf chain instead of from a contiguous area of memory. This function 
is not described in this text. 

catchpacket Function

In Figure 31.18 we saw that catchpacket is called when the filter accepts the packet. The 
function is shown in Figure 31.19. 
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Figure 31.19. catchpacket function.

 

 

 

946-955
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The arguments to catchpacket are: d, a pointer to the BPF device structure; pkt a generic 
pointer to the incoming packet; pktlen the length of the packet as it was received; snaplen the 
number of bytes to save from the packet; and cpfn a pointer to a function that will copy the packet 
from pkt to a contiguous area of memory. When the packet is already in a contiguous area of 
memory, cpfn is bcopy. When the packet is stored in an mbuf (i.e., pkt points to the first mbuf 
in a chain such as with the loopback driver), cpfn is bpf_mcopy.

956-964

In addition to the link-layer header and the packet, catchpacket appends a bpf_hdr to every 
packet. The number of bytes to save from the packet is the smaller of snaplen and pktlen. 
The resulting packet and bpf_hdr must fit within the packet buffers (bd_bufsize bytes). 

Will the packet fit?

965-985

curlen is the number of bytes already in the store buffer plus enough bytes to align the next packet 
on a longword boundary. If the incoming packet doesn’t fit in the remaining buffer space, the store 
buffer is full. If a free buffer is not available (i.e., a process is still reading data from the hold buffer), 
the incoming packet is discarded. If a free buffer is available, it is rotated into place by 
ROTATE_BUFFERS and any process waiting for incoming data is awakened by bpf_wakeup.

Immediate mode processing

986-991

If the device is operating in immediate mode, any waiting processes are awakened to process the 
incoming packet there is no buffering of packets in the kernel. 

Append BPF header

992-1004

The current time (microtime), the packet length, and the header length are saved in a 
bpf_hdr. The function pointed to by cpfn is called to copy the packet into the store buffer and 
the length of the store buffer is updated. Since bpf_tap is called directly from leread even 
before the packet is transferred from a device buffer to an mbuf chain, the receive timestamp is close 
to the actual reception time. 

bpfread Function

The kernel routes a read on a BPF device to bpfread. BPF supports a timed read through the 
BIOCSRTIMEOUT command. This "feature" is easily emulated by the more general select 
system call, but tcpdump, for example, uses BIOCSRTIMEOUT and not select. The process 
must provide a read buffer that matches the size of the hold buffer for the device. The BIOCGBLEN 
command returns the size of the buffer. Normally, a read returns when the store buffer becomes full. 
The kernel rotates the store buffer to the hold buffer, which is copied to the buffer provided with the 
read system call while the BPF device continues collecting incoming packets in the store buffer. 
bpfread is shown in Figure 31.20. 
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Figure 31.20. bpfread function.
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344-357

The minor device number selects the BPF device from the bpf_dtab table. If the read buffer 
doesn’t match the size of the BPF device buffers, EINVAL is returned. 

Wait for data

358-364

Since multiple processes may be reading from the same BPF device, the while loop forces the read 
to continue when some other process gets to the data first. If there is data in the hold buffer, the loop is 
skipped. This is different from two processes tapping the same network interface through two different 
BPF devices (Exercise 31.2). 

Immediate mode

365-373

If the device is in immediate mode and there is some data in the store buffer, the buffers are rotated 
and the while loop terminates. 

No packets available

374-384

If the device is not in the immediate mode, or there is no data in the store buffer, the process sleeps 
until a signal arrives, the read timer expires, or data arrives in the hold buffer. If a signal arrives, 
EINTR or ERESTART is returned. 
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Remember that a process never sees the ERESTART error because the error is 
handled by the syscall function and never returned to a process. 

Check hold buffer

385-391

If the timer expired and data is in the hold buffer, the loop terminates. 

Check store buffer

392-399

If the timer expired and there is no data in the store buffer, the read returns 0. The process must handle 
this case when using a timed read. If the timer expired and there is data in the store buffer, it is rotated 
to the hold buffer and the loop terminates. 

If tsleep returns without an error and data is present, the while loop test is false and the loop 
terminates. 

Packets are available

400-416

At this point, there is data in the hold buffer. uiomove moves bd_hlen bytes of data from the 
hold buffer to the process. After the move, the hold buffer is moved to the free buffer, and the buffer 
counts are cleared before the function returns. The comment before uiomove indicates that 
uiomove will always be able to copy bd_hlen bytes into the process because the read buffer 
was checked to ensure it can hold the maximum number of bytes, bd_bufsize.

31.6. BPF Output 

Finally, we describe how to add packets to the network interface output queues with BPF. An entire 
data-link frame must be constructed by the process. For Ethernet this includes the source and 
destination hardware addresses and the frame type (Figure 4.8). The kernel will not modify the frame 
before putting it on the interface’s output queue. 

bpfwrite Function

The frame is passed to the BPF device with the write system call, which the kernel routes to 
bpfwrite, shown in Figure 31.21. 
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Figure 31.21. bpfwrite function.

 

 
 

Check device number

437-449

The minor device number selects the BPF device, which must be attached to a network interface. If it 
isn’t, ENXIO is returned. 

Copy data into mbuf chain

450-457

If the write specified 0 bytes, 0 is returned immediately. bpf_movein copies the data from the 
process into an mbuf chain. Based on the interface type passed from bif_dlt, it computes the 
length of the packet excluding the link-layer header and returns the value in datlen. It also returns 
an initialized sockaddr structure in dst. For Ethernet, the type of this address structure will be 
af_unspec, indicating that the mbuf chain contains the data-link header for the outgoing frame. 
If the packet is larger than the MTU of the interface, EMSGSIZE is returned. 

 1080



ptg11539634

 1081

Queue packet

458-465

The resulting mbuf chain is passed to the network interface using the if_output function 
specified in the ifnet structure. For Ethernet, if_output is ether_output.

31.7. Summary 

In this chapter we showed how BPF devices are configured, how incoming frames are passed to BPF 
devices, and how outgoing frames can be transmitted on a BPF device. 

We showed that a single network interface can have multiple BPF taps, each with a separate filter. The 
store and hold buffers minimize the number of read system calls required to process incoming frames. 

We focused only on the major features of BPF in this chapter. For a more detailed description of the 
filtering code and the other features of the BPF device, the interested reader should examine the 
source code and the Net/3 manual pages. 

Exercises

31.1 Why is it OK to call bpf_wakeup in catchpacket before the packet is stored in 
the BPF buffers? 

31.2 With Figure 31.20, we noted that two processes may be waiting for data from the same 
BPF device. With Figure 31.11, we noted that only one process at a time can open a 
particular BPF device. How can both of these statements be true? 

31.3 What happens if the device named in the BIOCSETIF command does not support BPF? 
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Chapter 32. Raw IP 

32.1. Introduction 

A process accesses the raw IP layer by creating a socket of type SOCK_RAW in the Internet domain. 
There are three uses for raw sockets: 

1. Raw sockets allow a process to send and receive ICMP and IGMP messages. 

The Ping program uses this type of socket to send ICMP echo requests and to receive ICMP 
echo replies. 

Some routing daemons use this feature to track ICMP redirects that are processed by the 
kernel. We saw in Section 19.7 that Net/3 generates an RTM_REDIRECT message on a 
routing socket when a redirect is processed, obviating the need for this use of raw sockets. 

This feature is also used to implement protocols based on ICMP, such as router advertisement 
and router solicitation (Section 9.6 of Volume 1), which use ICMP but are better implemented 
as user processes than within the kernel. 

The multicast routing daemon uses a raw IGMP socket to send and receive IGMP messages. 

2. Raw sockets let a process build its own IP headers. The Traceroute program uses this feature 
to build its own UDP datagrams, including the IP and UDP headers. 

3. Raw sockets let a process read and write IP datagrams with an IP protocol type that the kernel 
doesn’t support. 

The gated program uses this to support three routing protocols that are built directly on IP: 
EGP, HELLO, and OSPF. 

This type of raw socket can also be used to experiment with new transport layers on top of IP, 
instead of adding support to the kernel. It is usually much easier to debug code within a user 
process than it is within the kernel. 

This chapter examines the implementation of raw IP sockets. 

32.2. Code Introduction 

There are five raw IP functions in a single C file, shown in Figure 32.1. 

Figure 32.1. File discussed in this chapter.

 

 

Figure 32.2 shows the relationship of the five raw IP functions to other kernel functions. 
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Figure 32.2. Relationship of raw IP functions to rest of kernel.

 

 

The shaded ellipses are the five functions that we cover in this chapter. Be aware that the "rip" prefix 
used within the raw IP functions stands for "raw IP" and not the "Routing Information Protocol," 
whose common acronym is RIP. 

Global Variables

Four global variables are introduced in this chapter, which are shown in Figure 32.3. 

Figure 32.3. Global variables introduced in this chapter.

 

 
 

Statistics

Raw IP maintains two of the counters in the ipstat structure (Figure 8.4). We describe these in 
Figure 32.4. 
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Figure 32.4. Raw IP statistics maintained in the ipstat structure.

 

 

The use of the ips_noproto counter with SNMP is shown in Figure 8.6. Figure 8.5 shows some 
sample output of these two counters. 

32.3. Raw IP protosw Structure 

Unlike all other protocols, raw IP is accessed through multiple entries in the inetsw array. There 
are four entries in this structure with a socket type of SOCK_RAW, each with a different protocol 
value: 

IPPROTO_ICMP (protocol value of 1), 
IPPROTO_IGMP (protocol value of 2), 
IPPROTO_RAW (protocol value of 255), and 
raw wildcard entry (protocol value of 0). 

The first two entries for ICMP and IGMP were described earlier (Figures 11.12 and 13.9). The 
difference in these four entries can be summarized as follows: 

If the process creates a raw socket (SOCK_RAW) with a nonzero protocol value (the third 
argument to socket), and if that value matches IPPROTO_ICMP,
IPPROTO_IGMP, or IPPROTO_RAW, then the corresponding protosw entry is 
used. 
If the process creates a raw socket with a nonzero protocol value that is not known to the 
kernel, the wildcard entry with a protocol of 0 is matched by pffindproto. This allows 
a process to handle any IP protocol that is not known to the kernel, without making kernel 
modifications. 

We saw in Section 7.8 that all entries in the ip_protox array that are unknown are set to point to 
the entry for IPPROTO_RAW, whose protocol switch entry we show in Figure 32.5. 
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Figure 32.5. The raw IP protosw structure.

 

 

We describe the three functions that begin with rip_ in this chapter. We also cover the function 
rip_output, which is not in the protocol switch entry but is called by rip_usrreq when a 
raw IP datagram is output. 

The fifth raw IP function, rip_init, is contained only in the wildcard entry. The initialization 
function must be called only once, so it could appear in either the IPPROTO_RAW entry or in the 
wildcard entry. 

What Figure 32.5 doesn’t show, however, is that other protocols (ICMP and IGMP) also reference 
some of the raw IP functions in their protosw entries. Figure 32.6 compares the relevant fields in 
the protosw entries for the four SOCK_RAW protocols. To highlight the differences, values in 
these rows are in a bolder font when they differ. 

Figure 32.6. Comparison of protocol switch values for raw sockets.

 

 

The implementation of raw sockets has changed with the different BSD releases. The 
entry with a protocol of IPPROTO_RAW has always been used as the wildcard 
entry in the ip_protox table for unknown IP protocols. The entry with a 
protocol of 0 has always been the default entry, to allow processes to read and write 
IP datagrams with a protocol that the kernel doesn’t support. 
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Usage of the IPPROTO_RAW entry by a process started when Traceroute was 
developed by Van Jacobson, because Traceroute was the first process that needed to 
write its own IP headers (to change the TTL field). The kernel patches to 4.3BSD 
and Net/1 to support Traceroute included a change to rip_output so that if the 
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protocol was IPPROTO_RAW, it was assumed the process had passed a complete 
IP datagram, including the IP header. This was changed with Net/2 when the 
IP_HDRINCL socket option was introduced, removing this overloading of the 
IPPROTO_RAW protocol and allowing a process to send its own IP header with 
the wildcard entry. 

32.4. rip_init Function 

The domaininit function calls the raw IP initialization function rip_init (Figure 32.7) at 
system initialization time. 

Figure 32.7. rip_init function.

 

 

The only action performed by this function is to set the next and previous pointers in the head PCB 
(rawinpcb) to point to itself. This is an empty doubly linked list. 

Whenever a socket of type SOCK_RAW is created by the socket system call, we’ll see that the 
raw IP PRU_ATTACH function creates an Internet PCB and puts it onto the rawinpcb list. 

32.5. rip_input Function 

Since all entries in the ip_protox array for unknown protocols are set to point to the entry for 
IPPROTO_RAW (Section 7.8), and since the pr_input function for this protocol is 
rip_input (Figure 32.6), this function is called for all IP datagrams that have a protocol value 
that the kernel doesn’t recognize. But from Figure 32.2 we see that both ICMP and IGMP also call 
rip_input. This happens under the following conditions: 

icmp_input calls rip_input for all unknown ICMP message types and for all 
ICMP messages that are not reflected. 
igmp_input calls rip_input for all IGMP packets. 

One reason for calling rip_input in these two cases is to allow a process with a raw socket to 
handle new ICMP and IGMP messages that might not be supported by the kernel. 

Figure 32.8 shows the rip_input function. 
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Figure 32.8. rip_input function.

 

 
 

Save source IP address

59-66

The source address from the IP datagram is put into the global variable ripsrc, which becomes an 
argument to sbappendaddr whenever a matching PCB is found. Unlike UDP, there is no 
concept of a port number with raw IP, so the sin_port field in the sockaddr_in structure is 
always 0. 

Search all raw IP PCBs for one or more matching entries

67-88

 1087

Raw IP handles its list of PCBs differently from UDP and TCP. We saw that these two protocols 
maintain a pointer to the PCB for the most recently received datagram (a one-behind cache) and call 
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the generic function in_pcblookup to search for a single "best" match when the received 
datagram does not equal the cache entry. Raw IP has completely different criteria for a matching PCB, 
so it searches the PCB list itself. in_pcblookup cannot be used because a raw IP datagram can 
be delivered to multiple sockets, so every PCB on the raw PCB list must be scanned. This is similar to 
UDP’s handling of a received datagram destined for a broadcast or multicast address (Figure 23.26). 

Compare protocols

68-69

If the protocol field in the PCB is nonzero, and if it doesn’t match the protocol field in the IP header, 
the PCB is ignored. This implies that a raw socket with a protocol value of 0 (the third argument to 
socket) can match any received raw IP datagram. 

Compare local and foreign IP addresses

70-75

If the local address in the PCB is nonzero, and if it doesn’t match the destination IP address in the IP 
header, the PCB is ignored. If the foreign address in the PCB is nonzero, and if it doesn’t match the 
source IP address in the IP header, the PCB is ignored. 

These three tests imply that a process can create a raw socket with a protocol of 0, not bind a local 
address, and not connect to a foreign address, and the process receives all datagrams processed by 
rip_input.

Lines 71 and 74 both contain the same bug: the test for equality should be a test for 
inequality. 

Pass copy of received datagram to processes

76-94

sbappendaddr passes a copy of the received datagram to the process. The use of the variable 
last is similar to what we saw in Figure 23.26: since sbappendaddr releases the mbuf after 
placing it onto the appropriate queue, if more than one process receives a copy of the datagram, 
rip_input must make a copy by calling m_copy. But if only one process receives the 
datagram, there’s no need to make a copy. 

Undeliverable datagram

95-99

If no matching sockets are found for the datagram, the mbuf is released, ips_noproto is 
incremented, and ips_delivered is decremented. This latter counter was incremented by IP 
just before calling the rip_input (Figure 8.15). It must be decremented so that the two SNMP 
counters, ipInDiscards and ipInDelivers (Figure 8.6) are correct, since the datagram 
was not really delivered to a transport layer. 

At the beginning of this section we mentioned that icmp_input calls 
rip_input for unknown message types and for messages that are not reflected. 
This means that the receipt of an ICMP host unreachable causes ips_noproto 
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to be incremented if there are no raw listeners whose PCB is matched by 
rip_input. That’s one reason this counter has such a large value in Figure 8.5. 
The description of this counter as being "unknown or unsupported protocols" is not 
entirely accurate. 

Net/3 does not generate an ICMP destination unreachable message with code 2 
(protocol unreachable) when an IP datagram is received with a protocol field that is 
not handled by either the kernel or some process through a raw socket. RFC 1122 
says an implementation should generate this ICMP error. (See Exercise 32.4.) 

32.6. rip_output Function 

We saw in Figure 32.6 that rip_output is called for output for raw sockets by ICMP, IGMP, and 
raw IP. Output occurs when the application calls one of the five write functions: send,
sendto, sendmsg, write, or writev. If the socket is connected, any of the five 
functions can be called, although a destination address cannot be specified with sendto or 
sendmsg. If the socket is unconnected, only sendto and sendmsg can be called, and a 
destination address must be specified. 

The function rip_output is shown in Figure 32.9. 

Figure 32.9. rip_output function.
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Kernel fills in IP header

119-128

If the IP_HDRINCL socket option is not defined, M_PREPEND allocates room for an IP header, 
and fields in the IP header are filled in. The fields that are not filled in here are left for ip_output 
to initialize (Figure 8.22). The protocol field is set to the value stored in the PCB, which we’ll see in 
Figure 32.10 is the third argument to the socket system call. 

Figure 32.10. rip_usrreq function: PRU_ATTACH request.

 

 

The TOS is set to 0 and the TTL to 255. These values are always used for a raw socket when the 
kernel fills in the header. This differs from UDP and TCP where the process had the capability of 
setting the IP_TTL and IP_TOS socket options. 

129

Any IP options set by the process with the IP_OPTIONS socket options are passed to 
ip_output through the opts variable. 

Caller fills in IP header: IP_HDRINCL socket option

130-133

If the IP_HDRINCL socket option is set, the caller supplies a completed IP header at the front of 
the datagram. The only modification made to this IP header is to set the ID field if the value supplied 
by the process is 0. The ID field of an IP datagram can be 0. The assignment of the ID field here by 
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rip_output is just a convention that allows the process to set it to 0, asking the kernel to assign 
an ID value based on the kernel’s current ip_id variable. 

134-136

The opts variable is set to a null pointer, which ignores any IP options the process may have set 
with the IP_OPTIONS socket option. The convention here is that if the caller builds its own IP 
header, that header includes any IP options the caller might want. The flags variable must also 
include the IP_RAWOUTPUT flag, telling ip_output to leave the header alone. 

137

The counter ips_rawout is incremented. Running Traceroute causes this variable to be 
incremented by 1 for each datagram sent by Traceroute. 

The operation of rip_output has changed over time. When the 
IP_HDRINCL socket option is used in Net/3, the only change made to the IP 
header by rip_output is to set the ID field, if the process sets it to 0. The Net/3 
ip_output function does nothing to the IP header fields because the 
IP_RAWOUTPUT flag is set. Net/2, however, always set certain fields in the IP 
header, even if the IP_HDRINCL socket option was set: the IP version was set to 
4, the fragment offset was set to 0, and the more-fragments flag was cleared. 

32.7. rip_usrreq Function 

The protocol’s user-request function is called for a variety of operations. As with the UDP and TCP 
user-request functions, rip_usrreq is a large switch statement, with one case for each 
PRU_xxx request. 

The PRU_ATTACH request, shown in Figure 32.10, is from the socket system call. 

194-206

Since the socket function creates a new socket structure each time it is called, that structure 
cannot point to an Internet PCB. 

Verify superuser

207-210

Only the superuser can create a raw socket. This is to prevent random users from writing their own IP 
datagrams to the network. 

Create Internet PCB and reserve buffer space

211-215

Space is reserved for input and output queues, and in_pcballoc allocates a new Internet PCB. 
The PCB is added to the raw IP PCB list (rawinpcb). The PCB is linked to the socket 
structure. The nam argument to rip_usrreq is the third argument to the socket system call: 
the protocol. It is stored in the PCB since it is used by rip_input to demultiplex received 
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datagrams, and its value is placed into the protocol field of outgoing datagrams by rip_output 
(if IP_HDRINCL is not set). 

A raw IP socket can be connected to a foreign IP address similar to a UDP socket being connected to a 
foreign IP address. This fixes the foreign IP address from which the raw socket receives datagrams, as 
we saw in rip_input. Since raw IP is a connectionless protocol like UDP, a 
PRU_DISCONNECT request can occur in two cases: 

1. When a connected raw socket is closed, PRU_DISCONNECT is called before 
PRU_DETACH. 

2. When a connect is issued on an already-connected raw socket, soconnect issues the 
PRU_DISCONNECT request before the PRU_CONNECT request. 

Figure 32.11 shows the PRU_DISCONNECT, PRU_ABORT, and PRU_DETACH requests. 

Figure 32.11. rip_usrreq function: PRU_DISCONNECT, PRU_ABORT, and 

PRU_DETACH requests.

 

 

217-222

The socket must already be connected to disconnect or else an error is returned. 

223-225

A PRU_ABORT abort should never be issued for a raw IP socket, but this case also handles the 
fall through from PRU_DISCONNECT. The socket is marked as disconnected. 

226-230

The close system call issues the PRU_DETACH request, and this case also handles the fall 
through from the PRU_DISCONNECT request. If the socket structure is the one used for 
multicast routing (ip_mrouner), multicast routing is disabled by calling 
ip_mrouter_done. Normally the mrouted(8) daemon issues the DVMRP_DONE socket 
option to disable multicast routing, so this check handles the case of the router daemon terminating 
(i.e., crashing) without issuing the socket option. 
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231

The Internet PCB is released by in_pcbdetach, which also removes the PCB from the list of 
raw IP PCBs (rawinpcb). 

A raw IP socket can be bound to a local IP address with the PRU_BIND request, shown in Figure 
32.12. We saw in rip_input that the socket will receive only datagrams sent to this IP address. 

Figure 32.12. rip_usrreq function: PRU_BIND request.

 

 

233-250

The process fills in a sockaddr_in structure with the local IP address. The following three 
conditions must all be true, or else the error EADDRNOTAVAIL is returned: 

1. at least one interface must be configured, 
2. the address family must be AF_INET (or AF_IMPLINK, a historical artifact), and 
3. if the IP address being bound is not 0.0.0.0, it must correspond to a local interface. For the 

call to ifa_ifwithaddr to succeed, the port number in the caller’s sockaddr_in 
must be 0. 

The local IP address is stored in the PCB. 

A process can also connect a raw IP socket to a particular foreign IP address. We saw in 
rip_input that this restricts the process so that it receives only IP datagrams with a source IP 
address equal to the connected IP address. A process has the option of calling bind, connect, 
both, or neither, depending on the type of filtering it wants rip_input to place on received 
datagrams. Figure 32.13 shows the PRU_CONNECT request. 
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Figure 32.13. rip_usrreq function: PRU_CONNECT request.

 

 

251-270

If the caller’s sockaddr_in is initialized correctly and at least one IP interface is configured, the 
specified foreign IP address is stored in the PCB. Notice that this process differs from the connection 
of a UDP socket to a foreign address. In the UDP case, in_pcbconnect acquires a route to the 
foreign address and also stores the outgoing interface as the local address (Figure 22.9). With raw IP, 
only the foreign IP address is stored in the PCB, and unless the process also calls bind, only the 
foreign address is compared by rip_input.

A call to shutdown specifying that the process has finished sending data generates the 
PRU_SHUTDOWN request, although it is rare for a process to issue this system call for a raw IP 
socket. Figure 32.14 shows the PRU_CONNECT2 and PRU_SHUTDOWN requests. 

Figure 32.14. rip_usrreq function: PRU_CONNECT2 and PRU_SHUTDOWN
requests.

 

 

271-273

The PRU_CONNECT2 request is not supported for a raw IP socket. 
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274-279

socantsendmore sets the socket’s flags to prevent any future output. 

In Figure 23.14 we showed how the five write functions call the protocol’s pr_usrreq function 
with a PRU_SEND request. We show this request in Figure 32.15. 

Figure 32.15. rip_usrreq function: PRU_SEND request.

 

 

280-303

If the socket state is connected, the caller cannot specify a destination address (the nam argument). 
Likewise, if the state is unconnected, a destination address is required. If all is OK, in either state, 
dst is set to the destination IP address. rip_output sends the datagram. The mbuf pointer m is 
set to a null pointer, to prevent it from being released at the end of the function. This is because the 
interface output routine will release the mbuf after it has been output. (Remember that 
rip_output passes the mbuf chain to ip_output, who appends it to the interface’s output 
queue.) 

The final part of rip_usrreq is shown in Figure 32.16. The PRU_SENSE request, generated by 
the fstat system call, returns nothing. The PRU_SOCKADDR and PRU_PEERADDR requests 
are from the getsockname and getpeername system calls, respectively. The remaining 
requests are not supported. 
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Figure 32.16. rip_usrreq function: remaining requests.

 

 

319-324

The functions in_setsockaddr and in_setpeeraddr fetch the information from the 
PCB, storing the result in the nam argument. 

32.8. rip_ctloutput Function 

The setsockopt and getsockopt system calls invoke the rip_ctloutput function. 
Only one IP socket option is handled here, along with eight socket options related to multicast routing. 

Figure 32.17 shows the first part of the rip_ctloutput function. 

 1096



ptg11539634

Figure 32.17. rip_usrreq function: process IP_HDRINCL socket option.

 

 

144-172

The size of the mbuf that contains either the new value of the option or will hold the current value of 
the option must be at least as large as an integer. For the setsockopt system call, the flag is set if 
the integer value in the mbuf is nonzero, or cleared otherwise. For the getsockopt system call, 
the value returned in the mbuf is either 0 or the nonzero value of the flag. The function returns, to 
avoid the processing at the end of the switch statement for other IP options. 

Figure 32.18 shows the last portion of the rip_ctloutput function. It handles eight multicast 
routing socket options. 
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Figure 32.18. rip_usrreq function: process multicast routing socket option.

 

 

173-188

These eight socket options are valid only for the setsockopt system call. They are processed by 
the ip_mrouter_cmd function as discussed with Figure 14.9. 

189

Any other IP socket options, such as IP_OPTIONS to set the IP options, are processed by 
ip_ctloutput.

32.9. Summary 

Raw sockets provide three capabilities for an IP host. 

1. They are used to send and receive ICMP and IGMP messages. 
2. They allow a process to build its own IP headers. 
3. They allow additional IP-based protocols to be supported in a user process. 

We saw that raw IP output is simple it  just fills in a few fields in the IP header b ut it allows a 
process to supply its own IP header. This allows diagnostic programs to create any type of IP 
datagram. 

Raw IP input provides three types of filtering for incoming IP datagrams. The process chooses to 
receive datagrams based on (1) the protocol field, (2) the source IP address (set by connect), and 
(3) the destination IP address (set by bind). The process chooses which combination of these three 
filters (if any) to apply. 

Exercises

32.1 Assume the IP_HDRINCL socket option is not set. What value will rip_output 
place into the IP header protocol field (ip_p) when the third argument to socket is 0? 
What value will rip_output place into this field when the third argument to 
socket is IPPROTO_RAW(255)? 
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32.2 A process creates a raw socket with a protocol value of IPPROTO_RAW (255). What 
type of IP datagrams will the process receive on this socket? 

32.3 A process creates a raw socket with a protocol value of 0. What type of IP datagrams will 
the process receive on this socket? 

32.4 Modify rip_input to send an ICMP destination unreachable with code 2 (protocol 
unreachable) when appropriate. Be careful not to generate the error for received ICMP and 
IGMP packets for which rip_input is called. 

32.5 If a process wants to write its own IP datagrams with its own IP header, what are the 
differences in using a raw IP socket with the IP_HDRINCL option, and using BPF 
(Chapter 31)? 

32.6 When would a process read from a raw IP socket, and when would it read from BPF? 
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Epilogue 

"We have come a long way. Nine chapters stuffed with code is a lot to negotiate. If 
you didn't assimilate all of it the first time through, don't worry—you weren't really 
expected to. Even the best of code takes time to absorb, and you seldom grasp all the 
implications until you try to use and modify the program. Much of what you learn 
about programming comes only from working with the code: reading, revising and 
rereading."

From the Epilogue of Software Tools [Kernighan and Plauger 1976]. 

"In fact, this RFC will argue that modularity is one of the chief villains in attempting 
to obtain good performance, so that the designer is faced with a delicate and 
inevitable tradeoff between good structure and good performance."

From RFC 817 [Clark 1982]. 

This text has provided a long and detailed examination of a significant piece of a real operating 
system. Versions of the code presented in the text are shipped as part of the Unix kernel with most 
flavors of Unix today, along with many non-Unix systems. 

The code that we've examined is not perfect and it is not the only way to write a TCP/IP protocol 
stack. It has been modified, enhanced, tweaked, and maligned over the past 15 years by many people. 
Large portions of the code that we've presented weren't even written at the U. C. Berkeley Computer 
Systems Research Group: the multicasting code was written by Steve Deering, the long fat pipe 
support was added by Thomas Skibo, portions of the TCP code were written by Van Jacobson, and so 
on. The code contains gotos (221 to be exact), many large functions (e.g., tcp_input and 
tcp_output), and numerous examples of questionable coding style. (We tried to note these items 
when discussing the code.) Nevertheless, the code is unquestionably "industrial strength" and 
continues to be the base upon which new features are added and the standard upon which other 
implementations are measured. 

The Berkeley networking code was designed on VAXes when a VAX-11/780 with 4 megabytes of 
memory was a big system. For that reason some of the design features (e.g., mbufs) emphasized 
memory savings over higher performance. This would change if the code were rewritten from scratch 
today. 

There has been a strong push over the last few years toward higher performance of networking 
software, as the underlying networks become faster (e.g., FDDI and ATM) and as high-bandwidth 
applications become more prevalent (e.g., voice and video). Whenever designing networking software 
within the kernel of an operating system, clarity normally gives way to speed [Clark 1982]. This will 
continue in any real-world implementation. 

The research implementation of the Internet protocols described in [Partridge 1993] and [Jacobson 
1993] is a move toward much higher performance. [Jacobson 1993] reports the code is 10 to 100 times 
faster than the implementation described in this book. Mbufs, software interrupts, and much of the 
protocol layering evident in BSD systems are gone. If widely released, this implementation could 
become the standard that others are measured against in the future. 

In July 1994 the successor to IP version 4, IP version 6 (IPv6), was announced. It uses 128-bit (16-
byte) addresses. Many changes will take place with the IP and ICMP protocols, but the transport 
layers, UDP and TCP, will remain virtually the same. (There is talk of a TCPng, the next generation of 
TCP, but the authors think just upgrading IP will provide enough of a challenge for the hundreds of 
vendors and millions of users across the world to put off any changes to TCP.) It will take a year or 
two for vendor-supported implementations to appear, and many years after that for end users to 
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migrate their hosts and routers to IPv6. Research implementations of IPv6 based on the code in this 
text should appear in early 1995. 

To continue your understanding of the Berkeley networking code, the best course of action at this 
point is to obtain the source code, and modify it. The source code is easily obtainable (Appendix B) 
and numerous exercises throughout the text suggest modifications. 
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Appendix A. Solutions to Selected Exercises 

Chapter 1  

1.2 SLIP drivers execute at spltty (Figure 1.13), which must be a priority lower than or 
equal to splimp and must be a priority higher than splnet. Therefore the SLIP 
drivers are blocked from interrupting.  

Chapter 2  

2.1 The M_EXT flag is a property of the mbuf itself, not a property of the packet described by 
the mbuf.  

2.2 The caller asks for more than 100 (MHLEN) contiguous bytes.  

2.3 This is infeasible since clusters can be pointed to by multiple mbufs (Section 2.9). Also, 
there is no room in a cluster for a back pointer (Exercise 2.4).

2.4 In the macros MCLALLOC and MCLFREE in <sys/mbuf.h> we see that the 
reference count is an array named mclrefcnt. This array is allocated when the kernel 
is initialized in the file machdep.c.

Chapter 3  

3.3 A large interactive queue would defeat the purpose of the queue by delaying new 
interactive traffic behind the existing interactive data.  

3.4 Since the sl_softc structures are all declared as global variables, they are initialized 
to 0 when the kernel starts.  

3.5
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Chapter 4  

4.1 leread must examine the packet to decide if it needs to be discarded after it is passed to 
BPF. Since a BPF tap can enable promiscuous mode on the interface, packets may be 
addressed to some other system on the Ethernet and must be discarded after BPF has 
processed them.  

When the interface is not tapped, the tests must be done in ether_input.

4.2 If the tests were reversed, the broadcast flag would never be set.  

If the second if wasn't preceded by an else, every broadcast packet would also have 
the multicast flag set. 

Chapter 5  

5.1 The loopback interface does not need an input function because all its packets are received 
directly from looutput, which performs the "input" functions.  

5.2 The stack allocation is faster than dynamic memory allocation. Performance is important 
for BPF processing, since the code is executed for each incoming packet.  

5.5 The first character that overflows the buffer is discarded, SC_ERROR is set, and 
slinput resets the cluster pointers to begin collecting characters at the start of the 
buffer. Because SC_ERROR is set, slinput discards the frame when it receives the 
SLIP END character.  

5.6 IP discards the packet when the checksum is found to be invalid or when it notices that the 
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length in the IP header does not match the physical packet size.  

5.7 Since ifp points to the first member of a le_softc structure,  
    sc = (struct le_softc *)ifp; 

initializes sc correctly. 

5.8 This is very hard to do. Some routers may send ICMP source quench messages when they 
begin discarding packets but Net/3 discards these messages for UDP sockets (Figure 
23.30). An application would have to begin using the same techniques used by TCP: 
estimation of the available bandwidth and delay on roundtrip times for acknowledged 
datagrams.  

Chapter 6  

6.1 Before IP subnetting (RFC 950 [Mogul and Postel 1985]), the network and host portions 
of IP addresses always appeared on byte boundaries. The definition of an in_addr
structure was  
    struct in_addr { 
            union { 
                    struct { u_char s_b1, s_b2, s_b3, 
s_b4; } S_un_b; 
                    struct { u_short s_w1, s_w2; } 
S_un_w;
                    u_long S_addr;
            } S_un; 
    #define s_addr  S_un.S_addr          /* should be 
used for all code */ 
    #define s_host  S_un.S_un_b.s_b2     /* OBSOLETE: 
host on imp */ 
    #define s_net   S_un.S_un_b.s_b1     /* OBSOLETE: 
network */ 
    #define s_imp   S_un.S_un_w.s_w2     /* OBSOLETE: 
imp */ 
    #define s_impno S_un.S_un_b.s_b4     /* OBSOLETE: 
imp # */ 
    #define s_lh    S_un.S_un_b.s_b3     /* OBSOLETE: 
logical host */ 
    }; 

The Internet address could be accessed as 8-bit bytes, 16-bit words, or a single 32-bit 
address. The macros s_host, s_net, s_imp, and so on have names that 
correspond to the physical structure of early TCP/IP networks. 

The use of subnetting and supernetting makes the byte and word divisions obsolete. 

6.2 A pointer to the structure labeled sl_softc[0] is returned.  
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6.3 The interface output functions, such as ether_output, have a pointer only to the 
ifnet structure for the interface, and not to an ifaddr structure. Using the IP address 
in the arpcom structure (which is the last IP address assigned to the interface) avoids 
having to select an address from the ifaddr address list.

6.4 Only a superuser process can create a raw IP socket. By using a UDP socket, any process 
can examine the interface configurations but the kernel can still require superuser 
privileges to modify the interface addresses.  

6.5 Three functions loop through a netmask 1 byte at a time. These are 
ifa_ifwithnet, ifaof_ifpforaddr, and rt_maskedcopy. A 
shorter mask improves the performance of these functions.  

6.6 The Telnet connection is established with the remote system. Net/2 systems shouldn't 
forward these packets, and other systems should never accept loopback packets that arrive 
on any interface other than the loopback interface.  

Chapter 7  

7.1 The following call returns a pointer to inetsw[6]:

pffindproto(PF_INET, 0, SOCK_RAW);

Chapter 8  

8.1 Probably not. The system could not respond to any broadcasts since it would have no 
source address to use in the reply.  

8.4 Since the packet has been damaged, there is no way of knowing if the addresses in the 
header are correct or not.  

8.5 If an application selects a source address that differs from the address of the selected 
outgoing interface, redirects from the selected next-hop router fail. The next-hop router 
sees a source address different from that of the subnetwork on which it was transmitted 
and does not send a redirect message. This is a consequence of implementing the weak 
end system model and is noted in RFC 1122.  

8.6 The new host thinks the broadcast packet is the address of some other host in the 
unsubnetted network and trys to send it back out on the network. The network interface 
begins broadcasting ARP requests for the broadcast address, which are never answered.  

8.7 The decrement of the TTL is done after the comparison for less than or equal to 1 to avoid 
the potential error of decrementing a received TTL of 0 to become 255.  

8.8 If two routers each consider the other the best next-hop for a packet, a routing loop exists. 
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Until the loop is removed, the original packet bounces between the two routers and each 
one sends an ICMP redirect back to the source host if that host is on the same network as 
the routers. Loops may exist when the routing tables are temporarily inconsistent during a 
routing update.  

The TTL of the original packet eventually reaches 0 and the packet is discarded. This is 
one of the primary reasons why the TTL field exists. 

8.9 The four Ethernet broadcast addresses would not be checked because they do not belong 
to the receiving interface. The limited-broadcast addresses would be checked. This implies 
that a system on a SLIP link can communicate with the system on the other end without 
knowing the other system's address by utilizing the limited-broadcast address.  

8.10 ICMP error messages are generated only for the initial fragment of a datagram, which 
always has an offset of 0. The host and network forms for 0 are the same, so no conversion 
is necessary.

Chapter 9  

9.1 RFC 1122 says that the behavior is implementation dependent when conflicting options 
appear in a packet. Net/3 processes the first source route option correctly, but since this 
updates ip_dst in the packet header, the second source route processing will be 
incorrect.  

9.2 The host within the network can be used as a relay to access other hosts within the 
network. To communicate with an otherwise-blocked host, the source host need only 
construct packets with a loose route to the relay host and then to the final destination host. 
The router does not drop the packets because the destination address is the relay host, 
which will process the route and forward the packet to the final destination host. The 
destination host reverses the route and uses the relay host to return packets.  

9.3 The same principle from the previous exercise applies. We pick a relay router that can 
communicate with the source and destination hosts and construct source routes to pass 
through the relay and to the destination. The relay router must be on the same network as 
the destination host so that a default route is not required for communication.  

This technique can be extended to allow two hosts to communicate even if they do not 
have routes to each other, as long as they can find willing relay hosts. 

9.4 If the source route is the only IP option, the NOP option causes all the IP addresses to be 
on a 4-byte boundary in the IP header. This can optimize memory references to these 
addresses on many architectures. This alignment technique also works when multiple 
options are present if each option is padded with NOPs to a 4-byte boundary.  

9.5 A nonstandard time value cannot be confused with a standard value since the largest 
standard time value is 86,399,999 (24 x 60 x 60 x 1000–1) and this value can be 
represented in 28 bits, which avoids any conflict with the high-order bit since time values 
are 32 bits long.  
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9.6 The source route option code may change ip_dst in the packet during processing. The 
destination is saved so that the timestamp processing code uses the original destination.  

Chapter 10  

10.2 After reassembly, only the options from the initial fragment are available to the transport 
protocols.  

10.3 The fragment is read into a cluster since the data length (204 + 20) is greater than 208 
(Figure 2.16).

m_pullup in Figure 10.11 moves the first 40 bytes into a separate mbuf as in Figure
2.18.

10.5 The average number of received fragments per datagram is  
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The average number of fragments created for an outgoing datagram is 

10.6 In Figure 10.11 the packet is initially processed as a fragment. The reserved bit is 
discarded when ip_off is left shifted. The resulting packet is processed as a fragment 
or as a complete datagram, depending on the values of the MF and offset bits.  

Chapter 11  

11.1 The outgoing reply uses the source address of the interface on which the request was 
received. Hosts are not required to recognize 0.0.0.0 as a valid broadcast address, so the 
request may be ignored. The recommended broadcast address is 255.255.255.255.  

11.2 Assume that a host sends link-level broadcasts packets with the IP source address of 
another host and the packet contains errors such as an improperly formed option. Every 
host receives and detects the error because of the link-level broadcast and because options 
are processed before a final destination check. Many hosts that detect the error try to send 
an ICMP message back to the IP source of the packet even though the original packet was 
sent as a link-level broadcast. The unfortunate host will begin receiving many bogus 
ICMP error messages. This is one reason why ICMP errors must not be sent in response to 
link-level broadcasts.  

11.3 In the first case, such a redirect message can fool the host into sending packets to an 
arbitrary host on an alternate subnetwork. This host may be masquerading as a router but 
recording the traffic it receives instead. RFC 1009 requires that routers only generate 
redirect messages for other routers on the same subnet. Even if the host ignores these 
messages to redirect packets to a new subnetwork, a host on the same subnetwork can fool 
the host. The second case guards against this by requiring that the host only accept the 
redirect advice from the original router that it had (erroneously) selected to receive the 
traffic. Presumably this incorrect router was a default router specified by an administrator.  

11.4 By passing the message to rip_input, a process-level daemon could respond and old 
systems that relied on this behavior could continue to be supported.  

11.5 ICMP errors are sent only for the initial fragment of an IP datagram. Since the offset value 
of an initial fragment is always 0, the byte ordering of the field is unimportant.  

11.6 If the ICMP request was received on an interface that was not yet configured with an IP 
address, ia would be null and no reply could be generated.  

11.7 Net/3 reflects the data along with the timestamp reply.  

     11.10 The high-order bit is reserved and must be 0. If it is sent, icmp_error will discard the 

1108



ptg11539634

packet.  

11.11 The return value is discarded because icmp_send does not return an error, but more 
significantly, errors generated during ICMP processing are discarded to avoid generating 
an endless series of error messages.  

Chapter 12  

12.1 On an Ethernet, the IP broadcast address 255.255.255.255 translates to the Ethernet 
broadcast address ff:ff:ff:ff:ff:ff and is received by every Ethernet interface 
on the network. Systems that aren't running IP software must actively receive and discard 
each of these broadcast packets.  

A packet sent to the IP all-hosts multicast group 224.0.0.1 translates to the Ethernet 
multicast address 01:00:5e:00:00:01 and is received only by systems that have 
explicitly instructed their interfaces to receive IP multicast datagrams. Systems that aren't 
running IP or that aren't level-2 compliant never receive these datagrams, as they are 
discarded by the Ethernet interface hardware itself. 

12.2 One alternative would be to specify interfaces by their text name as with the ifreq
structure and the ioctl commands for accessing interface information. 
ip_setmoptions and ip_getmoptions would have to call ifunit instead 
of INADDR_TO_IFP to locate the pointer to the interface's ifnet structure.  

12.3 The high-order 4 bits of a multicast group are always 1110, so only 5 significant bits are 
discarded by the mapping function.  

12.4 The entire ip_moptions structure must fit within an mbuf, which limits the size of 
the structure to 108 bytes (remember the 20-byte mbuf header). 
IP_MAX_MEMBERSHIPS can be larger but must be less than or equal to 25. (4 + 1 + 
1 + 2 + (4 x 25) = 108)  

12.5 The datagram is duplicated and two copies appear on the IP input queue. A multicast 
application must be prepared to discard duplicate datagrams.  

12.6

12.8 The process could create a second socket and request another 
IP_MAX_MEMBERSHIPS through the second socket.  
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12.9 Define a new mbuf flag M_LOCAL for the m_flags member of the mbuf header. The 
flag can be set on loopback packets by ip_output instead of computing the 
checksum. ipintr can skip the checksum verification if the flag is on. SunOS 5.X has 
an option to do this (ip_local_cksum, page 531, Volume 1).  

12.10 There are 223–1 (8,388,607) unique Ethernet IP multicast addresses. Remember that IP 
group 224.0.0.0 is reserved.  

12.11 This assumption is correct since in_addmulti rejects all add requests if the interface 
does not have an ioctl function, and this implies that in_delmulti is never called 
if if_ioctl is null.

12.12 The mbuf is never released. It appears that ip_getmoptions contains a memory 
leak. ip_getmoptions is called from ip_ctloutput, which allows a call 
such as:  

ip_getmoptions(IP_ADD_MEMBERSHIP, 0, mp) 

which exercises the bug in ip_getmoptions.

Chapter 13  

13.1 Responding to an IGMP query from the loopback interface is unnecessary since the local 
host is the only system on the loopback network and it already knows its membership 
status.  

13.2 max_linkhdr + sizeof(struct ip) + IGMP_MINLEN = 16 + 20 + 
8 = 44 < 100  

13.3 The primary reason for the random delay in reporting memberships is to minimize (ideally 
to 1) the number of reports that appear on a multicast network. A point-to-point network 
consists only of two interfaces, so the delay is not necessary to minimize the response to 
the query. One interface (presumably a multicast router) generates the query, and the other 
interface responds.  

There is another reason not to flood the interface's output queue with all the membership 
reports. The output queue may have a packet or byte limit that could be exceeded by many 
IGMP membership reports. For example, in the SLIP driver, if the output queue is full or 
the device is too busy, the entire queue of pending packets is discarded (Figure 5.16).

Chapter 14  

14.1 Five. One each for networks A through E.  

14.2 grplst_member is called only by ip_mforward, but ip_mforward can be 
called by ipintr during protocol processing, or by ip_output, which can be 
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called indirectly from the socket layer. The cache is a shared data structure that must be 
protected while it is being updated. The membership list itself is protected by splx calls 
in add_lgrp and del_lgrp, where it is modified.  

14.3 The SIOCDELMULTI command affects only the Ethernet multicast list for the 
interface. The IP multicast group list remains unchanged, so the interface remains a 
member of the group. The interface continues accepting multicast datagrams for any 
groups that are still on the IP group membership list for the interface. Specifically, when 
ether_delmulti returns ENETRESET to leioctl, the function lereset
is called to reconfigure the interface (Figure 12.31).

14.4 Only one virtual interface is considered to be the parent interface for a multicast spanning 
tree. If the packet is accepted on the tunnel, then the physical interface cannot be the 
parent and ip_mforward discards the packet.  

Chapter 15  

15.1 The socket could be shared across a fork or passed to a process through a Unix domain 
socket ([Stevens 1990]).

15.2 The sa_len member of the structure is larger than the size of the buffer after accept
returns. This is usually not a problem with the fixed-length Internet address, but it can be 
when using variable-length addresses supported by the OSI protocols, for example.  

15.4 The call to soqremque is only made when so_qlen is not equal to 0. If 
soqremque returns a null pointer there must be an error in the socket queueing code so 
the kernel panics.  

15.5 The copy is made so that bzero can clear the structure while it is locked and so that 
dom_dispose and sbrelease can be called after splx. This minimizes the 
amount of time the CPU is kept at splimp and therefore the amount of time that 
network interrupts are blocked.  

15.6 The sbspace macro will return 0. As a result, the sbappendaddr and 
sbappendcontrol functions (used by UDP) will refuse to queue additional packets. 
TCP uses sbappend, which assumes that the caller has checked for space first. TCP 
calls sbappend even when sbspace returns 0. The data placed in the receive queue 
is not available to a process because the SS_CANTRCVMORE flag prevents the read 
system calls from returning any data.  

Chapter 16  

16.1 When the value is assigned to uio_resid in the uio structure it becomes a large 
negative number. sosend rejects the message with EINVAL.

Net/2 did not check for a negative value. This problem is described by 
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the comment at the start of sosend (Figure 16.23).

16.2 No. The only time the cluster is ever filled with less than MCLBYTES is at the end of a 
message when less than MCLBYTES remain. resid is 0 at this time and the loop is 
terminated by the break on line 394 before reaching the test for space > 0.

16.5 The process blocks until the buffer is unlocked. In this case the lock exists only while 
another process is examining the buffer or passing data to the protocol layer, and not when 
a process must wait for space in the buffer, which may take an indefinite amount of time.  

16.6 If the send buffer contained many mbufs, each of which contained only a few bytes of 
data, sb_cc may be well below the limit specified by sb_hiwat while a large 
amount of memory would be allocated for the mbufs. If the kernel didn't limit the number 
of mbufs attached to each buffer, a process could easily create a memory shortage.  

16.7 recvit is called from recvfrom and recvmsg. Only recvmsg handles 
control information. The entire msghdr structure, including the length of the control 
message, is copied back to the process by recvmsg. For address information, 
recvmsg sets the namelenp argument to null because it expects the length in 
msg_namelen. When recvfrom calls recvit, the namelenp is nonnull 
because it expects the length in *namelenp.

16.8 MSG_EOR is cleared by soreceive so that it is not inadvertently returned by 
soreceive before an M_EOR mbuf is processed.  

16.9 There would be a race condition while select examined the descriptors. If a selectable 
event occurred after selscan examined the descriptor but before select called 
tsleep, it would not be detected and the process would sleep until another selectable 
event occurred.  

Chapter 17  

17.1 This simplifies the code that copies data between the kernel and the process. copyin
and copyout can be used for a single mbuf, but uiomove is needed to handle 
multiple mbufs.  

17.2 The code works correctly because the first member of a linger structure is the 
expected integer flag.  
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Chapter 18  

18.1 Write eight rows, one for each possible combination of the bits from the search key, the 
routing table key, and the routing table mask.  

1 2 3 row 1 & 3 2 == 4? 1 ^ 2 6 & 3 

search key table key table mask 

1 0 0 0 0 yes 0 0=yes 

2 0 0 1 0 yes 0 0=yes 

3 0 1 0 0 no 1 0=yes 

4 0 1 1 0 no 1 1=no 

5 1 0 0 0 yes 1 0=yes 

6 1 0 1 1 no 1 1=no 

7 1 1 0 0 no 0 0=yes 

8 1 1 1 1 yes 0 0=yes 

The column "2 == 4?" should equal the final column "6 & 3." On first glance they are 
not the same, but we can ignore rows 3 and 7 because in these two rows the routing 
table bit is 1 while the same bit in the routing table mask is 1. When the routing table is 
built the key is logically ANDed with the mask, guaranteeing that for every bit of 0 in 
the mask, the corresponding bit in the key is also 0. 

Another way to look at the exclusive OR and logical AND in Figure 18.40 is that the 
exclusive OR becomes 1 only if the search key bit differs from the bit in the routing 
table key. The logical AND then ignores any differences that correspond to a bit that's 0 
in the mask. If the result is still nonzero, the search key does not match the routing table 

The size of an rtentry structure is 120 bytes, which includes the two 
radix_node structures. Each entry also requires two sockaddr_in structures 
(Figure 18.28), for 152 bytes per routing table entry. The total is about 3 megabytes.  

18.2

Since rn_b is a short integer, assuming 16 bits for a short imposes a limit of 32767 
bits per key (4095 bytes).  

18.3

 
Chapter 19  

19.1 The RTF_DYNAMIC flag is set in Figure 19.15 when the route is created by a redirect, 
and the RTF_MODIFIED flag is set when the gateway field of an existing route is 
modified by a redirect. If a route is created by a redirect and then later modified by another 
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redirect, both flags will be set.  

19.2 A host route is created for each host accessed through the default route. TCP can then 
maintain and update routing metrics for each individual host (Figure 27.3).

19.3 Each rt_msghdr structure requires 76 bytes. Two sockaddr_in structures are 
present for a host route (destination and gateway) giving a message size of 108 bytes. The 
message size for each ARP entry is 112 bytes: one sockaddr_in and one 
sockaddr_dl. The total size is then (15 x 112 + 20 x 108) or 3840 bytes. A network 
route (instead of a host route) requires an additional 8 bytes for the network mask (116 
bytes for the message instead of 108), so if the 20 routes are all network routes, the total 
size is 4000 bytes.  

Chapter 20  

20.1 The return value is returned in the rtm_errno member of the message (Figure 20.14)
and also as the return value from write (Figure 20.22). The latter is more reliable since 
the former may run into mbuf starvation, causing the reply message to be discarded 
(Figure 20.17).

20.2 For a SOCK_RAW socket, the pffindproto function (Figure 7.20) returns the entry 
with a protocol of 0 (the wildcard) if an exact match isn't found.  

Chapter 21  

21.1 It is assumed that the ifnet structure is at the beginning of the arpcom structure, 
which it is (Figure 3.20).

21.2 Sending the ICMP echo request does not require ARP, since the destination address is the 
broadcast address. But the ICMP echo replies are normally unicast, so each sender uses 
ARP to determine the destination Ethernet address. When the local host receives each 
ARP request, in_arpinput replies and creates an entry for the other host.  

21.3 When a new ARP entry is created, the rt_gateway value, a sockaddr_dl
structure in this case, is copied from the entry being cloned by rtrequest in Figure
19.8. In Figure 21.1 we see that the sdl_alen member of this entry is 0.  

21.4 With Net/3, if the caller of arpresolve supplies a pointer to a routing table entry, 
arplookup is not called, and the corresponding Ethernet address is available through 
the rt_gateway pointer (assuming it hasn't expired). This avoids any type of lookup 
in the common case. In Chapter 22 we'll see that TCP and UDP store a pointer to their 
routing table entry in their protocol control block, avoiding a search of the routing table in 
the case of TCP (where the destination IP address never changes for a connection) and in 
the case of UDP when the destination doesn't change.  

21.5 The timeout of an incomplete ARP entry occurs between 0 and 5 minutes after the entry is 
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created. arpresolve sets rt_expire to the current time when the ARP request is 
sent. The next time arptimer runs, if that entry is not resolved, it is deleted (assuming 
its reference count is 0).  

21.6 ether_output returns EHOSTUNREACH instead of EHOSTDOWN, causing an 
ICMP host unreachable error to be sent to the sending host by ip_forward.

21.7 The value for 140.252.13.32 is set in Figure 21.28 to the current time when the entry is 
created. It never changes.  

The values for 140.252.13.33 and 140.252.13.34 are copied from the entry for 
140.252.13.32 when these two entries are cloned by rtrequest. They are then set to 
the time at which an ARP request is sent by arpresolve, and finally set by 
in_arpinput to the time at which an ARP reply is received, plus 20 minutes. 

The value for 140.252.13.35 is also copied from the entry for 140.252.13.32 when the 
entry is cloned, but then set to 0 by the code at the end of Figure 21.29.

21.8 Change the call to arplookup at the beginning of Figure 21.19 to always specify a 
second argument of 1 (the create flag).  

21.9 The first datagram was sent after the halfway mark to the next second. Therefore both the 
first and second datagrams caused ARP requests to be sent, about 500 ms apart, since the 
kernel's time.tv_sec variable had different values when these two datagrams were 
sent.

21.10 Each packet to send is an mbuf chain. The m_nextpkt pointer in the first mbuf in each 
chain could be used to form a list of mbufs awaiting transmission.  

Chapter 22  

22.1 An infinite loop occurs, waiting for a port to become available. This assumes the process 
is allowed to open enough descriptors to tie up all ephemeral ports.  

22.2 Few, if any, servers support this option. [Cheswick and Bellovin 1994] mention how this 
would be nice for implementing firewall systems.  

22.4 The udb structure is initialized to 0 so udb.inp_lport starts at 0. The first time 
through in_pcbbind it is incremented to 1, which is less than 1024, so it is set to 
1024.  

22.5 Normally the caller sets the address family (sa_family) to AF_INET, but we saw 
in Figure 22.20 that the test for this is commented out. The caller can set the length 
member (sa_len), but we saw in Figure 15.20 that the function sockargs always 
sets this to the third argument to bind, which for a sockaddr_in structure is 
specified as 16, normally using C's sizeof operator.  
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The local IP address (sin_addr) can be specified as a wildcard address or as a local IP 
address. The local port number (sin_port), can be either 0 (telling the kernel to 
choose an ephemeral port) or nonzero if the process wants a particular port. Normally a 
TCP or UDP server specifies a wildcard IP address and a nonzero port, and a UDP client 
often specifies a wildcard IP address and a port number of 0. 

22.6 A process is allowed to bind a local broadcast address, because the call to 
ifa_ifwithaddr in Figure 22.22 succeeds. That address is used as the source 
address for IP datagrams sent on the socket. As noted in Section C.2, this behavior is not 
allowed by RFC 1122.  

An attempt to bind 255.255.255.255, however, fails, since that address is not acceptable 
to ifa_ifwithaddr.

Chapter 23  

23.1 sosend places the user data into a single mbuf if the size is less than or equal to 100 
bytes; into two mbufs if the size is less than or equal to 207 bytes; or into one or more 
mbufs, each with a cluster, otherwise. Furthermore, sosend calls MH_ALIGN if the 
size is less than 100 bytes, which, it is hoped, will allow room at the beginning of the mbuf 
for the protocol headers. Since udp_output calls M_PREPEND, the following five 
scenarios are possible: (1) If the size of the user data is less than or equal to 72 bytes, a 
single mbuf contains the IP header, UDP header, and data. (2) If the size is between 73 
and 100 bytes, one mbuf is allocated by sosend for the data and another is allocated by 
M_PREPEND for the IP and UDP headers. (3) If the size is between 101 and 207 bytes, 
two mbufs are allocated by sosend for the data and another by M_PREPEND for the 
IP and UDP headers. (4) If the size is between 208 and MCLBYTES, one mbuf with a 
cluster is allocated by sosend for the data and another by M_PREPEND for the IP and 
UDP headers. (5) Beyond this size, sosend allocates as many mbufs with clusters as 
necessary to hold the data (up to 64 for a maximum data size of 65507 bytes with 1024-
byte clusters), and one mbuf is allocated by M_PREPEND for the IP and UDP headers.  

23.2 IP options are passed to ip_output, which calls ip_insertoptions to insert 
the options into the outgoing IP datagram. This function in turn allocates a new mbuf to 
hold the IP header including options if the first mbuf in the chain points to a cluster (which 
never happens with UDP output) or if there is not enough room at the beginning of the 
first mbuf in the chain for the options. In scenario 1 from the previous solution, the size of 
the options determines whether another mbuf is allocated by ip_insertoptions:
if the size of the user data is less than 100–28– optlen, (where optlen is the number of 
bytes of IP options), there is room in the mbuf for the IP header with options, the UDP 
header, and the data.  

In scenarios 2, 3, 4, and 5, the first mbuf in the chain is always allocated by 
M_PREPEND just for the IP and UDP headers. M_PREPEND calls m_prepend,
which calls MH_ALIGN, moving the 28 bytes of headers to the end of the mbuf, hence 
there is always room for the maximum of 40 bytes of IP options in this first mbuf in the 
chain. 
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23.3 No. The function in_pcbconnect is called, either when the application calls 
connect or when the first datagram is sent on an unconnected UDP socket. Since the 
local address is a wildcard and the local port is 0, in_pcbconnect sets the local port 
to an ephemeral port (by calling in_pcbbind) and sets the local address based on the 
route to the destination.  

23.4 The processor priority level is left at splnet; it is not restored to the saved value. This 
is a bug.  

23.5 No. in_pcbconnect will not allow a connection to port 0. Even if the process 
doesn't call connect directly, an implicit connect is performed, so 
in_pcbconnect is called regardless.  

23.6 The application must call ioctl with the SIOCGIFCONF command to return 
information on all configured IP interfaces. The destination address in the received UDP 
datagram must then be compared against all the IP addresses and broadcast addresses in 
the list returned by ioctl. (As an alternative to ioctl, the sysctl system call 
described in Section 19.14 can also be used to obtain the information on all the configured 
interfaces.)  

23.7 recvit releases the mbuf with the control information.  

23.8 To disconnect a connected UDP socket, call connect with an invalid address, such as 
0.0.0.0, and a port of 0. Since the socket is already connected, soconnect calls 
sodisconnect, which calls udp_usrreq with a PRU_DISCONNECT
request. This sets the foreign address to 0.0.0.0 and the foreign port to 0, allowing a 
subsequent call to sendto that specifies a destination address to succeed. Specifying the 
invalid address causes the PRU_CONNECT request from sodisconnect to fail. 
We don't want the connect to succeed, we just want the PRU_DISCONNECT
request executed and this back door through connect is the only way to execute this 
request, since the sockets API doesn't provide a disconnect function.  

The manual page for connect(2) usually contains the following note that hints at this: 
"Datagram sockets may dissolve the association by connecting to an invalid address, such 
as a null address." What this note fails to mention is that the call to connect for the 
invalid address is expected to return an error. The term null address is also vague: it means 
the IP address 0.0.0.0, not a null pointer for the second argument to bind.

23.9 Since an unconnected UDP socket is temporarily connected to the foreign IP address by 
in_pcbconnect, the scenario is the same as if the process calls connect: the 
datagram is sent out the primary interface with a destination IP address corresponding to 
the broadcast address of that interface.  

23.10 The server must set the IP_RECVDSTADDR socket option and use recvmsg to 
obtain the destination IP address from the client's request. For this address to be the source 
IP address of the reply requires that this IP address be bound to the socket. Since you 
cannot bind a socket more than once, the server must create a brand new socket for each 
reply.
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23.11 Notice in ip_output (Figure 8.22) that IP does not modify the DF bit supplied by the 
caller. A new socket option could be defined to cause udp_output to set the DF bit 
before passing datagrams to IP.  

23.12 No. It is used only in the udp_input function and should be local to that function.  

Chapter 24  

24.1 The total number of ESTABLISHED connections is 126,820. Dividing this into the total 
number of bytes transmitted and received yields an average of about 30,000 bytes in each 
direction.  

24.2 In tcp_output, the mbuf obtained for the IP and TCP headers also contains room 
for the link-layer headers (max_linkhdr). The IP and TCP header prototype is copied 
into the mbuf using bcopy, which won't work if the 40-byte header were split between 
two mbufs. Although the 40-byte headers must fit into one mbuf, the link-layer header 
need not. But a performance penalty would occur later (ether_output) because a 
separate mbuf would be required for the link-layer header.  

24.3 On the author's system bsdi, the count was 16, 15 of which were standard system 
daemons (Telnet, Rlogin, FTP, etc.). On vangogh.cs.berkeley.edu, a 
medium-sized multiuser system with around 20 users, the count was 60. On a large 
multiuser system (world.std.com) with around 150 users, the count was 417 TCP 
end points and 809 UDP end points.  

Chapter 25  

25.1 In Figure 24.5 there were 531,285 delayed ACKs over 2,592,000 seconds (30 days). This 
is an average of about one delayed ACK every 5 seconds, or one delayed ACK every 25 
times tcp_fasttimo is called. This means 96% of the time (24 times out of every 
25) every TCP control block is checked for the delayed-ACK flag, when not one is set. On 
the large multiuser system in the solution to Exercise 24.3, this involves looking at over 
400 control blocks, 5 times a second.  

One alternative implementation would be to set a global flag when a delayed ACK is 
needed and only go through the list of control blocks when the flag is set. Alternatively, 
another list could be maintained that contains only the control blocks that require a 
delayed ACK. See, for example, the variable igmp_timers_are_running in 
Figure 13.14.

25.2 This allows the variable tcp_keepintvl to be patched in the running kernel, which 
then changes the value of tcp_maxidle the next time tcp_slowtimo is called.  

25.3 t_idle actually counts the time since a segment was last received or transmitted. This 
is because TCP output must be acknowledged by the other end and the receipt of the ACK 
clears t_idle, as does the receipt of a data segment (Figure 28.8).
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25.4 Here is one way to rewrite the code:  
  case TCPT_2MSL: 
      if (tp->t_state == TCPS_TIME_WAIT) 
          tp = tcp_close(tp); 
      else { 
          if (tp->t_idle <= tcp_maxidle) 
              tp->t_timer[TCPT_2MSL] = tcp_keepintvl; 
          else 
              tp = tcp_close(tp); 
      } 
      break; 

25.5 When the duplicate ACK is received, t_idle is 150, but it is reset to 0. When the 
FIN_WAIT_2 timer expires, t_idle will be 1048 (1198 – 150), so the timer is set to 
150 ticks. When the timer expires the next time, t_idle will be 1198, so the timer is set 
to 150 ticks. When the timer expires the next time, t_idle will be 1198 + 150, so the 
connection is closed. The duplicate ACK extends the time until the connection is closed.  

25.6 The first keepalive probe will be sent 1 hour in the future. When the process sets the 
option, nothing happens other than setting the SO_KEEPALIVE option in the 
socket structure. When the timer expires 1 hour in the future, since the option is 
enabled, the code in Figure 25.16 sends the first probe.  

25.7 The value of tcp_rttdflt initializes the RTT estimators for every TCP connection. 
A site can change the default of 3, if desired, by patching the global variable. If the value 
were a #define constant, it could be changed only by recompiling the kernel.  

Chapter 26  

26.1 The counter t_idle is always running for a connection, whereas TCP does not measure 
the amount of time since the last segment was sent on a connection.  

26.2 In Figure 25.26 snd_nxt is set to snd_una, giving a value of 0 for len.

26.3 If you're running a Net/3 system and encounter a peer that can't handle either of these two 
newer options (i.e., that peer refuses to establish the connection, even though a host is 
required to ignore options it doesn't understand), this global can be patched in the kernel to 
disable one or both of these options.  

26.4 The timestamp option would have updated the RTT estimators each time an ACK was 
received for new data: 16 times, twice the number of times without the option. The value 
calculated when the ACK of 6145 was received at time 217.944, however, would have 
been bogus—either the data segment with bytes 5633 through 6144 that was sent at time 
3.740, or the received ACK of 6145, was delayed somewhere for about 200 seconds.  

26.5 There is no guarantee that the 2-byte MSS value is correctly aligned for such a memory 
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reference.

26.6 (This solution is from Dave Borman.) The maximum amount of TCP data in a segment is 
65495 bytes, which is 65535 minus the minimum IP and TCP headers (40). Hence there 
are 39 values of the urgent offset that make no sense: 65496 through and including 65535. 
Whenever the sender has a 32-bit urgent offset that exceeds 65495, 65535 is sent as the 
urgent offset instead, and the URG flag is set. This puts the receiver into urgent mode and 
tells the receiver that the urgent offset points to data that has not been sent yet. The special 
value of 65535 continues to be sent as the urgent offset (with the URG flag set) until the 
urgent offset is less than or equal to 65495, at which point the real urgent offset is sent.  

26.7 We've mentioned that data segments are transmitted reliably (i.e., the retransmission timer 
is set) but ACKs are not. RST segments are not transmitted reliably either. RST segments 
are generated when a bogus segment arrives (either a segment that is wrong for a 
connection, or a segment for a nonexistent connection). If the RST segment is discarded 
by ip_output, when the other end retransmits the segment that caused the RST to be 
generated, another RST will be generated.  

26.8 The application does eight writes of 1024 bytes. The first four times sosend is called, 
tcp_output is called, and a segment is sent. Since these four segments each contain 
the final bytes of data in the send buffer, the PSH flag is set for each segment (Figure 
26.25). The send buffer is also full, so the next write by the process puts the process to 
sleep in sosend. When the ACK is returned with an advertised window of 0, the 4096 
bytes of data in the send buffer have been acknowledged and are discarded, and the 
process wakes up and continues filling the send buffer with the next four writes. But 
nothing can be sent until a nonzero window is advertised by the receiver. When this 
happens, the next four segments are sent, but only the final segment contains the PSH flag, 
since the first three segments do not empty the send buffer. 

26.9 The tp argument to tcp_respond can be a null pointer if the segment being sent 
does not correspond to a connection. The code should check the value of tp and use the 
default only if the pointer is null.  

26.10 tcp_output always allocates an mbuf just to contain the IP and TCP headers, by 
calling MGETHDR in Figures 26.25 and 26.26. This code allocates room at the front of 
the new mbuf only for the link-layer header (max_linkhdr). If IP options are in use 
and the size of the options exceeds max_linkhdr, another mbuf is allocated by 
ip_insertoptions. If the size of the IP options is less than or equal to 
max_linkhdr, then even though ip_insertoptions will use the space at the 
beginning of the mbuf, this will cause ether_output to allocate another mbuf for 
the link-layer header (assuming Ethernet output).  

To try to avoid the extra mbuf, Figures 26.25 and 26.26 could call MH_ALIGN if the 
segment will contain IP options. 

26.11 About 80 lines of C code, assuming RFC 1323 timestamps are in use and the segment is 
timed.  

The macro MGETHDR invokes the macro MALLOC, which might call the function 
malloc. The function m_copy is also called, but a full-sized segment will be in a 
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cluster, so the mbuf is not copied, a reference is made to the cluster. The call to MGET by 
m_copy might call malloc. The function bcopy copies the header template and 
in_cksum calculates the TCP checksum. 

26.12 Nothing changes with writev because of the logic in sosend. Since the total size of 
the data (150) is less than MINCLSIZE (208), one mbuf is allocated for the first 100 
bytes, and since the protocol is not atomic, the PRU_SEND request is issued. Another 
mbuf is allocated for the next 50 bytes, and another PRU_SEND is issued. TCP still 
generates two segments. (writev only generates a single "record," that is, a single 
PRU_SEND request, for PR_ATOMIC protocols such as UDP.)  

With two buffers of length 200 and 300 the total size now exceeds MINCLSIZE. An 
mbuf cluster is allocated and only one PRU_SEND is issued. One 500-byte segment is 
generated by TCP. 

Chapter 27  

27.1 The first six rows of the table are asynchronous errors that are generated by the receipt of a 
segment or the expiration of a timer. By storing the nonzero error code in so_error,
the process receives the error on the next read or write. The call from 
tcp_disconnect, however, occurs when the process calls close, or when the 
descriptor is closed automatically on process termination. In either case of the descriptor 
being closed, the process won't issue a read or write call to fetch the error. Also, since the 
process had to set the socket option explicitly to force the RST, returning an error provides 
no useful information to the process.  

27.2 Assuming a 32-bit u_long, the maximum value is just under 4298 seconds (1.2 hours).  

27.3 The statistics in the routing table are updated by tcp_close and it is called only when 
the connection enters the CLOSED state. Since the sending of data to the other end is 
terminated by the FTP client (it does the active close), the local end point enters the 
TIME_WAIT state. The routing table statistics won't be updated until twice the MSL has 
elapsed.  

Chapter 28  

28.1 0, 1, 2, and 3.  

28.2 34.9 Mbits/sec. For higher speeds, larger buffers are required on both ends.  

28.3 In the general case, tcp_dooptions doesn't know whether the two timestamp values 
are aligned on 32-bit boundaries or not. The special code in Figure 28.4, however, knows 
that the values are on 32-bit boundaries, and avoids calling bcopy.

28.4 The "options prediction" code in Figure 28.4 handles only the recommended format, so 
systems that send other than the recommended format cause the slower processing of 
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tcp_dooptions to occur for every received segment.  

28.5 If tcp_template were called every time a socket were created, instead of every time 
a connection is established, each listening server on a system would have one allocated, 
which it would never use.  

28.6 The timestamp clock frequency should be between 1 bit/ms and 1 bit/sec. (Net/3 uses 2 
bits/sec.) With the highest frequency of 1 bit/ms, a 32-bit timestamp wraps its sign bit in 
231 /(24 x 60 x 60 x 1000) days, which is 24.8 days.  

28.7 With a frequency of 1 bit per 500 ms, a 32-bit timestamp wraps its sign bit in 231/(24 x 60 
x 60 x 2) days, which is 12,427 days, or about 34 years, longer than the uptime of current 
computer systems.  

28.8 The cleanup function of an RST should take precedence over timestamps, and it is 
recommended that RSTs not carry timestamps (which is enforced by tcp_input in 
Figure 26.24).

28.9 Since the client is in the ESTABLISHED state, processing ends up in Figure 28.24.
todrop is 1 because rcv_nxt was incremented over the SYN when it was first 
received. The SYN flag is cleared (since it is a duplicate), ti_seq is incremented, and 
todrop is decremented to 0. The if statement at the top of Figure 28.25 is executed 
since todrop and ti_len are both 0. The next if statement is skipped, and 
processing continues with the call to m_adj. But tcp_output is not called in the 
continuation of tcp_input in the next chapter, therefore the client does not respond to 
the duplicate SYN/ACK. The server will time out and resend the SYN/ACK (recall the 
timer set in Figure 28.17 when a passive socket receives a SYN), which will also be 
ignored. This is another bug in the code in Figure 28.25 and this one is also fixed with the 
code shown in Figure 28.30.

28.10 The client's SYN arrives at the server and is delivered to the socket in the TIME_WAIT 
state. The code in Figure 28.24 turns off the SYN flag and the code in Figure 28.25 jumps 
to dropafterack, dropping the segment but generating an ACK with an 
acknowledgment field of rcv_nxt (Figure 26.27). This is called a resynchronization 
ACK because its purpose is to tell the other end what sequence number it expects. When 
this ACK is received at the client (which is in the SYN_SENT state), its acknowledgment 
field is not the expected value (Figure 28.18), causing an RST to be sent. The sequence 
number of the RST is the acknowledgment field from the resynchronization ACK, and the 
ACK flag of the RST segment is off (Figure 29.28). When the server receives the RST, its 
TIME_WAIT state is prematurely terminated and the socket is closed on the server's host 
(Figure 28.36). The client times out after 6 seconds and retransmits its SYN. Assuming a 
listening server process is running on the server host, the new connection is established. 
Because of this form of TIME_WAIT assassination, a new connection is established not 
only when a SYN arrives with a higher sequence number (as checked for in Figure 28.29),
but also when a SYN with a lower sequence number arrives.  

Chapter 29  

29.1 Assume a 2-second RTT. The server has a passive open pending and the client issues its 
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active open at time 0. The server receives the SYN at time 1 and responds with its own 
SYN and an ACK of the client's SYN. The client receives this segment at time 2, and the 
code in Figure 28.20 completes the active open with the call to soisconnected
(waking up the client process) and an ACK will be sent back to the server. The server 
receives the ACK at time 3, and the code in Figure 29.2 completes the server's passive 
open, returning control to the server process. In general, the client process receives control 
about one-half RTT before the server.  

29.2 Assume the sequence number of the SYN is 1000 and the 50 bytes of data are numbered 
1001–1050. When the SYN is processed by tcp_input, first the case starting in 
Figure 28.15 is executed, which sets rcv_nxt to 1001, and then a jump is made to 
step6. Figure 29.22 calls tcp_reass and the data is placed onto the socket's 
reassembly queue. But the data cannot be appended to the socket's receive buffer yet 
(Figure 27.23) so rcv_nxt is left at 1001. When tcp_output is called to generate 
the immediate ACK, rcv_nxt (1001) is sent as the acknowledgment field. In summary, 
the SYN is acknowledged, but not the 50 bytes of data. Since the client will retransmit the 
50 bytes of data, there is no advantage in sending data with a SYN generated by an active 
open.  

29.3 The server's socket is in the SYN_RCVD state when the client's ACK/FIN arrives, so 
tcp_input ends up processing the ACK in Figure 29.2. The connection moves to the 
ESTABLISHED state and tcp_reass appends the already-queued data to the socket's 
receive buffer. rcv_nxt is incremented to 1051. tcp_input continues and the FIN 
is handled in Figure 29.24 where the TF_ACKNOW flag is set and rcv_nxt becomes 
1052. socantrcvmore sets the socket's state so that after the server reads the 50 
bytes of data, the server will receive an end-of-file. The server's socket also moves to the 
CLOSE_WAIT state. tcp_output will be called to ACK the client's FIN (since 
rcv_nxt equals 1052). Assuming the server process closes its socket when it reads the 
end-of-file, the server will then send a FIN for the client to ACK.  

In this example six segments requiring three round trips are required to pass the 50 bytes 
from the client to server. To reduce the number of segments requires the TCP extensions 
for transactions [Braden 1994].

29.4 The client's socket is in the SYN_SENT state when the server's response is received. 
Figure 28.20 processes the segment and moves the connection to the ESTABLISHED 
state. A jump is made to step6 and the data is processed in Figure 29.22.
TCP_REASS appends the data to the socket's receive buffer and rcv_nxt is 
incremented to acknowledge the data. The FIN is then processed in Figure 29.24,
incrementing rcv_nxt again and moving the connection to the CLOSE_WAIT state. 
When tcp_output is called, the acknowledgment field ACKs the SYN, the 50 bytes 
of data, and the FIN. The client process then reads the 50 bytes of data, followed by the 
end-of-file, and then probably closes its socket. This moves the connection to the 
LAST_ACK state and causes a FIN to be sent by the client, which the server should 
acknowledge.  

29.5 The bug is in the entry tcp_outflags[TCPS_CLOSING] shown in Figure
24.16. It specifies the TH_FIN flag, whereas the state transition diagram (Figure 24.15)
doesn't specify that the FIN should be retransmitted. To fix this, remove TH_FIN from 
the tcp_outflags entry for this state. The bug is relatively harmless—it just causes 
two extra segments to be exchanged—and a simultaneous close or a close following a self-
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connect is rare.  

29.6 No. An OK return from a write system call only means the data has been copied into the 
socket buffer. Net/3 does not notify the process when that data is acknowledged by the 
other end. An application-level acknowledgment is required to obtain this information.  

29.7 RFC 1323 timestamps defeat header compression because whenever the timestamps 
change, the TCP options change, and the segment is sent uncompressed. The window 
scale option has no effect because the value in the TCP header is still a 16-bit value.  

29.8 IP assigns the ID field from a global variable that is incremented each time any IP 
datagram is sent. This increases the probability that two consecutive TCP segments sent 
on the same connection will have ID values that differ by more than 1. A difference other 
than 1 causes the ipid field in Figure 29.34 to be transmitted, increasing the size of the 
compressed header. A better scheme would be for TCP to maintain its own counter for 
assigning IDs.

Chapter 30  

30.2 Yes, the RST is still sent. Part of process termination is the closing of all open descriptors. 
The same function (soclose) is eventually called, regardless of whether the process 
explicitly closes the socket descriptor or implicitly closes it (by terminating first).  

30.3 No. The only use of this constant is when a listening socket sets the SO_LINGER socket 
option with a linger time of 0. Normally this causes an RST to be sent when the 
connection is closed (Figure 30.12), but Figure 30.2 changes this value of 0 to 120 (clock 
ticks) for a listening socket that receives a connection request.  

30.4 Two if this is the first use of the default route; otherwise one. When the socket is created 
the Internet PCB is set to 0 by in_pcballoc. This sets the route structure in the 
PCB to 0. When the first segment is sent (the SYN), tcp_output calls 
ip_output. Since the ro_rt pointer is null, ro_dst is filled in with the 
destination address of the IP datagram and rtalloc is called. The pointer to the default 
route is saved in the ro_rt member of the route structure within the PCB for this 
connection. When ether_output is called by ip_output, it checks whether the 
rt_gwroute member of the routing table entry is null, and, if so, rtalloc1 is 
called. Assuming the route doesn't change, each time tcp_output is called for this 
connection, the cached ro_rt pointer is used, avoiding any additional routing table 
lookups.  

Chapter 31  

31.1 Because catchpacket will always run to completion before any sleeping processes 
are awakened by the bpf_wakeup call.  

31.2 A process that opens a BPF device may call fork resulting in multiple processes with 
access to the same BPF device.  
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31.3 Only supported devices are on the BPF interface list (bpf_iflist), so 
bpf_setif returns ENXIO when the interface is not found.  

Chapter 32  

32.1 0 in the first example, and 255 in the second. Both of these values are reserved in RFC 
1700 [Reynolds and Postel 1994] and should not appear in datagrams. This means, for 
example, that a socket created with a protocol of IPPROTO_RAW should always have 
the IP_HDRINCL socket option set, and datagrams written to the socket should have a 
valid protocol value.  

32.2 Since the IP protocol value of 255 is reserved, datagrams should never appear on the wire 
with this protocol value. Since this is a nonzero protocol value, the first of the three tests in 
rip_input will ignore every received datagram that does not have this protocol value. 
Therefore the process should not receive any datagrams on the socket.  

32.3 Even though this protocol value is reserved and datagrams should never appear on the 
wire with this value, the first of the three tests in rip_input allows datagrams with 
any protocol value to be received by sockets of this type. The only input filtering that 
occurs for this type of raw socket is based on the source and destination IP addresses, if 
the process calls either connect or bind, or both.  

32.4 Since the array ip_protox array (Figure 7.22) contains information about which 
protocol the kernel supports, the ICMP error should be generated only when there are no 
raw listeners for the protocol and the pointer inetsw[ip_protox[ip-
>ip_p]].pr_input equals rip_input.

32.5 In both cases the process must build its own IP header, in addition to whatever follows the 
IP header (UDP datagram, TCP segment, or whatever). With a raw IP socket, output is 
normally done using sendto specifying the destination address as an Internet socket 
address structure containing an IP address. ip_output is called and normal IP routing 
is done based on the destination IP address.  

BPF requires the process to supply a complete data-link header, such as an Ethernet 
header. Output is normally done by calling write, since a destination address cannot 
be specified. The packet is passed directly to the interface output function, bypassing 
ip_output (Figure 31.20). The process selects the outgoing interface using the 
BIOCSETIF ioctl (Figure 31.16). Since IP routing is not performed, the 
destination of the packet is limited to another system on an attached network (unless the 
process duplicates the IP routing function and sends the packet to a router on an attached 
network, for the router to forward based on the destination IP address). 

32.6 A raw IP socket receives only IP datagrams destined for an IP protocol that the kernel 
does not process itself. A process cannot receive TCP segments or UDP datagrams on a 
raw socket, for example.  

BPF can receive all frames received on a specified interface, regardless of whether they 
are IP datagrams or not. The BIOCPROMISC ioctl can put the interface into a 
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promiscuous mode, to receive datagrams that are not even destined for this host. 
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Appendix B. Source Code Availability 

URLs: Uniform Resource Locators 

This text uses URLs to specify the location and method of access of resources on the Internet. For 
example, the common "anonymous FTP" technique is designated as 

ftp://ftp.cdrom.com/pub/bsd-sources/4.4BSD-Lite.tar.gz
 

This specifies anonymous FTP to the host ftp.cdrom.com. The filename is 4.4BSD–
Lite.tar.gz in the directory pub/bsd–sources. The suffix .tar implies the standard 
Unix tar(1) format, and the additional .gz suffix implies that the file has been compressed with the 
GNU gzip(1) program. 

4.4BSD-Lite 

There are numerous ways to obtain the 4.4BSD-Lite release. The entire 4.4BSD-Lite release is 
available from Walnut Creek CD-ROM as 

ftp://ftp.cdrom.com/pub/bsd-sources/4.4BSD-Lite.tar.gz
 

You can also obtain this release on CD-ROM. Contact 1 800 786 9907 or +1 510 674 0783. 

O’Reilly & Associates publishes the entire set of 4.4BSD manuals along with the 4.4BSD-Lite release 
on CD-ROM. Contact 1 800 889 8969 or +1 707 829 0515. 

Operating Systems that Run the 4.4BSD-Lite Networking 
Software 

The 4.4BSD-Lite release is not a complete operating system. To experiment with the networking 
software described in this text you need an operating system that is built from the 4.4BSD-Lite release 
or an environment that supports the 4.4BSD-Lite networking code. 

The operating system used by the authors is commercially available from Berkeley Software Design, 
Inc. Contact 1 800 ITS BSD8, +1 719 260 8114, or info@bsdi.com for additional information. 

There are also freely available operating systems built on 4.4BSD-Lite. These are known by the names 
NetBSD, 386BSD, and FreeBSD. Additional information is available from Walnut Creek CD-ROM 
(ftp.cdrom.com) or on the various comp.os.386bsd Usenet newsgroups. 

RFCs 

All RFCs are available at no charge through electronic mail or by using anonymous FTP across the 
Internet. Sending electronic mail as shown here: 

    To: rfc-info@ISI.EDU 
    Subject: getting rfcs 

    help: ways_to_get_rfcs 
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returns a detailed listing of various ways to obtain the RFCs using either email or anonymous FTP. 

Remember that the starting place is to obtain the current index and look up the RFC that you want in 
the index. This entry tells you if that RFC has been made obsolete or updated by a newer RFC. 

GNU Software 

The GNU Indent program was used to format all the source code presented in the text, and the GNU 
Gzip program is often used on the Internet to compress files. These programs are available as 

ftp://prep.ai.mit.edu/pub/gnu/indent-1.9.1.tar.gz
ftp://prep.ai.mit.edu/pub/gnu/gzip-1.2.2.tar
 

The numbers in the filenames will change as newer versions are released. There are also versions of 
the Gzip program for other operating systems, such as MS-DOS. 

There are many sites around the world that also provide the GNU archives, and the FTP greeting on 
prep.ai.mit.edu displays their names. 

PPP Software 

There are several freely available implementations of PPP. Part 5 of the 
comp.protocols.ppp FAQ is a good place to start: 

http://cs.uni-bonn.de/ppp/part5.html

mrouted Software 

Current releases of the mrouted software as well as other multicast applications can be found at the 
Xerox Palo Alto Research Center: 

ftp://parcftp.xerox.com/pub/net-research/

ISODE Software 

An SNMP agent implementation compatible with Net/3 is part of the ISODE software package. For 
more information, start with the ISODE Consortium’s World Wide Web page at 

http://www.isode.com/

http://www.isode.com/
http://cs.uni-bonn.de/ppp/part5.html
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Appendix C. RFC 1122 Compliance 

This appendix summarizes the compliance of the Net/3 implementation with RFC 1122 [Braden 
1989a]. This RFC summarizes these requirements in four categories 

link layer 
internet layer 
UDP 
TCP 

We have chosen to present these requirements in the same breakdown and order as the chapters of this 
text. 

C.1. Link-Layer Requirements 

This section summarizes the link-layer requirements from Section 2.5 of RFC 1122 and the 
compliance of the Net/3 code that we’ve examined to those requirements. 

May support trailer encapsulation. 

Partially: Net/3 does not send IP datagrams with trailer encapsulation but some Net/3 device 
drivers may be able to receive such datagrams. We have omitted all the trailer encapsulation 
code in this text. Interested readers are referred to RFC 893 and Section 11.8 of [Leffler et al. 
1989] for additional details. 

Must not send trailers by default without negotiation. 

Not applicable: Net/2 would negotiate the use of trailers but Net/3 ignores requests to send 
trailers and does not request trailers itself. 

Must be able to send and receive RFC 894 Ethernet encapsulation. 

Yes: Net/3 supports RFC 894 Ethernet encapsulation. 

Should be able to receive RFC 1042 (IEEE 802) encapsulation. 

No: Net/3 processes packets received with 802.3 encapsulation but only for use with OSI 
protocols. IP packets that arrive with 802.3 encapsulation are discarded by ether_input 
(Figure 4.13). 

May send RFC 1042 encapsulation, in which case there must be a software configuration 
switch to select the encapsulation method and RFC 894 must be the default. 

No: Net/3 does not send IP packets in RFC 1042 encapsulation. 

Must report link-layer broadcasts to the IP layer. 

Yes: The link layer reports link-layer broadcasts by setting the M_BCAST flag (or the 
M_MCAST flag for multicasts) in the mbuf packet header. 

Must pass the IP TOS value to the link layer. 
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Yes: The TOS value is not passed explicitly, but is part of the IP header available to the link 
layer. 

C.2. IP Requirements 

This section summarizes the IP requirements from Section 3.5 of RFC 1122 and the compliance of the 
Net/3 code that we’ve examined to those requirements. 

Must implement IP and ICMP. 

Yes: inetsw[0] implements the IP protocol and inetsw[4] implements ICMP. 

Must handle remote multihoming in application layer. 

Yes: The kernel is unaware of communication to remote multihomed hosts and neither 
hinders nor supports such communication by an application. 

May support local multihoming. 

Yes: Net/3 supports multiple IP interfaces with the ifnet list and multiple addresses per IP 
interface with the ifaddr list for each ifnet structure. 

Must meet router specifications if forwarding datagrams. 

Partially: See Chapter 18 for a discussion of the router requirements. 

Must provide configuration switch for embedded router functionality. The switch must default 
to host operation. 

Yes: The ipforwarding variable defaults to false and controls the IP packet forwarding 
mechanism in Net/3. 

Must not enable routing based on number of interfaces. 

Yes: The if_attach function does not modify ipforwarding according to the 
number of interfaces configured at system initialization time. 

Should log discarded datagrams, including the contents of the datagram, and record the event 
in a statistics counter. 

Partially: Net/3 does not provide a mechanism for logging the contents of discarded 
datagrams but maintains a variety of statistics counters. 

Must silently discard datagrams that arrive with an IP version other than 4. 

Yes: ipintr implements this requirement. 

Must verify IP checksum and silently discard an invalid datagram. 

Yes: ipintr calls in_cksum and implements this requirement. 

Must support subnet addressing (RFC 950). 
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Yes: Every IP address has an associated subnet mask in the in_ifaddr structure. 

Must transmit packets with host’s own IP address as the source address. 

Partially: When the transport layer sends an IP datagram with all-0 bits as the source address, 
IP inserts the IP address of the outgoing interface in its place. A process can bind one of the 
local IP broadcast addresses to the local socket, and IP will transmit it as an invalid source 
address. 

Must silently discard datagrams not destined for the host. 

Yes: If the system is not configured as a router, ipintr discards datagrams that arrive with 
a bad destination address (i.e., an unrecognized unicast, broadcast, or multicast address). 

Must silently discard datagrams with bad source address (nonunicast address). 

No: ipintr does not examine the source address of incoming datagrams before delivering 
the datagram to the transport protocols. 

Must support reassembly. 

Yes: ip_reass implements reassembly. 

May retain same ID field in identical datagrams. 

No: ip_output assigns a new ID to every outgoing datagram and does not allow the ID 
to be specified by the transport protocols. See Chapter 32. 

Must allow the transport layer to set TOS. 

Yes: ip_output accepts any TOS value set in the IP header by the transport protocols. 
The transport layer must default TOS to all 0s. The TOS value for a particular datagram or 
connection may be set by the application through the IP_TOS socket option. 

Must pass received TOS up to transport layer. 

Yes: Net/3 preserves the TOS field during input processing. The entire IP header is made 
available to the transport layer when IP calls the pr_input function for the receiving 
protocol. Unfortunately, the UDP and TCP transport layers ignore it. 

Should not use RFC 795 [Postel 1981d] link-layer mappings for TOS. 

Yes: Net/3 does not use these mappings. 

Must not send packet with TTL of 0. 

Partially: The IP layer (ip_output) in Net/3 does not check this requirement and relies 
on the transport layers not to construct an IP header with a TTL of 0. UDP, TCP, ICMP, and 
IGMP all select a nonzero TTL default value. The default value can be overridden by the 
IP_TTL option. 

Must not discard received packets with a TTL less than 2. 
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Yes: If the system is the final destination of the packet, ipintr accepts it regardless of the 
TTL value. The TTL is examined only when the packet is being forwarded. 

Must allow transport layer to set TTL. 

Yes: The transport layer must set TTL before calling ip_output.

Must enable configuration of a fixed TTL. 

Yes: The default TTL is specified by the global integer ip_defttl, which defaults to 64 
(IPDEFTTL). Both UDP and TCP use this value unless the IP_TTL socket option has 
specified a different value for a particular socket. ip_defttl can be modified through the 
IPCTL_DEFTTL name for sysctl.

Multihoming

Should select, as the source address for a reply, the specific address received as the 
destination address of the request. 

Yes: Responses generated by the kernel (ICMP reply messages) include the correct source 
address (Section C.5). Responses generated by the transport protocols are described in their 
respective chapters. 

Must allow application to choose local IP address. 

Yes: An application can bind a socket to a specific local IP address (Section 15.8). 

May silently discard datagrams addressed to an interface other than the one on which it is 
received. 

No: Net/3 implements the weak end system model and ipintr accepts such packets. 

May require packets to exit the system through the interface with an IP address that 
corresponds to the source address of the packet. This requirement pertains only to packets that 
are not source routed. 

No: Net/3 allows packets to exit the system through any interface another weak end system 
characteristic. 

Broadcast

Must not select an IP broadcast address as a source address. 

Partially: If an application explicitly selects a source address, the IP layer does not override 
the selection. Otherwise, IP selects as a source address the specific IP address associated with 
the outgoing interface. 

Should accept an all-0s or all-1s broadcast address. 

Yes: ipintr accepts packets sent to either address. 

May support a configurable option to send all 0s or all 1s as the broadcast address on an 
interface. If provided, the configurable broadcast address must default to all 1s. 
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No: A process must explicitly send to either the all-0s (INADDR_ANY) or all-1s broadcast 
address (INADDR_BROADCAST). There is no configurable default. 

Must recognize all broadcast address formats. 

Yes: ipintr recognizes the limited (all-1s and all-0s) and the network-directed and 
subnet-directed broadcast addresses. 

Must use an IP broadcast or IP multicast destination address in a link-layer broadcast. 

Yes: ip_output enables the link-layer multicast or broadcast flags only when the 
destination is an IP multicast or broadcast address. 

Should silently discard link-layer broadcasts when the packet does not specify an IP broadcast 
address as its destination. 

No: There is no explicit test for the M_BCAST or M_MCAST flags on incoming packets in 
Net/3, but ip_forward will discard these packets before forwarding them. 

Should use limited broadcast address for connected networks. 

Partially: The decision to use the limited broadcast address (versus a subnet-directed or 
network-directed broadcast) is left to the application level by Net/3. 

IP Interface

Must allow transport layer to use all IP mechanisms (e.g., IP options, TTL, TOS). 

Yes: All the IP mechanisms are available to the transport layer in Net/3. 

Must pass interface identification up to transport layer. 

Yes: The m_pkthdr.rcvif member of each mbuf containing an incoming packet 
points to the ifnet structure of the interface that received the packet. 

Must pass all IP options to transport layer. 

Yes: The entire IP header, including options, is present in the packet passed to the 
pr_input function of the receiving transport protocol by ipintr.

Must allow transport layer to send ICMP port unreachable and any of the ICMP query 
messages. 

Yes: The transport layer may send any ICMP error messages by calling icmp_error or 
may format and send any type of IP datagram by calling the ip_output function. 

Must pass the following ICMP messages to the transport layer: destination unreachable, 
source quench, echo reply, timestamp reply, and time exceeded. 

Yes: These messages are distributed by ICMP to other transport protocols or to any waiting 
processes using the raw IP socket mechanism. 
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Must include contents of ICMP message (IP header plus the data bytes present) in ICMP 
message passed to the transport layer. 

Yes: icmp_input passes the portion of the original IP packet contained within the ICMP 
message to the transport layers. 

Should be able to leap tall buildings at a single bound. 

No: The next version of IP may meet this requirement. 

C.3. IP Options Requirements 

This section summarizes the IP option processing requirements from Section 3.5 of RFC 1122 and the 
compliance of the Net/3 code that we’ve examined to those requirements. 

Must allow transport layer to send IP options. 

Yes: The second argument to ip_output is a list of IP options to include in the outgoing 
IP datagram. 

Must pass all IP options received to higher layer. 

Yes: The IP header and options are passed to the pr_input function of the receiving 
transport protocol. 

Must silently ignore unknown options. 

Yes: The default case in ip_dooptions skips over unknown options. 

May support the security option. 

No: Net/3 does not support the IP security option. 

Should not send the stream identifier option and must ignore it in received datagrams. 

Yes: Net/3 does not support the stream identifier option and ignores it on incoming 
datagrams. 

May support the record route option. 

Yes: Net/3 supports the record route option. 

May support the timestamp option. 

Partially: Net/3 supports the timestamp option but does not implement it exactly as specified. 
The originating host does not insert a timestamp when required but the destination host 
records a timestamp before passing the datagram to the transport layer. The timestamp value 
follows the rules regarding standard values as specified in Section 3.2.2.8 of RFC 1122 for 
the ICMP timestamp message. 

Must support originating a source route and must be able to act as the final destination of a 
source route. 
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Yes: A source route may be included in the options passed to ip_output, and 
ip_dooptions correctly terminates a source route and saves it for use in constructing 
return routes. 

Must pass a datagram with completed source route up to the transport layer. 

Yes: The source route option is passed up with any other options that may have appeared in 
the datagram. 

Must build correct (nonredundant) return route. 

No: Net/3 blindly reverses the source route and does not check or correct for a route that was 
built incorrectly with a redundant hop for the original source host. 

Must not send multiple source route options in one header. 

No: The IP layer in Net/3 does not prohibit a transport protocol from constructing and 
sending multiple source route options in a single datagram. 

Source Route Forwarding

May support packet forwarding with the source route option. 

Yes: Net/3 supports the source route options. ip_dooptions does all the work. 

Must obey corresponding router rules while processing source routes. 

Yes: Net/3 follows the router rules whether or not the packet contains a source route. 

Must update TTL according to gateway rules. 

Yes: ip_forward implements this requirement. 

Must generate ICMP error codes 4 and 5 (fragmentation required and source route failed). 

Yes: ip_output is able to generate a fragmentation required message, and 
ip_dooptions is able to generate the source route failed message. 

Must allow the IP source address of a source routed packet to not be an IP address of the 
forwarding host. 

Yes: ip_output transmits such packets. 

RFC 1122 lists this as a may requirement because the addresses may be 
different, which must be allowed. 

Must update timestamp and record route options. 

Yes: ip_dooptions processes these options for source routed packets. 

Must support a configurable switch for nonlocal source routing. The switch must default to 
off. 
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No: Net/3 always allows nonlocal source routing and does not provide a switch to disable this 
function. Nonlocal source routing is routing packets between two different interfaces instead 
of receiving and sending the packet on the same interface. 

Must satisfy gateway access rules for nonlocal source routing. 

Yes: Net/3 follows the forwarding rules for nonlocal source routing. 

Should send an ICMP destination unreachable error (source route failed) if a source routed 
packet cannot be forwarded (except for ICMP error messages). 

Yes: ip_dooptions sends the ICMP destination unreachable error. icmp_error 
discards it if the original datagram was an ICMP error message. 

C.4. IP Fragmentation and Reassembly Requirements 

This section summarizes the IP fragmentation and reassembly requirements from Section 3.5 of RFC 
1122 and the compliance of the Net/3 code that we’ve examined to those requirements. 

Must be able to reassemble incoming datagrams of at least 576 bytes. 

Yes: ip_reass supports reassembly of datagrams of indefinite size. 

Should support a configurable or indefinite maximum size for incoming datagrams. 

Yes: Net/3 supports an indefinite maximum size for incoming datagrams. 

Must provide a mechanism for the transport layer to learn the maximum datagram size to 
receive. 

Not applicable: Net/3 has an indefinite limit based on available memory. 

Must send ICMP time exceeded error on reassembly timeout. 

No: Net/3 does not send an ICMP time exceeded error. See Figure 10.30 and Exercise 10.1. 

Should support a fixed reassembly timeout value. The remaining TTL value in a received IP 
fragment should not be used as a reassembly timeout value. 

Yes: Net/3 uses a compile-time value of 30 seconds (IPFRAGTTL is 60 slow-timeout 
intervals, which equals 30 seconds). 

Must provide the MMS_S (maximum message size to send) to higher layers. 

Partially: TCP derives the MMS_S from the MTU found in the route entry for the destination 
or from the MTU of the outgoing interface. A UDP application does not have access to this 
information. 

May support local fragmentation of outgoing packets. 

Yes: ip_output fragments an outgoing packet if it is too large for the selected interface. 
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Must not allow transport layer to send a message larger than MMS_S if local fragmentation is 
not supported. 

Not applicable: This is a transport-level requirement that does not apply to Net/3 since local 
fragmentation is supported. 

Should not send messages larger than 576 bytes to a remote destination in the absence of 
other information regarding the path MTU to the destination. 

Partially: Net/3 TCP defaults to a segment size of 552 (512 data bytes + 40 header bytes). 
Net/3 UDP applications cannot determine if a destination is local or remote and so they often 
restrict their messages to 540 bytes (512 + 20 + 8). There is no kernel mechanism that 
prohibits sending larger messages. 

May support an all-subnets-MTU configuration flag. 

Yes: The global integer subnetsarelocal defaults to true. TCP uses this flag to select 
a larger segment size (the size of the outgoing interface’s MTU) instead of the default 
segment size for destinations on a subnet of the local network. 

C.5. ICMP Requirements 

This section summarizes the ICMP requirements from Section 3.5 of RFC 1122 and the compliance of 
the Net/3 code that we’ve examined to those requirements. 

Must silently discard ICMP messages with unknown type. 

Partially: icmp_input ignores these messages and passes them to rip_input, 
which delivers the message to any waiting processes or silently discards the message if no 
process is prepared to receive the message. 

May include more than 8 bytes of the original datagram. 

No: The icmp_error function returns only a maximum of 8 bytes of the original 
datagram in the ICMP error message, Exercise 11.9. 

Must return the header and data unchanged from the received datagram. 

Partially: Net/3 converts the ID, offset, and length fields of an IP packet from network byte 
order to host byte order in ipintr. This facilitates processing the packet, but Net/3 
neglects to return the offset and length fields to network byte order before including the 
header in an ICMP error message. If the system operates with the same byte ordering as the 
network, this error is harmless. If it operates with a different ordering, the IP header contained 
within the ICMP error message has incorrect offset and length values. 

The authors found that an Intel implementation of SVR4 and AIX 3.2 (Net/2 
based) both return the length byte-swapped. Implementations other than 
Net/2 or Net/3 that were tried (Cisco, NetBlazer, VM, and Solaris 2.3) did 
not have this bug. 

Another error occurs when an ICMP port unreachable error is sent from the 
UDP code: the header length of the received datagram is changed incorrectly 
(Section 23.7). The authors found this error in Net/2 and Net/3 
implementations. Net/1, however, did not have the bug. 
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Must demultiplex received ICMP error message to transport protocol. 

Yes: icmp_error uses the protocol field from the original header to select the 
appropriate transport protocol to respond to the error. 

Should send ICMP error messages with a TOS field of 0. 

Yes: All ICMP error messages are constructed with a TOS of 0 by icmp_error.

Must not send an ICMP error message caused by a previous ICMP error message. 

Partially: icmp_error sends an error for an ICMP redirect message, which Section 3.2.2 
of RFC 1122 classifies as an ICMP error message. 

Must not send an ICMP error message caused by an IP broadcast or IP multicast datagram. 

No: icmp_error does not check for this case. 

The icmp_error function from the original Deering multicast code for 
BSD checks for this case. 

Must not send an ICMP error message caused by a link-layer broadcast. 

Yes: icmp_error discards ICMP messages in response to packets that arrived as link-
layer broadcasts or multicasts. 

Must not send an ICMP error message caused by a noninitial fragment. 

Yes: icmp_error discards errors generated in this case. 

Must not send an ICMP error message caused by a datagram with nonunique source address. 

Yes: icmp_reflect checks for experimental and multicast addresses. ip_output 
discards messages sent from a broadcast address. 

Must return ICMP error messages when not prohibited. 

Partially: In general, Net/3 sends appropriate ICMP error messages. It fails to send an ICMP 
reassembly timeout message at the appropriate time (Exercise 10.1). 

Should generate ICMP destination unreachable (protocol and port). 

Partially: Datagrams for unsupported protocols are delivered to rip_input where they 
are silently discarded if there are no processes registered to accept the datagrams. UDP 
generates an ICMP port unreachable error. 

Must pass ICMP destination unreachable to higher layer. 

Yes: icmp_input passes the message to the pr_ctlinput function defined for the 
protocol (udp_ctlinput and tcp_ctlinput for UDP and TCP, respectively). 

Should respond to destination unreachable error. 
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See Sections 23.9 and 27.6. 

Must interpret destination unreachable as only a hint, as it may indicate a transient condition. 

See Sections 23.9 and 27.6. 

Must not send an ICMP redirect when configured as a host. 

Yes: ip_forward, the only function that detects and sends redirects, is not called unless 
the system is configured as a router. 

Must update route cache when an ICMP redirect is received. 

Yes: ipintr calls rtredirect to process the message. 

Must handle both host and network redirects. Furthermore, network redirects must be treated 
as host redirects. 

Yes: ipintr calls rtredirect for both types of messages. 

Should discard illegal redirects. 

Yes: rtredirect discards illegal redirects (Section 19.7). 

May send source quench if memory is unavailable. 

Yes: ip_forward sends a source quench if ip_output returns ENOBUFS. This 
occurs when there is a shortage of mbufs or when an interface output queue is full. 

Must pass source quench to higher layer. 

Yes: icmp_input passes source quench errors to the transport layers. 

Should respond to source quench in higher layer. 

See Sections 23.9 and 27.6 for UDP and TCP processing. Neither ICMP nor IGMP accept 
ICMP error messages (they don’t define a pr_ctlinput function), in which case they 
are discarded by IP. 

Must pass time exceeded error to transport layer. 

Yes: icmp_input passes this message to the transport layers. 

Should send parameter problem errors. 

Yes: ip_dooptions complains about incorrectly formed options. 

Must pass parameter problem errors to transport layer. 

Yes: icmp_input passes parameter problem errors to the transport layer. 

May report parameter problem errors to process. 
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See Sections 23.9 and 27.6 for UDP and TCP processing. Neither ICMP nor IGMP accept 
ICMP error messages. 

Must support an echo server and should support an echo client. 

Yes: icmp_input implements the echo server and the ping program implements the 
echo client using a raw IP socket. 

May discard echo requests to a broadcast address. 

No: The reply is sent by icmp_reflect.

May discard echo request to multicast address. 

No: Net/3 responds to multicast echo requests. Both icmp_reflect and ip_output 
permit multicast destination addresses. 

Must use specific destination address as echo reply source. 

Yes: icmp_reflect converts a broadcast or multicast destination to the specific address 
of the receiving interface and uses the result as the source address for the echo reply. 

Must return echo request data in echo reply. 

Yes: The data portion of the echo request is not altered by icmp_reflect.

Must pass echo reply to higher layer. 

Yes: ICMP echo replies are passed to rip_input for receipt by registered processes. 

Must reflect record route and timestamp options in ICMP echo request message. 

Yes: icmp_reflect includes the record route and timestamp options in the echo reply 
message. 

Must reverse and reflect source route option. 

Yes: icmp_reflect retrieves the reversed source route with ip_srcroute and 
includes it in the outgoing echo reply. 

Should not support the ICMP information request or reply. 

Partially: The kernel does not generate or respond to either message, but a process may send 
or receive the messages through the raw IP mechanism. 

May implement the ICMP timestamp request and timestamp reply messages. 

Yes: icmp_input implements the timestamp server functionality. The timestamp client 
may be implemented through the raw IP mechanism. 

Must minimize timestamp delay variability (if implementing the timestamp messages). 
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Partially: The receive timestamp is applied after the message is taken off the IP input queue 
and the transmit timestamp is applied before the message is placed in the interface output 
queue. 

May silently discard broadcast timestamp request. 

No: icmp_input responds to broadcast timestamp requests. 

May silently discard multicast timestamp requests. 

No: icmp_input responds to broadcast timestamp requests. 

Must use specific destination address as timestamp reply source address. 

Yes: icmp_reflect converts a broadcast or multicast destination to the specific address 
of the receiving interface and uses the result as the source address for the timestamp reply. 

Should reflect record route and timestamp options in an ICMP timestamp request. 

Yes: icmp_reflect includes the record route and timestamp options in the timestamp 
reply message. 

Must reverse and reflect source route option in ICMP timestamp request. 

Yes: icmp_reflect retrieves the reversed source route with ip_srcroute and 
includes it in the outgoing timestamp reply. 

Must pass timestamp reply to higher layer. 

Yes: ICMP timestamp replies are passed to rip_input for receipt by registered 
processes. 

Must obey rules for standard timestamp value. 

Yes: icmp_input calls iptime, which returns a standard time value. 

Must provide a configurable method for selecting the address mask selection method for an 
interface. 

No: Net/3 supports only static configuration of address masks through the ifconfig 
program. 

Must support static configuration of address mask. 

Yes: This is accomplished indirectly by specifying static information when the ifconfig 
program configures an interface during system initialization, typically in the 
/etc/netstart start-up script. 

May get address mask dynamically during system initialization. 

No: Net/3 does not support the use of BOOTP or DHCP to acquire address mask information. 

May get address with an ICMP address mask request and reply messages. 



ptg11539634

 1142

No: Net/3 does not support the use ICMP messages to acquire address mask information. 

Must retransmit address mask request if no reply. 

Not Applicable: Not required since this method is not implemented by Net/3. 

Should assume default mask if no reply is received. 

Not Applicable: Not required since this method is not implemented by Net/3. 

Must update address mask from first reply only. 

Not Applicable: Not required since this method is not implemented by Net/3. 

Should perform reasonableness check on any installed address mask. 

No: Net/3 performs no reasonableness check on address masks. 

Must not send unauthorized address mask reply messages and must be explicitly configured to 
be agent. 

Yes: icmp_input only responds to address mask requests if icmpmaskrepl is 
nonzero (it defaults to 0). 

Should support an associated address mask authority flag with each static address mask 
configuration. 

No: Net/3 consults a global authority flag (icmpmaskrepl) to determine if it should send 
address mask replies for any interface. 

Must broadcast address mask reply when initialized. 

No: Net/3 does not broadcast an address mask reply when an interface is configured. 

C.6. Multicasting Requirements 

This section summarizes the IP multicast requirements from Section 3.5 of RFC 1122 and the 
compliance of the Net/3 code that we’ve examined to those requirements. 

Should support local IP multicasting (RFC 1112). 

Yes: Net/3 supports IP multicasting. 

Should join the all-hosts group at start-up. 

Yes: in_ifinit joins the all-hosts group while initializing an interface. 

Should provide a mechanism for higher layers to discover an interface’s IP multicast 
capability. 

Yes: The IFF_MULTICAST flag in the interface’s ifnet structure is available directly 
to kernel code and by the SIOCGIFFLAGS command for processes. 
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C.7. IGMP Requirements 

This section summarizes the IGMP requirements from Section 3.5 of RFC 1122 and the compliance of 
the Net/3 code that we’ve examined to those requirements. 

May support IGMP (RFC 1112). 

Yes: Net/3 supports IGMP. 

C.8. Routing Requirements 

This section summarizes the routing requirements from Section 3.5 of RFC 1122 and the compliance 
of the Net/3 code that we’ve examined to those requirements. Be aware that the requirements of this 
RFC apply to a host and not necessarily the kernel implementation. Some items are not explicitly 
handled by the kernel routing function in Net/3, but they are expected to be provided by a routing 
daemon such as routed or gated.

Must use address mask in determining whether a datagram’s destination is on a connected 
network. 

Yes: When an interface for a connected network such as an Ethernet is configured, its address 
mask is specified (or a default is chosen based on the class of IP address) and stored in the 
routing table entry. This mask is used by rn_match when it checks a leaf for a network 
match. 

Must operate correctly in a minimal environment when there are no routers (all networks are 
directly connected). 

Yes: The system administrator must not configure a default route in this case. 

Must keep a "route cache" of mappings to next-hop routers. 

Yes: The routing table is the cache. 

Should treat a received network redirect the same as a host redirect. 

Yes, as described in Section 19.7. 

Must use a default router when no entry exists for the destination in the routing table. 

Yes, if a default route has been entered into the routing table. 

Must support multiple default routers. 

Multiple defaults are not supported by the kernel. Instead, this should be provided by a 
routing daemon. 

May implement a table of static routes. 

Yes: These can be created at system initialization time with the route command. 

May include a flag with each static route specifying whether or not the route can be 
overridden by a redirect. 
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No. 

May allow the routing table key to be a complete host address and not just a network address. 

Yes: Host routes take priority over a network route to the same network. 

Should include the TOS in the routing table entry. 

No: There is a TOS field in the sockaddr_inarp that we describe in Chapter 21, but it 
is not currently used. 

Must be able to detect the failure of a next-hop router that appears as the gateway field in the 
routing table and be able to choose an alternate next-hop router. 

Negative advice, the RTM_LOSING message generated by in_losing, is passed to 
any processes reading from a routing socket, which allows the process (e.g., a routing 
daemon) to handle this event. 

Should not assume that a route is good forever. 

Yes: There are no timeouts on routing table entries in the kernel other than those created by 
ARP Again, the standard Unix routing daemons time out routes and replace them with 
alternatives when possible. 

Must not ping routers continuously (ICMP echo request). 

Yes: The Net/3 kernel does not do this. The routing daemons don’t generate ICMP echo 
requests either. 

Must use pinging of a router only when traffic is being sent to that router. 

The Net/3 kernel never generates pings to a next-hop router. 

Should allow higher and lower layers to give positive and negative advice. 

Partially: The only information passed by other layers to the Net/3 routing functions is by 
in_losing, which is called only from TCP. The only action performed by the routing 
layer is to generate the RTM_LOSING message. 

Must switch to another default router when the existing default fails. 

Yes, although the Net/3 kernel does not do this, it is supported by the routing daemons. 

Must allow the following information to be configured manually in the routing table: IP 
address, network mask, list of defaults. 

Yes, but only one default is supported in the kernel. 

C.9. ARP Requirements 

This section summarizes the ARP requirements from Section 2.5 of RFC 1122 and the compliance of 
the Net/3 code that we’ve examined to those requirements. 
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Must provide a mechanism to flush out-of-date ARP entries. If this mechanism involves a 
timeout, it should be configurable. 

Yes and yes: arptimer provides this mechanism. The timeout is configurable (the 
arpt_prune and arpt_keep globals) but the only ways to change their values are to 
recompile the kernel or modify the kernel with a debugger. 

Must include a mechanism to prevent ARP flooding. 

Yes, as we described with Figure 21.24. 

Should save (rather than discard) at least one (the latest) packet of each set of packets destined 
to the same unresolved IP address, and transmit the saved packet when the address has been 
resolved. 

Yes: This is the purpose of the la_hold member of the llinfo_arp structure. 

C.10. UDP Requirements 

This section summarizes the UDP requirements from Section 4.1.5 of RFC 1122 and the compliance 
of the Net/3 code that we’ve examined to those requirements. 

Should send ICMP port unreachable. 

Yes: udp_input does this. 

Must pass received IP options to application. 

No: The code to do this is commented out in udp_input. This means that a process that 
receives a UDP datagram with a source route option cannot send a reply using the reversed 
route. 

Must allow application to specify IP options to send. 

Yes: The IP_OPTIONS socket option does this. The options are saved in the PCB and 
placed into the outgoing IP datagram by ip_output.

Must pass IP options down to IP layer. 

Yes: As mentioned above, IP places the options into the IP datagram. 

Must pass received ICMP messages to application. 

Yes: We must look at the exact wording from the RFC: "A UDP-based application that wants 
to receive ICMP error messages is responsible for maintaining the state necessary to 
demultiplex these messages when they arrive; for example, the application may keep a 
pending receive operation for this purpose." The state required by Berkeley-derived systems 
is that the socket be connected to the foreign address and port. As the comments at the 
beginning of Figure 23.26 indicate, some applications create both a connected and an 
unconnected socket for a given foreign port, using the connected socket to receive 
asynchronous errors. 

Must be able to generate and verify UDP checksum. 
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Yes: This is done by udp_input, based on the global integer udpcksum.

Must silently discard datagrams with bad checksum. 

Yes: This is done only if udpcksum is nonzero. As we mentioned earlier, this variable 
controls both the sending of checksums and the verification of received checksums. If this 
variable is 0, the kernel does not verify a received nonzero checksum. 

May allow sending application to specify whether outgoing checksum is calculated, but must 
default to on. 

No: The application has no control over UDP checksums. Regarding the default, UDP 
checksums are generated unless the kernel is compiled with 4.2BSD compatibility defined, or 
unless the administrator has disabled UDP checksums using sysctl(8). 

May allow receiving application to specify whether received UDP datagrams without a 
checksum (i.e., the received checksum is 0) are discarded or passed to the application. 

No: Received datagrams with a checksum field of 0 are passed to the receiving process. 

Must pass destination IP address to application. 

Yes: The application must call recvmsg and specify the IP_RECVDSTADDR socket 
option. Also recall our discussion following Figure 23.25 noting that 4.4BSD broke this 
option when the destination address is a multicast or broadcast address. 

Must allow application to specify local IP address to be used when sending a UDP datagram. 

Yes: The application can call bind to set the local IP address. Recall our discussion at the 
end of Section 22.8 about the difference between the source IP address and the IP address of 
the outgoing interface. Net/3 does not allow the application to choose the outgoing 
interface t hat is done by ip_output, based on the route to the destination IP address. 

Must allow application to specify wildcard local IP address. 

Yes: If the IP address INADDR_ANY is specified in the call to bind, the local IP address 
is chosen by in_pcbconnect, based on the route to the destination. 

Should allow application to learn of the local address that was chosen. 

Yes: The application must call connect. When a datagram is sent on an unconnected 
socket with a wildcard local address, ip_output chooses the outgoing interface, which 
also becomes the source address. The inp_laddr member of the PCB, however, is 
restored to the wildcard address at the end of udp_output before sendto returns. 
Therefore, getsockname cannot return the value. But the application can connect a 
UDP socket to the destination, causing in_pcbconnect to determine the local interface 
and store the address in the PCB. The application can then call getsockname to fetch the 
IP address of the local interface. 

Must silently discard a received UDP datagram with an invalid source IP address (broadcast 
or multicast). 
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No: A received UDP datagram with an invalid source address is delivered to a socket, if a 
socket is bound to the destination port. 

Must send a valid IP source address. 

Yes: If the local IP address is set by bind, it checks the validity of the address. If the local 
IP address is wildcarded, ip_output chooses the local address. 

Must provide the full IP interface from Section 3.4 of RFC 1122. 

Refer to Section C.2. 

Must allow application to specify TTL, TOS, and IP options for output datagrams. 

Yes: The application can use the IP_TTL, IP_TOS, and IP_OPTIONS socket 
options. 

May pass received TOS to application. 

No: There is no way for the application to receive this value from the IP header. Notice that a 
getsockopt of IP_TOS returns the value used in outgoing datagrams, not the value 
from a received datagram. The received ip_tos value is available to udp_input, but 
is discarded along with the entire IP header. 

C.11. TCP Requirements 

This section summarizes the TCP requirements from Section 4.2.5 of RFC 1122 and the compliance 
of the Net/3 code that we’ve examined to those requirements. 

PSH Flag

May aggregate data sent by the user without the PSH flag. 

Yes and no: Net/3 does not give the process a way to specify the PSH flag with a write 
operation, but Net/3 does aggregate data sent by the user in separate write operations. 

May queue data received without the PSH flag. 

No: The absence or presence of a PSH flag in a received datagram makes no difference. 
Received data is placed onto the socket’s received queue when it is processed. 

Sender should collapse successive PSH flags when it packetizes data. 

No. 

May implement PSH flag on write calls. 

No: This is not part of the sockets API. 

Since the PSH flag is not part of the write calls, must not buffer data indefinitely and must set 
the PSH flag in the last buffered segment. 

Yes: This is the method used by Berkeley-derived implementations. 
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May pass received PSH flag to application. 

No: This is not part of the sockets API. 

Should send maximum-sized segment whenever possible, to improve performance. 

Yes. 

Window

Must treat window size as an unsigned number. Should treat window size as 32-bit value. 

Yes: All the window sizes in Figure 24.13 are unsigned longs, which is also required 
by the window scale option of RFC 1323. 

Receiver must not shrink the window (move the right edge to the left). 

Yes, in Figure 26.29. 

Sender must be robust against window shrinking. 

Yes, in Figure 29.15. 

May keep offered receive window closed indefinitely. 

Yes. 

Sender must probe a zero window. 

Yes, this is the purpose of the persist timer. 

Should send first zero-window probe when the window has been closed for the RTO. 

No: Net/3 sets a lower bound for the persist timer of 5 seconds, which is normally greater 
than the RTO. 

Should exponentially increase the interval between successive probes. 

Yes, as shown in Figure 25.14. 

Must allow peer’s window to stay closed indefinitely. 

Yes, TCP never gives up probing a closed window. 

Sender must not timeout a connection just because the other end keeps advertising a zero 
window. 

Yes. 

Urgent Data

Must have urgent pointer point to last byte of urgent data. 
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No: Berkeley-derived implementations continue to interpret the urgent pointer as pointing just 
beyond the last byte of urgent data. 

Must support a sequence of urgent data of any length. 

Yes, with the bug fix discussed in Exercise 26.6. 

Must inform the receiving process (1) when TCP receives an urgent pointer and there was no 
previously pending urgent data, or (2) when the urgent pointer advances in the data stream. 

Yes, in Figure 29.17. 

Must be a way for the process to determine how much urgent data remains, or at least whether 
more urgent data remains to be read. 

Yes, this is the purpose of the out-of-band mark, the SIOCATMARK ioctl.

TCP Options

Must be able to receive TCP options in any segment. 

Yes. 

Must ignore any options not supported. 

Yes, in Section 28.3. 

Must cope with an illegal option length. 

Yes, in Section 28.3. 

Must implement both sending and receiving the MSS option. 

Yes, a received MSS option is handled in Figure 28.10, and Figure 26.23 always sends an 
MSS option with a SYN. 

Should send an MSS option in every SYN when its receive MSS differs from 536, and may 
send it always. 

Yes, as mentioned earlier, an MSS option is always sent by Net/3 with a SYN. 

If an MSS option is not received with a SYN, must assume a default MSS of 536. 

No: The default MSS is 512, not 536. 

This is probably a historical artifact because VAXes had a physical page size of 512 bytes and 
trailer protocols working only with data that is a multiple of 512. 

Must calculate the "effective send MSS." 

Yes, in Section 27.5. 
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TCP Checksums

Must generate a TCP checksum in outgoing segments and must verify received checksums. 

Yes, TCP checksums are always calculated and verified. 

Initial Sequence Number Selection

Must use the specified clock-driven selection from RFC 793. 

No: RFC 793 specifies a clock that changes by 125,000 every half-second, whereas the Net/3 
ISN (the global variable tcp_iss) is incremented by 64,000 every half-second, about one-
half the specified rate. 

Opening Connections

Must support simultaneous open attempts. 

Yes, although Berkeley-derived systems prior to 4.4BSD did not support this, as described in 
Section 28.9. 

Must keep track of whether it reached the SYN_RCVD state from the LISTEN or 
SYN_SENT states. 

Yes, same result, different technique. The purpose of this requirement is to allow a passive 
open that receives an RST to return to the LISTEN state (as shown in Figure 24.15), but force 
an active open that ends up in SYN_RCVD and then receives an RST to be aborted. This is 
described following Figure 28.36. 

A passive open must not affect previously created connections. 

Yes. 

Must allow a listening socket with a given local port at the same time that another socket with 
the same local port is in the SYN_SENT or SYN_RCVD state. 

Yes: The stated purpose of this requirement is to allow a given application to accept multiple 
connection attempts at about the same time. This is done in Berkeley-derived 
implementations by cloning new connections from the socket in the LISTEN state when the 
incoming SYN arrives. 

Must ask IP to select a local IP address to be used as the source IP address when the source IP 
address is not specified by the process performing an active open on a multihomed host. 

Yes, done by in_pcbconnect.

Must continue to use the same source IP address for all segments sent on a connection. 

Yes: Once in_pcbconnect selects the source address, it doesn’t change. 

Must not allow an active open for a broadcast or multicast foreign address. 
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Yes and no: TCP will not send segments to a broadcast address because the call to 
ip_output in Figure 26.32 does not specify the SO_BROADCAST option. Net/3, 
however, allows connection attempts to multicast addresses. 

Must ignore incoming SYNs with an invalid source address. 

Yes: The code in Figure 28.16 checks for these invalid source addresses. 

Closing Connections

Should allow an RST to contain data. 

No: The RST processing in Figure 28.36 ends up jumping to drop, which skips the 
processing of any segment data in Figure 29.22. 

Must inform process whether other end closed the connection normally (e.g., sent a FIN) or 
aborted the connection with an RST. 

Yes: The read system calls return 0 (end-of-file) when the FIN is processed, but —1 with an 
error of ECONNRESET when an RST is received. 

May implement a half-close. 

Yes: The process calls shutdown with a second argument of 1 to send a FIN. The process 
can still read from the connection. 

If the process completely closes a connection (i.e., not a half-close) and received data is still 
pending in TCP, or if new data arrives after the close, TCP should send an RST to indicate 
data was lost. 

No and yes: If a process calls close and unread data is in the socket’s receive buffer, an 
RST is not sent. But if data arrives after a socket is closed, an RST is returned to the sender. 

Must linger in TIME_WAIT state for twice the MSL. 

Yes, although the Net/3 MSL of 30 seconds is much smaller than the RFC 793 recommended 
value of 2 minutes. 

May accept a new SYN from a peer to reopen a connection directly from the TIME_WAIT 
state. 

Yes, as shown in Figure 28.29. 

Retransmissions

Must implement Van Jacobson’s slow start and congestion avoidance. 

Yes. 

May reuse the same IP identifier field when a retransmission is identical to the original 
packet. 
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No: The IP identifier is assigned by ip_output from the global variable ip_id, which 
increments each time an IP datagram is sent. It is not assigned by TCP. 

Must implement Jacobson’s algorithm for calculating the RTO and Karn’s algorithm for 
selecting the RTT measurements. 

Yes, but realize that when RFC 1323 timestamps are present, the retransmission ambiguity 
problem is gone, obviating half of Karn’s algorithm, as we discussed with Figure 29.6. 

Must include an exponential backoff for successive RTO values. 

Yes, as described with Figure 25.22. 

Retransmission of SYN segments should use the same algorithm as data segments. 

Yes, as shown in Figure 25.15. 

Should initialize estimation parameters to calculate an initial RTO of 3 seconds. 

No: The initial value of t_rxtcur calculated by tcp_newtcpcb is 6 seconds. This is 
also seen in Figure 25.15. 

Should have a lower bound on the RTO measured in fractions of a second and an upper bound 
of twice the MSL. 

No: The lower bound is 1 second and the upper bound is 64 seconds (Figure 25.3). 

Generating ACKs

Should queue out-of-order segments. 

Yes, done by tcp_reass.

Must process all queued segments before sending any ACKs. 

Yes, but only for in-order segments. ipintr calls tcp_input for each queued 
datagram that is a TCP segment. For in-order segments, tcp_input schedules a delayed 
ACK and returns to ipintr. If there are additional TCP segments on IP’s input queue, 
tcp_input is called by ipintr for each one. Only when ipintr finds no more IP 
datagrams on its input queue and returns can tcp_fasttimo be called to generate a 
delayed ACK. This ACK will contain the highest acknowledgment number in all the 
segments processed by tcp_input.

The problem is with out-of-order segments: tcp_input calls tcp_output itself, 
before returning to ipintr, to generate the ACK for the out-of-order segment. If there are 
additional segments on IP’s input queue that would have made the out-of-order segment be in 
order, they are processed after the immediate ACK is sent. 

May generate an immediate ACK for an out-of-order segment. 

Yes, this is needed for the fast retransmit and fast recovery algorithms (Section 29.4). 

Should implement delayed ACKs and the delay must be less than 0.5 seconds. 
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Yes: The TF_DELACK flag is checked by the tcp_fasttimo function every 200 ms. 

Should send an ACK for at least every second segment. 

Yes, the code in Figure 26.9 generates an ACK for every second segment. We also discussed 
that this happens only if the process receiving the data reads the data as it arrives, since the 
calls to tcp_output that cause every other segment to be acknowledged are driven by 
the PRU_RCVD request. 

Must include silly window syndrome avoidance in the receiver. 

Yes, as seen in Figure 26.29. 

Sending Data

The TTL value for TCP segments must be configurable. 

Yes: The TTL is initialized to 64 (IPDEFTTL) by tcp_newtcpcb, but can then be 
changed by a process using the IP_TTL socket option. 

Must include sender silly window syndrome avoidance. 

Yes, in Figure 26.8. 

Should implement the Nagle algorithm. 

Yes, in Figure 26.8. 

Must allow a process to disable the Nagle algorithm on a given connection. 

Yes, with the TCP_NODELAY socket option. 

Connection Failures

Must pass negative advice to IP when the number of retransmissions for a given segment 
exceeds some value R1. 

Yes: The value of R1 is 4, and in Figure 25.26, when the number of retransmissions exceeds 
4, in_losing is called. 

Must close a connection when the number of retransmissions for a given segment exceeds 
some value R2. 

Yes: The value of R2 is 12 (Figure 25.26). 

Must allow process to set the value of R2. 

No: The value 12 is hardcoded in Figure 25.26. 

Should inform the process when R1 is reached and before R2 is reached. 

No. 
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Should default R1 to at least 3 retransmissions and R2 to at least 100 seconds. 

Yes: R1 is 4 retransmissions, and with a minimum RTO of 1 second, the tcp_backoff 
array (Section 25.9) guarantees a minimum value of R2 of over 500 seconds. 

Must handle SYN retransmissions in the same general way as data retransmissions. 

Yes, but R1 is normally not reached for the retransmission of a SYN (Figure 25.15). 

Must set R2 to at least 3 minutes for a SYN. 

No: R2 for a SYN is limited to 75 seconds by the connection-establishment timer (Figure 
25.15). 

Keepalive Packets

May provide keepalives. 

Yes, they are provided. 

Must allow process to turn keepalives on or off, and must default to off. 

Yes: Default is off and process must turn them on with the SO_KEEPALIVE socket 
option. 

Must send keepalives only when connection is idle for a given period. 

Yes. 

Must allow the keepalive interval to be configurable and must default to no less than 2 hours. 

No and yes: The idle time before sending keepalive probes is not easily configurable, but it 
defaults to 2 hours. If the default idle time is changed (by changing the global variable 
tcp_keepidle), it affects all users of the keepalive option on the host it cannot be 
configured on a per-connection basis as many users would like. 

Must not interpret the failure to respond to any given probe as a dead connection. 

Yes: Nine probes are sent before the connection is considered dead. 

IP Options

Must ignore received IP options it doesn’t understand. 

Yes: This is done by the IP layer. 

May support the timestamp and record route options in received segments. 

No: Net/3 only reflects these options for ICMP packets that are reflected back to the sender 
(icmp_reflect). tcp_input discards any received IP options by calling 
ip_stripoptions in Figure 28.2. 
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Must allow process to specify a source route when a connection is actively opened, and this 
route must take precedence over a source route received for this connection. 

Yes: The source route is specified with the IP_OPTIONS socket option. tcp_input 
never looks at a received source route when the connection is actively opened. 

Must save a received source route in a connection that is passively opened and use the return 
route for all segments sent on this connection. If a different source route arrives in a later 
segment, the later route should override the earlier one. 

Yes and no: Figure 28.7 calls ip_srcroute, but only when the SYN arrives for a 
listening socket. If a different source route arrives later, it is not used. 

Receiving ICMP Messages from IP

Receipt of an ICMP source quench should trigger slow start. 

Yes: The function tcp_quench is called by tcp_ctlinput.

Receipt of a network unreachable, host unreachable, or source route failed must not cause 
TCP to abort the connection and the process should be informed. 

Yes and no: As described following Figure 27.12, Net/3 now completely ignores host 
unreachable and network unreachable errors for an established connection. 

Receipt of a protocol unreachable, port unreachable, or fragmentation required and DF bit set 
should abort an existing connection. 

No: tcp_notify records these ICMP errors in t_softerror, which is reported to 
the process if the connection is eventually dropped. 

Should handle time exceeded and parameter problem errors the same as required previously 
for network and host unreachable. 

Yes: ICMP parameter problem errors are just recorded in t_softerror by 
tcp_notify. ICMP time exceeded errors are ignored by tcp_ctlinput. Neither 
type of ICMP error causes the connection to be aborted. 

Application Programming Interface

Must be a method for reporting soft errors to the process, normally in an asynchronous 
fashion. 

No: Soft errors are returned to the process if the connection is aborted. 

Must allow process to specify TOS for segments sent on a connection. Should let application 
change this during a connection’s lifetime. 

Yes to both, with the IP_TOS socket option. 

May pass most recently received TOS to process. 
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No: There is no way to do this with the sockets API. Calling getsockopt for IP_TOS 
returns only the current value being sent; it does not return the most recently received value. 

May implement a "flush" call. 

No: TCP sends the data from the process as quickly as it can. 

Must allow process to specify local IP address before either an active open or a passive open. 

Yes: This is done by calling bind before either connect or accept.
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